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Abstract. Let X be a Banach space. In this paper, we study the properties
of wUR modulus of X, δX(ε, f), where 0 ≤ ε ≤ 2 and f ∈ S(X∗), and the
relationship between the values of wUR modulus and reflexivity, uniform non-
squareness and normal structure, respectively. Among other results, we proved
that if δX(1, f) > 0, for any f ∈ S(X∗), then X has weak normal structure.

1. Introduction and preliminaries

Let X be a normed linear space. Let B(X) = {x ∈ X : ∥x∥ ≤ 1} and
S(X) = {x ∈ X : ∥x∥ = 1} be the unit ball and the unit sphere ofX, respectively.
Let X∗ be the dual space of X. In 1948, Brodskĭı and Mil’man [2] introduced the
following geometric concepts:

Definition 1.1. A bounded and convex subset K of a Banach space X is said
to have normal structure if every convex subset H of K that contains more than
one point contains a point x0 ∈ H such that sup{∥x0 − y∥ : y ∈ H} < d(H),
where d(H) = sup{∥x − y∥ : x, y ∈ H} denotes the diameter of H. A Banach
space X is said to have normal structure if every bounded and convex subset of X
has normal structure. A Banach space X is said to have weak normal structure
if for each weakly compact convex set K in X has normal structure. X is said
to have uniform normal structure if there exists 0 < c < 1 such that for any
bounded closed convex subset K of X that contains more than one point, there
exists x0 ∈ K such that sup{∥x0 − y∥ : y ∈ K} ≤ c · d(K).
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For a reflexive Banach space, the normal structure and weak normal structure
coincide.

Let D be a nonempty subset of a Banach space X. A mapping T : D → D
is called to be nonexpansive whenever ∥Tx − Ty∥ ≤ ∥x − y∥ for all x, y ∈ D.
A Banach space has fixed point property if for every bounded closed and convex
subset D of X and for each nonexpansive mapping T : D → D, there is a point
x ∈ D such that x = Tx [8].

In 1965, Kirk [8] proved that if a Banach space X has weak normal structure,
then it has weak fixed point property; that is, every nonexpansive mapping from
a weakly compact and convex subset of X into itself has a fixed point.

In [1], Clarkson introduced the following modulus of convexity:
δX(ε) = inf{1 − 1

2
∥x + y∥ : x, y ∈ S(X), ∥x − y∥ ≥ ε}, where 0 ≤ ε ≤ 2. It was

proved that if there exists ε > 0 such that δX(1 + ε) > ε
2
, then X has uniform

normal structure [3].
Many more geometric parameters were introduced after that to study the geo-

metric properties of Banach spaces. For some of these parameters, see [5, 9].
In [11], Smulian introduced the following function δX(ε, f) : from [0, 2]×S(X∗)

to [0.1] by the formula

δX(ε, f) = inf{{1} ∪ {1− 1

2
∥x+ y∥ : x, y ∈ S(X), | < x− y, f > | ≥ ε},

where f ∈ S(X∗) and 0 ≤ ε ≤ 2.
The reason for specifically including 1 in the set whose infimum defines the

wUR modulus is to avoid the following particular situation: when f is a non-
norm attaining functional, so there are no points x and y in S(X) such that
| < x− y, f > | ≥ 2. Therefore δX(2, f) would not be well defined.

Then the δX(ε, f) is called the wUR modulus convexity of X. The space X
is weakly uniformly rotund or weakly uniformly convex if δX(ε, f) > 0 whenever
0 < ε ≤ 2 and f ∈ S(X∗).

Theorem 1.2. [12] For any f ∈ X∗, δX(ε,f)
ε

is an increasing function of ε in
(0, 2], and δX(ε, f) is a continuous function in 0 ≤ ε < 2.

Definition 1.3. [6] A Banach space X is called uniformly nonsquare if there

exists δ > 0 such that if x, y ∈ S(X), then either ∥x+y∥
2

≤ 1− δ or ∥x−y∥
2

≤ 1− δ.

Definition 1.4. [2] Let X and Y be Banach spaces. We say that Y is finitely
representable in X if, for any ε > 0 and any finite dimensional subspace N ⊆ Y ,
there is an isomorphism T : N → X such that, for any y ∈ N , (1 − ε)∥y∥ ≤
∥Ty∥ ≤ (1 + ε)∥y∥.

The Banach space X is called super-reflexive if any space Y which is finitely
representable in X is reflexive.

It is well known that if X is uniformly nonsquare, then X is supper-reflexive,
and therefore X is reflexive.

Theorem 1.5. [6] Let X be a Banach space. Then X is not reflexive if and only
if, for any 0 < ε < 1, there are two sequences {xn} ⊆ S(X) and {fn} ⊆ S(X∗)
such that
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(a) ⟨xm, fn⟩ = ε whenever n ≤ m;
(b) ⟨xm, fn⟩ = 0 whenever n > m.

2. Main results

Theorem 2.1. For a Banach space X, if δX(ε, f) > 1 − ε, for all f ∈ S(X∗)
and 0 < ε < 1, then X is reflexive.

Proof. Suppose X is not reflexive. For any 0 < ε < 1, let the sequences {xn} ⊆
S(X) and {fn} ⊆ S(X∗) satisfy the two conditions in Theorem 1.5.

Let m1 < n < m2; we have < xm2 − xm1 , fn >= ε.
Let m < m1 < m2; we have < xm2+xm1 , fm >= 2ε; therefore ∥xm2+xm1∥ ≥ 2ε

and 1− ∥xm2+xm1∥
2

≤ 1− ε.

This implies δX(ε, fn) = inf{1− ∥x+y∥
2

, < x−y, fn >≥ ε} ≤ 1− ∥xm2+xm1∥
2

≤ 1−ε
for this fixed fn ∈ S(X∗). □

For a Banach spaceX, we define∇x ⊂ S(X∗) to be the set of norm 1 supporting
functionals of S(X) at x; that is, fx ∈ ∇x ⇐⇒ ⟨x, fx⟩ = 1. For x1, x2 ∈ B(X),
we use [x1, x2] to denote the line segment connecting x1 and x2 in X. Let X2 be
a two-dimensional subspace of X; for x1, x2 ∈ S(X2), we use x̃1, x2 to denote the
curve on S(X2) from x1 to x2 clockwise.

Lemma 2.2. [4] If x1, x2 ∈ B(X) and 0 < ϵ < 1 are such that ∥x1+x2∥
2

> 1 − ϵ,
then, for all 0 ≤ c ≤ 1 and z = cx1 + (1 − c)x2 ∈ [x1, x2], the line segment
connecting x1 and x2 follows that ∥z∥ > 1− 2ϵ.

Theorem 2.3. For a Banach space X, if δX(ε, f) > 1
2
− ε

4
, for all f ∈ S(X∗)

and 0 < ε < 2, then X is uniform nonsquare.

Proof. Suppose X is not uniform nonsquare. For any 0 < ε < 2, let x, y ∈ S(X)
such that both ∥x+ y∥ ≥ 1 + ε

2
and ∥x− y∥ ≥ 1 + ε

2
.

So we have ∥x+y∥
2

≥ 1
2
+ ε

4
and ∥x−y∥

2
≥ 1

2
+ ε

4
.

This implies ∥x+y∥
2

≥ 1− (1
2
− ε

4
) and 1− ∥x−y∥

2
≤ 1

2
− ε

4
.

Consider the two-dimensional subspace X2 of X spanned by x and y, and x
and y are clockwise located on x̃, y ⊆ S(X2).

Let fx ∈ ∇x and fy ∈ ∇y, respectively, we have
1 =< x, fx >≥< y, fx > and 1 =< y, fy >≥< x, fy > .
There must be a z ∈ x̃, y ⊆ S(X2) such that < x, fz >=< y, fz > .
Let z = αz′ such that z′ ∈ [x, y]; then ∥z′∥ > 1− 2(1

2
− ε

4
) = ε

2
, from Lemma 2.2.

We have < x, fz >=< y, fz >=< z′, fz >= ∥z′∥ ≥ ε
2
.

This implies < x+ y, fz >≥ ε.
Use Hahn–Banach theorem to extend fz to X. Let f = fz ∈ ∇z in S(X∗).

We have δX(ε, f) = inf{1 − ∥x−y∥
2

, < x + y, f >≥ ε} ≤ 1
2
− ε

4
for this fixed

f ∈ S(X∗).
□

Lemma 2.4. [4] Let X be a Banach space without weak normal structure; then
for any 0 < ϵ < 1, there exists a sequence {zn}∞k=1 ⊆ S(X) with zn →w 0 such
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that
1− ϵ < ∥zn+1 − z∥ < 1 + ϵ

for sufficiently large n and any z ∈ co{zk}nk=1.

Theorem 2.5. For a Banach space X, if δX(1, f) > 0, for all f ∈ S(X∗), then
X has weak normal structure.

Proof. For any η > 0, let {zk}∞k=1 ⊆ S(X) be chosen as in above Lemma 2.4.
Since zk →w 0, 0 is in the w-closed convex hull of {zk}∞k=1 which equals to the

norm closed convex hull, co{zk}∞k=1.
So there exist n0 and y ∈ co{zk}n0

k=1 with ∥y∥ < η.
We may assume that n0 also satisfies

1− η ≤ ∥zn − z∥ ≤ 1 + η,

for n > n0, and that z ∈ co{zk}n0
k=1 as in above Lemma 2.4.

We therefore have, for n > n0,
∥zn − z1

2
∥ ≥ ∥zn − y+z1

2
∥ − ∥y

2
∥ ≥ (1− η)− η

2
> 1− 2η and

∥zn − z1
2
∥ ≤ ∥zn − y+z1

2
∥+ ∥y

2
∥ ≤ (1 + η) + η

2
< 1 + 2η.

So,

1− 2η ≤ ∥zn −
z1
2
∥ ≤ 1 + 2η.

Since zk →w 0, take an f1 ∈ ∇z1 . We may assume, for this fixed f1 ∈ ∇z1 , that
| < zn0 , f1 > | < η and 1− η < ∥zn0 − z1∥, ∥zn0 − z1

2
∥ < 1 + η.

Let x =
−z1+zn0

∥z1−zn0∥
. Then

∥x+ zn0∥ ≥ ∥zn0 − (z1 − zn0)∥ − ∥(z1 − zn0) + x∥

= 2∥zn0 −
z1
2
∥ − ∥z1 − zn0∥|1−

1

∥z1 − zn0∥
|

≥ 2(1− η)− (1 + η)
η

1− η
.

So, 1− ∥x+zn0∥
2

≤ η + 1
2
(1 + η) η

1−η
.

But,

| < x− zn0 , f1 > | = | < z1 − zn0

∥z1 − zn0∥
+ zn0 , f1 > |

=
1

∥z1 − zn0∥
| < z1 − zn0 + ∥z1 − zn0∥zn0 , f1 > |

=
1

∥z1 − zn0∥
| < z1 − (1− ∥z1 − zn0∥)zn0 , f1 > | ≥ 1− η

1 + η
.

Since η can be arbitrarily small and δX(ε, f1) is a continuous function in
0 ≤ ε < 2, for any f1 ∈ S(X∗), we have δX(1, f1) = 0.

□
We consider the uniform normal structure.
Let F be a filter of an index set I, and let {xi}i∈I be a subset of a Hausdorff

topological space X. Then {xi}i∈I is said to converge to x with respect to F ,
denoted by limF xi = x, if for each neighborhood U of x, {i ∈ I : xi ∈ U} ∈ F .
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A filter U on I is called an ultrafilter if it is maximal with respect to the ordering
of the set inclusion. An ultrafilter is called trivial if it is of the form {A : A ⊆
I, i0 ∈ A} for some i0 ∈ I. We will use the fact that if U is an ultrafilter, then

(i) for any A ⊆ I, either A ⊆ U or I − A ⊆ U ;
(ii) if {xi}i∈I has a cluster point x, then limU xi exists and equals to x.

Let {Xi}i∈I be a family of Banach spaces, and let l∞(I,Xi) denote the subspace
of the product space equipped with the norm ∥(xi)∥ = supi∈I ∥xi∥ < ∞.

Definition 2.6. [10] Let U be an ultrafilter on I, and let NU = {(xi) ∈ l∞(I,Xi) :
limU ∥xi∥ = 0}. The ultraproduct of {Xi}i∈I is the quotient space l∞(I,Xi)/NU
equipped with the quotient norm.

We will use (xi)U to denote the element of the ultraproduct. It follows from
remark (ii) above and the definition of quotient norm that

∥(xi)U∥ = lim
U

∥xi∥. (2.1)

In the following we will restrict our index set I to be N, the set of natural
numbers, and let Xi = X, i ∈ N for some Banach space X. For an ultrafilter U
on N, we use XU to denote the ultraproduct. Note that if U is nontrivial, then
X can be embedded into XU isometrically.

Lemma 2.7. [10] Suppose that U is an ultrafilter on N and that X is a Banach
space. Then (X∗)U ∼= (XU)

∗ if and only if X is super-reflexive, and in this case,
the mapping J defined by

⟨(xi)U , J((fi)U)⟩ = lim
U
⟨xi, fi⟩, for all (xi)U ∈ XU ,

is the canonical isometric isomorphism from (X∗)U onto (XU)
∗.

Theorem 2.8. Let X be a super-reflexive Banach space. Then, for any nontrivial
ultrafilter U on N and for any 0 < ε < 2, we have δXU (ε, (fi)U) > a, for all
(fi)U ∈ X∗

U , if and only if δX(ε, f) > a for all f ∈ X∗.

Proof. Since X can be embedded into XU isometrically, we may consider X as a
subspace of XU . From the definition of δX(ε, f), we have
δXU (ε, (fi)U) > a, for all (fi)U ∈ S(X∗

U), implies δX(ε, f) > a for all f ∈ S(X∗).

We prove the reverse inequality.
Suppose there is a fixed (fi)U ∈ S(X∗

U) such that δXU (ε, (fi)U) ≤ a. From the
definition of δXU (ε, (fi)U), there are (xi)U ∈ S(XU) and (yi)U ∈ S(XU) such that

1− ∥(xi)U+(yi)U∥
2

≤ a, but < (xi)U − (yi)U , (fi)U >≥ ε.
From (2.1), for any η > 0 we may assume the subsets

A = {i : 1− η < ∥xi∥ < 1 + η},
B = {i : 1− η < ∥yi∥ < 1 + η},

and
C = {i : 1− η < ∥fi∥ < 1 + η}
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are all in U .
From the property of ultraproduct, we know the subsets

P = {i :< xi − yi, fi >≥ ε− η}
and

Q = {i : 1− ∥xi + yi∥
2

≤ a+ η}

are all in U .
So the intersection A ∩B ∩ C ∩ P ∩Q is in U too, and is hence not empty.

Let i ∈ A ∩B ∩ C ∩ P ∩Q. For this fixed i, we have

1− η < ∥xi∥ < 1 + η,

1− η < ∥yi∥ < 1 + η,

1− η < ∥fi∥ < 1 + η,

< xi − yi, fi >≥ ε− η,

and

1− ∥xi + yi∥
2

≤ a+ η.

So, ∥xi+yi∥
2

≥ 1− a− η.

Consider x′
i =

xi

∥xi∥ , y
′
i =

yi
∥yi∥ , and f ′

i =
fi

∥fi∥ .

Then x′
i, y

′
i ∈ S(X), f ′

i ∈ S(X∗), ∥x′
i−xi∥ < η, ∥y′i−yi∥ < η, and ∥f ′

i−fi∥ < η.

We have

< x′
i − y′i, f

′
i > = < xi − yi, fi > + < (x′

i − xi)− (y′i − yi), fi >

+ < x′
i − y′i, f

′
i − fi >

≥ < xi − yi, fi > −∥x′
i − xi∥ − ∥y′i − yi∥ − ∥x′

i − y′i∥∥f ′
i − fi∥

≥ ε− η − 3η = ε− 4η.

From

∥x′
i + y′i∥ = ∥(xi + yi) + (x′

i − xi) + (y′i − yi)∥)
≥ ∥xi + yi∥ − ∥x′

i − xi∥ − ∥y′i − yi∥)
≥ 2− 2a− 2η − η − η = 2− 2a− 4η.

So, 1− ∥x′
i+y′i∥
2

≤ a+ 2η.
This implies δX(ε− 4η, f ′

i) ≤ a+ 2η.
Since η > 0 can be arbitrarily small, it is impossible to have δX(ε, f) > a for

all f ∈ S(X∗). So, δX(ε, f) > a for all f ∈ S(X∗) implies δXU (ε, (fi)U) > a for all
(fi)U ∈ S(X∗

U).
□

Lemma 2.9. [7] If X is a super-reflexive Banach space, then X has uniform
normal structure if and only if XU has normal structure.

Theorem 2.10. For a Banach space X, if δX(ε, f) >
1
2
− ε

4
, for all f ∈ SX∗ and

0 < ε < 2, then X is uniform nonsquare and has uniform normal structure.
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Proof. The inequality δX(ε, f) > 1
2
− ε

4
, for all f ∈ S(X∗) and 0 < ε < 2,

implies δX(1, f) > 0 for all f ∈ S(X∗) and 0 < ε < 2; then X has weak normal
structure from Theorem 2.5. The inequality δX(ε, f) >

1
2
− ε

4
, for all f ∈ S(X∗)

and 0 < ε < 2 implies X is uniformly nonsquare from Theorem 2.3. So, X is
super-reflexive.

Then the result follows directly from Theorem 2.8 and Lemma 2.9.
□

Example 2.11. Let H be an Hilbert space. Then δH(ε, f) = 1−
√

2(2−ε)

2
for all

f ∈ S(X∗) and 0 ≤ ε ≤ 2.

Proof. For any f ∈ S(H∗), let x ∈ S(H) such that < x, f >= 1.
For any 0 ≤ ε ≤ 2, let HP be the Hyperplane of H : HP = {z :< z, f >=

−1 + ε, z ∈ X}.
It is easy to see that δX(ε, f) is obtained at −x and any y ∈ HP ∩ S(H).
We have < x+ y, f >= 1 + (−1 + ε) = ε.

But ∥x− y∥ =
√
2(2− ε), so 1− ∥x−y∥

2
= 1−

√
2(2−ε)

2
.

We have, δH(ε, f) = 1−
√

2(2−ε)

2
.

□
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