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PARALLEL ITERATIVE METHODS FOR SOLVING THE
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Communicated by B. Sims

Abstract. We consider the common null point problem in Banach spaces.
Then, using the hybrid projection method and the ε-enlargement of maximal
monotone operators, we prove two strong convergence theorems for finding a
solution of this problem.

1. Introduction

Let H be a real Hilbert space, and let f : H −→ (−∞,∞] be a proper, lower
semicontinuous, and convex function. In order to find a minimum point of f ,
Martinet [11] proposed the iterative method as follows: x1 ∈ H and

xn+1 = argmin
y∈H

{
f(y) +

1

2
∥y − xn∥2

}
for all n ≥ 1. He proved that the sequence {xn} converges weakly to a minimum
point of f . Note that, the above sequence {xn} can be rewritten in the form

∂f(xn+1) + xn+1 ∋ xn ∀n ≥ 1.

We know that the subdifferential operator ∂f of f is a maximal monotone oper-
ator [14]. So, the problem of finding a null point of a maximal monotone operator
plays an important role in optimization theory. One popular method of solving
equation 0 ∈ A(x) where A is a maximal monotone operator in Hilbert space H,
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is the proximal point algorithm. The proximal point algorithm generates, for any
starting point x0 = x ∈ E, a sequence {xn} by the rule

xn+1 = JA
rn(xn), ∀n ∈ N,

where {rn} is a sequence of positive real numbers and JA
rn = (I + rnA)

−1 is the
resolvent of A. Moreover, Rockafellar [15] has given a more practical method
which is an inexact variant of the method

xn + en ∈ xn+1 + rnAxn+1, ∀n ∈ N, (1.1)

where {en} is regarded as an error sequence and {rn} is a sequence of positive
regularization parameters. Note that the algorithm (1.1) can be rewritten as

xn+1 = JA
rn(xn + en) ∀n ∈ N.

This method is called inexact proximal point algorithm. It was shown in Rock-
afellar [15] that if

∑∞
n=1 ∥en∥ <∞, then xn ⇀ z ∈ H with 0 ∈ Az.

There are many authors replaced the operator A in the equation (1.1) by the
ε-enlargement Aε, see, for instance, Burachick, Iusem, and Svaiter [3], Solodov
and Svaitere [17], Moudafi and Elisabeth [13], and others. In [3], Burachick and
others used the enlargement Aε to devise an approximate generalized proximal
point algorithm. The exact version of this algorithm can be stated as follows:
Having xn, the next element xn+1 is the solution of

0 ∈ rnA(x) +▽f(x)−▽f(xn), (1.2)

where f is a suitable regularization function. Note that, if f(x) =
1

2
∥x∥2, then the

above algorithm becomes the classical proximal point algorithm. Approximate
solutions of (1.2) are treated in [3] via Aε. Specifically, an approximate solution
of (1.2) can be regarded as an exact solution of

0 ∈ rnA
εn(x) +▽f(x)−▽f(xn),

for an appropriate value of εn. Note that, if f(x) =
1

2
∥x∥2, then the above relation

is equivalent to the problem of finding an element xn+1 ∈ H and vn+1 ∈ Aεn(xn+1)
with εn ≥ 0 such that

0 = rnvn+1 + (xn+1 − xn). (1.3)

They proved that if
∑∞

n=1 εn < ∞, then the sequence {xn} converges weakly to
a null point of A.

The problem of finding a common null point of a finite family of maximal
monotone operators in Banach or Hilbert spaces is the interesting topic of non-
linear analysis. This problem has been investigated by many researchers, see, for
instance, Sabach [16], Timnak, Naraghirad, and Hussain [19], Tuyen [20], Kim
and Tuyen [10], and others.

Let E be a reflexive Banach space, and let Ai : E −→ 2E
∗
, i = 1, 2, . . . , N , be

N maximal monotone operators such that S = ∩N
i=1A

−1
i 0 ̸= ∅. Let g : E −→ R be

a Legendre function that is bounded, uniformly Fréchet differentiable, and totally
convex on bounded subsets of E. In 2011, Sabach [16] introduced two iterative
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methods for finding an element x∗ ∈ S. He proved the strong convergence of
sequence {xn} which is defined by

x0 ∈ E chosen arbitrarily,

yn = Resg
λN
n AN

. . .Resgλ1
nA1

(xn + en),

Cn = {z ∈ E : Dg(z, yn) ≤ Dg(z, xn + en)},
Qn = {z ∈ E : ⟨z − xn,▽g(x0)−▽g(xn)⟩ ≤ 0},
xn+1 = projgCn∩Qn

x0, n ≥ 0,

or
x0 ∈ E chosen arbitrarily,

H0 = E,

yn = Resg
λN
n AN

. . .Resgλ1
nA1

(xn + en),

Hn+1 = {z ∈ Hn : Dg(z, yn) ≤ Dg(z, xn + en)},
xn+1 = projgHn+1

x0, n ≥ 0,

where, for each i = 1, 2, . . . , N, lim infn→∞ λi
n > 0, the sequence of errors {en}

satisfies lim infn→∞ en = 0, and Resg
λi
nAi

= (▽g + λi
nAi)

−1▽ g.

In 2017, Timnak and others [19] proposed a new Halpern-type iterative scheme
for finding an element x∗ ∈ S. They proved strong convergence of the sequence
{xn} which is defined by

u ∈ E, x1 ∈ E chose arbitrarily,

yn = ▽g∗[βn▽ g(xn) + (1− βn)▽ g(ResgrNAN
. . .Resgr1A1

(xn))],

xn+1 = ▽g∗[αn▽ g(u) + (1− αn)▽ g(yn)], n ≥ 1,

where ri > 0, for each i = 1, 2, . . . , N , and {αn} and {βn} are two sequences in
[0, 1] satisfying the following conditions:

i) limn→∞ αn = 0;
ii)

∑∞
n=1 αn =∞;

iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

In 2016, Ibaraki [7] studied the shrinking projection method [18] with error for
finding a null point of a monotone operator in a Banach space. Let A : E −→ 2E

∗

be a monotone operator such that A−10 ̸= ∅ and D(A) ⊂ C ⊂ J−1
E R(JE + rnA),

where C is a nonempty, closed, and convex subset of E, and {rn} is a sequence of
positive real numbers. He considered the sequence {xn} generated by x1 = u ∈ C,
C1 = C, and

yn = Jrn(xn),

Cn+1 = {z ∈ C : ⟨yn − z, JE(xn)− JE(yn)⟩ ≥ 0} ∩ Cn,

xn+1 ∈ {z ∈ C : ∥u− z∥2 ≤ d(u,Cn+1)
2 + δn+1} ∩ Cn+1,

where {δn} is a sequence of non-negative numbers and d(u,Cn+1) is the distance
from u to Cn+1. He proved that if lim supn→∞ δn = 0, then {xn} converges
strongly to PA−10u as n → ∞. The result of Ibaraki is the extension the results
of Ibaraki and Kimura [6] and Kimura [9].
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Thus, there are some open questions which are posed as follows:

1) Can we extend the above iterative method for finding an element x∗ ∈
S = ∩N

i=1A
−1
i 0 ̸= ∅, where Ai, i = 1, 2, . . . , N , are maximal monotone

operators on the Banach spaces E?
2) Can we replace the equation yn = Jrn(xn) by the following inclusion equa-

tion

rnA
εn(yn) + JE(yn) ∋ JE(xn),

where Aεn is the εn-enlargement of A with εn ≥ 0?

In this paper, by using the tools of ε-enlargement of maximal monotone oper-
ators and the shrinking projection method, we introduce two strong convergence
theorems to answer two above open questions. This results are the extension of
Ibaraki’s result [7]. Moreover, we also give an application of the main results for
solving the problem of finding a common minimum point of convex functions.

2. Preliminaries

Let E be a real Banach space with norm ∥ · ∥, and let E∗ be its dual. The
value of f ∈ E∗ at x ∈ E will be denoted by ⟨x, f⟩. When {xn} is a sequence in

E, then xn → x (resp. xn ⇀ x, xn
∗
⇀ x) will denote strong (resp. weak, weak∗)

convergence of the sequence {xn} to x. Let JE denote the normalized duality
mapping from E into 2E

∗
given by

JEx =
{
f ∈ E∗ : ⟨x, f⟩ = ∥x∥2 = ∥f∥2

}
∀x ∈ E.

We always use SE to denote the unit sphere SE = {x ∈ E : ∥x∥ = 1}. A
Banach space E is said to be strictly convex if x, y ∈ SE with x ̸= y and, for all
t ∈ (0, 1),

∥(1− t)x+ ty∥ < 1.

A Banach space E is said to be uniformly convex if for any ε ∈ (0, 2] and the
inequalities ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ ε, there exists a δ = δ(ε) > 0 such that

∥x+ y∥
2

≤ 1− δ.

A Banach space E is said to be smooth provided the limit

lim
t→0

∥x+ ty∥ − ∥x∥
t

exists for each x and y in SE. In this case, the norm of E is said to be Gâteaux
differentiable. It is said to be uniformly Gâteaux differentiable if for each y ∈ SE,
this limit attained uniformly for x ∈ SE.

Let E be a reflexive Banach space; we know that E is uniformly convex if and
only if E∗ is uniformly smooth.

We have following properties of the normalized duality mapping JE:

(i) E is reflexive if and only if JE is surjective;
(ii) If E∗ is strictly convex, then JE is single-valued;
(iii) If E is a smooth, strictly convex and reflexive Banach space, then JE is

single-valued bijection;
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(iv) If E∗ is uniformly convex, then JE is uniformly continuous on each bounded
set of E.

We know that, if E is a smooth, strictly convex, and reflexive Banach space
and C is a nonempty, closed, and convex subset of E, then, for each x ∈ E, there
exists unique z ∈ C such that

∥x− z∥ = inf
y∈C
∥x− y∥.

The mapping PC : E −→ C defines by PCx = z is called metric projection from
E on to C, and we denote by d(x,C) = ∥x− z∥.

Let E be a smooth Banach space. Define a function ϕ : E × E −→ R by

ϕ(x, y) = ∥x∥2 − 2⟨x, JEy⟩+ ∥y∥2

for all x, y ∈ E. From the definition of ϕ, it is easy to see that the function ϕ has
the following properties:

(i) (∥x∥ − ∥y∥)2 ≤ ϕ(x, y) ≤ (∥x∥+ ∥y∥)2 for all x, y ∈ E;
(ii) ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2⟨x− z, JEz − JEy⟩ for all x, y, z ∈ E;
(iii) If E is strictly convex, then ϕ(x, y) = 0 if and only if x = y.

Let A : E −→ 2E
∗
be an operator. The effective domain of A is denoted by

D(A); that is, D(A) = {x ∈ E : Ax ̸= ∅}. Recall that A is called monotone
operator if ⟨x−y, u−v⟩ ≥ 0 for all x, y ∈ D(A) and for all u ∈ Ax and v ∈ A(y).
A monotone operator A on E is called maximal monotone if its graph is not
properly contained in the graph of any other monotone operator on E. We know
that if A is maximal monotone operator on E and E is a uniformly convex and
smooth Banach space, then R(JE + rA) = E∗, for all r > 0, where R(JE + rA) is
the range of JE + rA [2]; if additionally E is strictly convex then, for each x ∈ E
and r > 0, there exists unique xr ∈ E such that

JEx ∈ JExr + rAxr.

Hence, in this case we can define a mapping Jr : E −→ E by Jrx = xr, and Jr
is called the generalized resolvent of A.

The set of null point of A is defined by A−10 = {z ∈ E : 0 ∈ Az}, and we
know that A−10 is a closed and convex subset of E.

Let A : E −→ 2E
∗
be a maximal monotone operator. In [4], for each ε ≥ 0,

Burachik and Svaiter defined Aε(x), an ε-enlargement of A, as follows:

Aεx = {u ∈ E∗ : ⟨y − x, v − u⟩ ≥ −ε, ∀y ∈ E, v ∈ Ay}.
It is easy to see that A0x = Ax, and if 0 ≤ ε1 ≤ ε2, then Aε1x ⊆ Aε2x for any
x ∈ E. The using of element in Aε instead of A allows an extra degree freedom
which is very useful in various applications.

Let {Cn} be the sequence of closed, convex, and nonempty subsets of a reflexive
Banach space E. We define the subsets s-LinCn and w-LsnCn of E as follows:
x ∈ s-LinCn if and only if there exists {xn} ⊂ E converges strongly to x and that
xn ∈ Cn for all n ≥ 1; x ∈ w-LsnCn if and only if there exists a subsequence
{Cnk

} of {Cn} and the sequence {yk} ⊂ E such that yk ⇀ x and yk ∈ Cnk
for all

k ≥ 1. If s-LinCn = w-LsnCn = Ω0, then Ω0 is called the limits of {Cn} in the
sense of Mosco [12], and it is denoted by Ω0 = M- limn→∞ Cn.
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The following lemmas will be needed in what follows for the proof of main
theorems.

Lemma 2.1. [21] Let E be a Banach space, r ∈ (0,∞), and Br = {x ∈ E :
∥x∥ ≤ r}. If E is uniformly convex, then there exists a continuous, strictly
increasing, and convex function g : [0, 2r] −→ [0,∞) with g(0) = 0 such that

∥αx+ (1− α)y∥2 ≤ α∥x∥2 + (1− α)∥y∥2 − α(1− α)g(∥x− y∥)

for all x, y ∈ Br and α ∈ [0, 1].

Lemma 2.2. [8] Let E be a uniformly convex and smooth Banach space, and let
{yn} and {zn} be two sequences of E. If ϕ(yn, zn) → 0 and either {yn} or {zn}
is bounded, then yn − zn → 0.

Lemma 2.3. [5] Let E be a smooth, reflexive, and strictly convex Banach space
having the Kadec–Klee property. Let {Cn} be a sequence of nonempty, closed,
and convex subsets of E. If C0 = M − limn→∞Cn exists and is nonempty, then
{PCnx} converges strongly to PC0x for each x ∈ C.

Lemma 2.4. [4] The graph of Aε : R+ × E −→ 2E
∗
is demiclosed; that is, the

conditions below hold:

(i) If {xn} ⊂ E converges strongly to x0, {un ∈ Aεnxn} converges weakly* to
u0 in E∗, and {εn} ⊂ R+ converges to ε, then u0 ∈ Aεx0;

(ii) If {xn} ⊂ E converges weak to x0, {un ∈ Aεnxn} converges strongly to u0

in E∗, and {εn} ⊂ R+ converges to ε, then u0 ∈ Aεx0.

3. Main results

Let E be a uniformly convex and smooth Banach space, and let Ai : E −→
2E

∗
, i = 1, 2, . . . , N , be maximal monotone operators of E into 2E

∗
such that

S = ∩N
i=1A

−1
i 0 ̸= ∅. Consider the following problem.

Find an element x∗ ∈ S. (3.1)

In order to solve the Problem (3.1), we propose two algorithms as follows: Let
{εn} and {δn} be non-negative real sequences, and let {ri,n}, i = 1, 2, . . . , N , be
positive real sequences such that mini{infn{ri,n}} ≥ r > 0.

Algorithm 3.1. For a given point u ∈ E, we define the sequence {xn} by x1 =
x ∈ E, C1 = E, and

Find yi,n ∈ E such that JE(yi,n)− JE(xn) + ri,nA
εn
i yi,n ∋ 0, i = 1, . . . , N

Choose in such that ∥yin,n − xn∥ = max
i=1,...,N

{∥yi,n − xn∥}, let yn = yin,n,

Cn+1 = {z ∈ Cn : ⟨yn − z, JE(xn)− JE(yn)⟩ ≥ −εnrin,n},
Find xn+1 ∈ {z ∈ Cn+1 : ∥u− z∥2 ≤ d2(u,Cn+1) + δn+1}, n ≥ 1.

(3.2)
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Algorithm 3.2. For a given point u ∈ E, we define the sequence {xn} by x1 =
x ∈ E, C1 = E, and

Find yi,n ∈ E such that JE(yi,n)− JE(xn) + ri,nA
εn
i yi,n ∋ 0, i = 1, . . . , N ;

Ci
n+1 = {z ∈ Cn : ⟨yi,n − z, JE(xn)− JE(yi,n)⟩ ≥ −εnri,n}, i = 1, 2, . . . , N

Cn+1 = ∩N
i=1C

i
n+1;

Find xn+1 ∈ {z ∈ Cn+1 : ∥u− z∥2 ≤ d2(u,Cn+1) + δn+1}, n ≥ 1.
(3.3)

We will prove the strong convergence of Algorithms 3.1 and 3.2 under the
following conditions:

C1) limn→∞ εnri,n = 0 for all i = 1, 2, . . . , N ;
C2) limn→∞ δn = 0.

Remark 3.3.

i) In Algorithm 3.2, in order to define the element xn+1, we have to find
the projection of u onto the intersection of n × N half-spaces. But in
Algorithm 3.1, we only find the projection of u onto the intersection of n
half-spaces. So, the algorithm to define xn+1 in Algorithm 3.1 is simpler
than the algorithm in Algorithm 3.2. However, in the both cases, we
can find the element xn+1 by the approximation solution of the following
minimization problem: Find a minimum point of the convex function

f(x) =
1

2
∥x − u∥2 over the intersection of a finite family of half-spaces

Ci. In particular, if E = Rm, then we can find xn+1 easily by using the
“Quadratic Programming Algorithms” package in MATLAB software.

ii) In Algorithms 3.1 and 3.2, if N = 1 and εn = 0, for all n ≥ 1, then we
obtain the Ibaraki’s result [7, Theorem 4.2].

First, we need the following lemma.

Lemma 3.4. If {Cn} is a decreasing sequence of closed and convex subsets of a
reflexive Banach space E and Ω0 = ∩∞

n=1Cn ̸= ∅, then Ω0 = M- limn→∞ Cn.

Proof. Indeed, it is clear that if x ∈ Ω0, then x ∈ s-LinCn and x ∈ w-LsnCn,
because the sequence {xn} with xn = x, for all n ≥ 1, converges strongly to x.
Thus, we have Ω0 ⊂ s-LinCn and Ω0 ⊂ w-LsnCn.

Now we will show that Ω0 ⊇ s-LinCn and Ω0 ⊇ w-LsnCn. Let x ∈ s-LinCn,
from the definition of s-LinCn, there exists a sequence {xn} ⊂ E with xn ∈ Cn,
for all n ≥ 1, such that xn → x, as n→∞. Since {Cn} is a decreasing sequence,
xn+k ∈ Cn for all n ≥ 1 and k ≥ 0. So, letting k → ∞ and by the closedness of
Cn, we get that x ∈ Cn for all n ≥ 1. Thus, x ∈ Ω0, and hence Ω0 ⊇ s-LinCn.
Next, let y ∈ w-LsnCn, from the definition of w-LsnCn, there exists a subsequence
{Cnk

} of {Cn} and the sequence {yk} ⊂ E such that yk ⇀ x and yk ∈ Cnk
for all

k ≥ 1. From {Cn} is a decreasing sequence, we have

yk+p ∈ Cnk
(3.4)
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for all k ≥ 1 and p ≥ 0. Since Cnk
is closed and convex, Cnk

is weakly closed in
E for all k ≥ 1. So, in (3.4) letting p → ∞, we get that y ∈ Cnk

for all k ≥ 1.
Since Ck ⊇ Cnk

, y ∈ Ck for all k ≥ 1. So, y ∈ Ω0, and hence Ω0 ⊇ w-LsnCn.
Consequently, we obtain that s-LinCn = w-LsnCn = Ω0. Thus, Ω0 =M-

limn→∞Cn. □
The strong convergence of Algorithm 3.1 is given by the following theorem.

Theorem 3.5. If the conditions C1) and C2) are satisfied, then the sequence
{xn} generated by Algorithm 3.1 converges strongly to PSu, as n→∞.

Proof. First, we show that S ⊂ Cn, for all n ≥ 1, by mathematical induction.
Indeed, it is clear that S ⊂ C1 = E. Suppose that S ⊂ Cn for some n ≥ 1. Take
v ∈ S, we have

JE(yin,n)− JE(xn) + rin,nA
εn
in
yin,n ∋ 0, Ainv ∋ 0.

From the definition of Aεn
in
, we get

⟨yn − v, JE(xn)− JE(yn)⟩ ≥ −εnrin,n.
Thus, u ∈ Cn+1. Since v is arbitrary in S, S ⊂ Cn+1. So, by induction we obtain
that S ⊂ Cn for all n ≥ 1.

Moreover, Cn is a closed and convex subset of E for all n. Hence, the sequence
{xn} is well defined.

Now, for each n, denote by pn = PCnu. Since, {Cn} is the sequence of decreasing
subsets of E which contains S, and from Lemma 3.4, there exists the limit Ω0 =M-
limn→∞Cn. By Lemma 2.3, we have pn → p0 = PΩ0u, as n→∞.

Since pn = PCnu, d(u,Cn) = ∥u− pn∥. From xn ∈ Cn and the definition of Cn,
we have

∥u− xn∥2 ≤ ∥u− pn∥2 + δn ∀n ≥ 2. (3.5)

From the convexity of Cn, we have αpn +(1−α)xn ∈ Cn for all α ∈ (0, 1). Thus,
from the definition of pn = PCnu and Lemma 2.1, we get

∥pn − u∥2 ≤ ∥αpn + (1− α)xn − u∥2

≤ α∥pn − u∥2 + (1− α)∥xn − u∥2 − α(1− α)g(∥xn − pn∥),
which implies that

∥pn − u∥2 ≤ ∥xn − u∥2 − αg(∥xn − pn∥).
Thus, it follows from (3.5) that

αg(∥xn − pn∥) ≤ δn ∀α ∈ (0, 1). (3.6)

In (3.6), letting α→ 1−, we get

g(∥xn − pn∥) ≤ δn.

By the property of g and δn → 0, we have

∥xn − pn∥ → 0.

From pn+1 ∈ Cn+1 and the definition of Cn+1, we have

⟨yn − pn+1, JE(xn)− JE(yn)⟩ ≥ −εnrin,n.
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Thus, from the property of ϕ, we obtain

−2εnrin,n ≤ 2⟨pn+1 − yn, JE(yn)− JE(xn)⟩
= ϕ(pn+1, xn)− ϕ(pn+1, yn)− ϕ(yn, xn)

≤ ϕ(pn+1, xn)− ϕ(yn, xn).

Hence,
ϕ(yn, xn) ≤ ϕ(pn+1, xn) + 2εnrin,n.

From Lemma 2.2 and pn → p0, xn → p0, letting n→∞ we get that

∥xn − yn∥ → 0.

By the definition of yn, we have

∥xn − yi,n∥ → 0 ∀i = 1, 2, . . . , N.

This implies that yi,n → p0 for all i = 1, 2, . . . , N , as n→∞. Since E is uniformly
smooth, the duality mapping JE is uniformly norm-to-norm continuous on each
bounded subset on E. Therefore, we obtain

∥JE(xn)− JE(yi,n)∥ → 0, ∀i = 1, 2, . . . , N. (3.7)

Furthermore, from mini{infn{ri,n}} ≥ r > 0 and (3.7), we have

0← JE(xn)− JE(yi,n)

ri,n
∈ Aεn

i yi,n

for all i = 1, 2, . . . , N , as n→∞. So, by Lemma 2.4, we obtain p0 ∈ A−1
i 0 for all

i = 1, 2, . . . , N ; that is, p0 ∈ S.
Finally, we show that p0 = PSu. Indeed, let x

∗ = PSu. Since S ⊂ Cn, x
∗ ∈ Cn.

Thus, from pn = PCnu, we have

∥pn − u∥ ≤ ∥u− x∗∥ ∀n ≥ 1.

Letting n → ∞, we get that ∥u − p0∥ ≤ ∥u − x∗∥. By the uniqueness of x∗, we
obtain that p0 = x∗ = PSu.
This completes the proof. □

Now, we will prove the strong convergence of Algorithm 3.2.

Theorem 3.6. If the conditions C1) and C2) are satisfied, then the sequence
{xn} generated by Algorithm 3.2 converges strongly to PSu, as n→∞.

Proof. First, we show that S ⊂ Cn, for all n ≥ 1, by mathematical induction.
Indeed, it is clear that S ⊂ C1 = E. Suppose that S ⊂ Cn for some n ≥ 1. Take
v ∈ S, we have

JE(yi,n)− JE(xn) + ri,nA
εn
i yi,n ∋ 0 Aiv ∋ 0.

From the definition of Aεn
i , we get

⟨yi,n − v, JE(xn)− J(yi,n)⟩ ≥ −εnri,n.
Thus, v ∈ Ci

n+1 for all i = 1, 2, . . . , N . So, v ∈ Cn+1 = ∩N
i=1C

i
n+1. By induction

we obtain that S ⊂ Cn for all n ≥ 1.
Now, for each n, putting pn = PCnu. It is similar to the proof of Theorem 3.5,

we obtain the following statements:
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a) pn → p0 = PΩ0u with Ω0 = ∩∞n=1Cn;
b) ∥xn − pn∥ → 0.

We have pn+1 ∈ Cn+1 = ∩N
i=1C

i
n+1. Hence, pn+1 ∈ Ci

n+1 for all i = 1, 2, . . . , N .
Thus, from the definition of Ci

n+1, we have

⟨yi,n − pn+1, JE(xn)− JE(yi,n)⟩ ≥ −εnri,n.
Thus, from the property of ϕ, we obtain

−2εnri,n ≤ 2⟨pn+1 − yi,n, JE(yi,n)− JE(xn)⟩
= ϕ(pn+1, xn)− ϕ(pn+1, yi,n)− ϕ(yi,n, xn)

≤ ϕ(pn+1, xn)− ϕ(yi,n, xn).

Hence,

ϕ(yi,n, xn) ≤ ϕ(pn+1, xn) + 2εnri,n

for all i = 1, 2, . . . , N . From a), b), and Lemma 2.2, we obtain that

∥xn − yi,n∥ → 0

for all i = 1, 2, . . . , N .
The rest of the proof follows the pattern of Theorem 3.5.
This completes the proof. □

Next, we have the following corollaries.

Corollary 3.7. Let E be a uniformly convex and smooth Banach space, and let
Ai : E −→ 2E

∗
, i = 1, 2, . . . , N , be maximal monotone operators of E into

2E
∗
such that S = ∩N

i=1A
−1
i 0 ̸= ∅. Let J i

r be the generalized resolvent of Ai for
r > 0 with i = 1, 2, . . . , N . Let {δn} be non-negative real sequence, and let {ri,n},
i = 1, 2, . . . , N , be positive real sequences such that mini{infn{ri,n}} ≥ r > 0. For
a given point u ∈ E, we define the sequence {xn} by x1 = x ∈ E, C1 = E, and

i) yi,n = J i
ri,n

xn, i = 1, 2, . . . , N

ii) Choose in such that ∥yin,n − xn∥ = max
i=1,...,N

{∥yi,n − xn∥}, let yn = yin,n,

Cn+1 = {z ∈ Cn : ⟨yn − z, JE(xn)− JE(yn)⟩ ≥ 0}, or

ii*) Ci
n+1 = {z ∈ Cn : ⟨yi,n − z, JE(xn)− JE(yi,n)⟩ ≥ 0}, i = 1, 2, . . . , N

Cn+1 = ∩N
i=1C

i
n+1,

iii) Find xn+1 ∈ {z ∈ Cn+1 : ∥u− z∥2 ≤ d2(u,Cn+1) + δn+1}, n = 1, 2, . . . .

If limn→∞ δn = 0, then the sequence {xn} converges strongly to PSu, as n→∞.

Proof. In (3.2) and (3.3) if εn = 0, for all n ≥ 1, then the elements yi,n, i =
1, 2, . . . , N , can be rewritten in the form

JE(yi,n)− JE(xn) + ri,nAiyi,n ∋ 0;

this is equivalent to

yi,n = J i
ri,n

xn

for all i = 1, 2, . . . , N.
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So, apply Theorems 3.5 and 3.6 with εn = 0 for all n ≥ 1, we obtain the proof
of this corollary. □
Corollary 3.8. Let E be a uniformly convex and smooth Banach space, and let
Ai : E −→ 2E

∗
, i = 1, 2, . . . , N , be maximal monotone operators of E into 2E

∗

such that S = ∩N
i=1A

−1
i 0 ̸= ∅. Let {εn} be non-negative real sequence, and let

{ri,n}, i = 1, 2, . . . , N , be positive real sequences such that mini{infn{ri,n}} ≥ r >
0. For a given point u ∈ E, we define the sequence {xn} by x1 = x ∈ E, C1 = E,
and

i) Find yi,n ∈ E such that JE(yi,n)− JE(xn) + ri,nA
εn
i yi,n ∋ 0, i = 1, 2, . . . , N

ii) Choose in such that ∥yin,n − xn∥ = max
i=1,...,N

{∥yi,n − xn∥}, let yn = yin,n,

Cn+1 = {z ∈ Cn : ⟨yn − z, JE(xn − yn)⟩ ≥ −εnrin,n}, or

ii*) Ci
n+1 = {z ∈ Cn : ⟨yi,n − z, JE(xn)− JE(yi,n)⟩ ≥ −εnri,n}, i = 1, 2, . . . , N

Cn+1 = ∩N
i=1C

i
n+1,

iii) xn+1 = PCn+1u, n = 1, 2, . . . .

If limn→∞ εnri,n = 0 for all i = 1, 2, . . . , N , then the sequence {xn} converges
strongly to PSu, as n→∞.

Proof. In (3.2) and (3.3), if δn = 0, for all n ≥ 1, then we have the element xn+1

is defined by
xn+1 ∈ {z ∈ Cn+1 : ∥u− z∥ ≤ d(u,Cn+1)};

that is, xn+1 = PCn+1u.
So, apply Theorem 3.5 with δn = 0 for all n ≥ 1, we obtain the proof of this

corollary. □
Remark 3.9. If ε = δn = 0, for all n ≥ 1, then in Corollaries 3.7 and 3.8 the
sequence {xn} will be defined by x1 = x ∈ E, C1 = E, and

i) yi,n = J i
ri,n

xn, i = 1, 2, . . . , N

ii) Choose in such that ∥yin,n − xn∥ = max
i=1,...,N

{∥yi,n − xn∥}, let yn = yin,n,

Cn+1 = {z ∈ Cn : ⟨yn − z, JE(xn)− JE(yn)⟩ ≥ 0}, or

ii*) Ci
n+1 = {z ∈ Cn : ⟨yi,n − z, JE(xn)− JE(yi,n)⟩ ≥ 0}, i = 1, 2, . . . , N

Cn+1 = ∩N
i=1C

i
n+1,

iii) xn+1 = PCn+1u, n = 1, 2, . . . .

Remark 3.10. In Remark 3.9, if E is a real Hilbert space and N = 1, then we
obtain the result of of Takahashi, Takeuchi, and Kubota (see, [18, Theorem 4.5]).
But, in this case we do not use the condition rn → ∞. So, the Corollaries 3.7
and 3.8 are more general than the result of Takahashi and others.

4. An application

Let E be a Banach space, and let f : E −→ (−∞,∞] be a proper, lower
semicontinuous, and convex function. The subdifferential of f is multi-valued
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mapping ∂f : E −→ 2E
∗
which is defined by

∂f(x) = {g ∈ E∗ : f(y)− f(x) ≥ ⟨y − x, g⟩, ∀y ∈ E}

for all x ∈ E. We know that ∂f is maximal monotone operator (see [14]) and
x0 ∈ argminE f(x) if and only if ∂f(x0) ∋ 0.

The ε-subdiferential enlargement of ∂f , is given by

∂εf(x) = {u ∈ E∗ : f(y)− f(x) ≥ ⟨y − x, u⟩ − ε, ∀y ∈ E}

for each ε ≥ 0. We know that ∂εf(x) ⊂ (∂f)ε(x) for any x ∈ E. Moreover, in the
some particular cases, we have that ∂εf(x) ⊊ (∂f)ε(x) (see, [3, Example 2 and
Example 3]).

In [1] when E is a real Hilbert space, Alvarez proposed the following approxi-
mate inertial proximal algorithm:

cn∂εnf(xn+1) + xn+1 − xn − αn(xn − xn−1) ∋ 0.

In [13], Moudafi and Elisabeth extended the above iterative method in the form

cn(∂f)
εn(xn+1) + xn+1 − xn − αn(xn − xn−1) ∋ 0. (4.1)

They proved that if there exists c > 0 such that cn ≥ c for all n ≥ 1, and there
is α ∈ [0, 1) such that {αn} ⊂ [0, α],

∑∞
n=1 ckεk <∞, and

∞∑
n=1

αn∥xn − xn−1∥2 <∞,

then the sequence {xn} converges weakly to a minimum point of f .
Note that, if αn = 0 for all n ≥ 1, then (4.1) becomes

cn(∂f)
εn(xn+1) + xn+1 − xn ∋ 0.

From Theorems 3.5 and 3.6, we have the following theorem.

Theorem 4.1. Let E be a uniformly convex and smooth Banach space, and let
fi, i = 1, 2, . . . , N, be proper, lower semicontinuous, and convex functions of E
into (−∞,∞] such that S = ∩N

i=1argminx∈E fi(x) ̸= ∅. Let {εn} and {δn} be non-
negative real sequences, and let {ri,n}, i = 1, 2, . . . , N , be positive real sequences
such that mini{infn{ri,n}} ≥ r > 0. For a given point u ∈ E, we define the
sequence {xn} by x1 = x ∈ E, C1 = E, and

i) Find yi,n ∈ E such that JE(yi,n)− JE(xn) + ri,n(∂fi)
εn(yi,n) ∋ 0, i = 1, 2, . . . , N

ii) Choose in such that ∥yin,n − xn∥ = max
i=1,...,N

{∥yi,n − xn∥}, let yn = yin,n,

Cn+1 = {z ∈ Cn : ⟨yn − z, JE(xn)− JE(yn)⟩ ≥ −εnrin,n}, or
ii*) Ci

n+1 = {z ∈ Cn : ⟨yi,n − z, JE(xn)− JE(yi,n)⟩ ≥ −εnri,n}, i = 1, 2, . . . , N

Cn+1 = ∩N
i=1C

i
n+1,

iii) Find xn+1 ∈ {z ∈ Cn+1 : ∥u− z∥2 ≤ d2(u,Cn+1) + δn+1}, n = 1, 2, . . . .

If limn→∞ εnri,n = limn→∞ δn = 0, for all i = 1, 2, . . . , N , then the sequence {xn}
converges strongly to PSu, as n→∞.
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Remark 4.2. Since ∂εf(x) ⊂ (∂f)ε(x), in Theorem 4.1, we can replace (∂fi)
εn by

(∂fi)εn for all i = 1, 2, . . . , N .

In Theorem 4.1, if εn = 0 for all n ≥ 1, then we have the following corollary.

Corollary 4.3. Let E be a uniformly convex and smooth Banach space, and let
fi, i = 1, 2, . . . , N, be proper, lower semi-continuous, and convex functions of E
into (−∞,∞] such that S = ∩N

i=1argminE fi(x) ̸= ∅. Let {δn} be non-negative
real sequence, and let {ri,n}, i = 1, 2, . . . , N , be positive real sequences such that
mini{infn{ri,n}} ≥ r > 0. For a given point u ∈ E, we define the sequence {xn}
by x1 = x ∈ E, C1 = E, and

i) yi,n = argmin
y∈E

{
fi(y) +

1

2ri,n
∥y∥2 − 1

ri,n
⟨y, JE(xn)⟩

}
, i = 1, 2, . . . , N

ii) Choose in such that ∥yin,n − xn∥ = max
i=1,...,N

{∥yi,n − xn∥}, let yn = yin,n,

Cn+1 = {z ∈ Cn : ⟨yn − z, JE(xn)− JE(yn)⟩ ≥ 0}, or

ii*) Ci
n+1 = {z ∈ Cn : ⟨yi,n − z, JE(xn)− JE(yi,n)⟩ ≥ 0}, i = 1, 2, . . . , N

Cn+1 = ∩N
i=1C

i
n+1,

iii) Find xn+1 ∈ {z ∈ Cn+1 : ∥u− z∥2 ≤ d2(u,Cn+1) + δn+1}, n = 1, 2, . . . .

If limn→∞ δn = 0, then the sequence {xn} converges strongly to PSu, as n→∞.

Proof. We have

yi,n = arg min
y∈E

{
fi(y) +

1

2ri,n
∥y∥2 − 1

ri,n
⟨y, JE(xn)⟩

}
if and only if

∂fi(yi,n) +
1

ri,n

(
JE(yi,n)− JE(xn)

)
∋ 0,

which implies that

yi,n = J i
ri,n

(xn),

where J i
ri,n

= (JE + ri,n∂fi)
−1.

So, by using Theorems 3.5 and 3.6 we get the proof of this corollary. □
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