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Abstract. In this paper, we consider a class of unitary operators defined on
the Bergman space of the right half plane and characterize the fixed points
of these unitary operators. We also discuss certain intertwining properties of
these operators. Applications of these results are also obtained.

1. Introduction and preliminaries

Let C+ = {s = x + iy ∈ C : x > 0} be the right half plane. Let dÃ(s)

denote the two dimensional area measure on C+. Let L2(C+, dÃ) be the space
of complex-valued, absolutely square-integrable, and measurable functions on C+

with respect to the area measure. The Bergman space of the right half plane

denoted by L2
a(C+) is the closed subspace of L2(C+, dÃ) consisting of holomor-

phic functions. The functions H(s, w) = 1
(s+w)2

, s ∈ C+ and w ∈ C+, are the

reproducing kernel [3] for L2
a(C+). Let hw(s) =

H(s,w)√
H(w,w)

= 2Rew
(s+w)2

. The functions

hw, w ∈ C+, are the normalized reproducing kernels for L2
a(C+). Let L

∞(C+)
be the space of complex-valued, essentially bounded, and Lebesgue measurable
functions on C+. Define for f ∈ L∞(C+), ∥f∥∞ = ess sup

s∈C+

|f(s)| <∞. The space

L∞(C+) is a Banach space with respect to the essential supremum norm. For

ϕ ∈ L∞(C+), we define the multiplication operator Mϕ from L2(C+, dÃ) into

L2(C+, dÃ) by (Mϕf)(s) = ϕ(s)f(s); the Toeplitz operator Tϕ from L2
a(C+) into
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L2
a(C+) is defined by Tϕf = P+(ϕf) where P+ is the orthogonal projection from

L2(C+, dÃ) onto L
2
a(C+). The Toeplitz operator Tϕ is bounded and ∥Tϕ∥ ≤ ∥ϕ∥∞.

For more details see [4] and [7].
Let D be the open unit disk in C. Let dA(z) denote the Lebesgue area measure

on D, normalized so that the measure of D equals 1. Let L2(D, dA) be the space
of complex-valued, absolutely square-integrable, and measurable functions on D
with respect to the normalized area measure. The Bergman space of the open
unit disk denoted by L2

a(D) is the Hilbert space consisting of analytic functions
on D that are also in L2(D, dA). Since the point evaluation at z ∈ D, is a bounded
functional, there is a function Kz in L2

a(D) such that

f(z) = ⟨f,Kz⟩

for all f in L2
a(D). Let K(z, w) be the function on D × D defined by K(z, w) =

Kz(w). The function K(z, w) = 1
(1−zw)2

, z, w ∈ D, is called the Bergman re-

producing kernel [10]. For a ∈ D, let ka(z) = K(z,a)√
K(a,a)

= 1−|a|2
(1−az)2

is called the

normalized reproducing kernel for L2
a(D).

Let Aut(D) be the Lie group of all automorphisms (biholomorphic mappings) of
D, and letG0 be the isotropy subgroup at 0; that is, G0 = {ψ ∈ Aut(D) : ψ(0) = 0}.
It is well known [8] that G0 is compact and that G0 is a subgroup of the unitary
group U of C. Since D is bounded symmetric, we can canonically define [1] for
each a in D an automorphism ϕa in Aut(D) such that

(1) ϕa ◦ ϕa(z) ≡ z;
(2) ϕa(0) = a, ϕa(a) = 0;
(3) ϕa has a unique fixed point in D.

Actually, the above three conditions completely characterize the ϕa’s as the set
of all (holomorphic) geodesic symmetries of D. In fact, ϕa(z) =

a−z
1−az

for all a and
z in D. They are involutive Mobius transformations on D. Given a ∈ D and f
is any measurable function on D, we define a function Uaf on D by Uaf(z) =
ka(z)f(ϕa(z)). Since |ka|2 is the real Jacobian determinant of the mapping ϕa (see
[1]), Ua is easily seen to be a unitary operator on L2(D, dA) and L2

a(D). For any
a ∈ D, let γa be the unique geodesic (all geodesics are taken in the Bergman metric
on D) such that γa(0) = 0 and γa(1) = a. Since D is Hermitian symmetric, there
exists a unique ϕa ∈ Aut(D) such that ϕa ◦ ϕa(z) ≡ z, γa(

1
2
) is an isolated fixed

point of ϕa and ϕa is the geodesic symmetry at γa(
1
2
). In particular, ϕa(0) = a

and ϕa(a) = 0. If a = 0, then we have ϕa(z) = −z for all z in D. We denote by
ma the geodesic midpoint γa(

1
2
) of 0 and a. Given ψ ∈ Aut(D), let a = ψ−1(0);

then we have

(ψ ◦ ϕa)(0) = ψ(a) = 0;

thus ψ ◦ϕa ∈ G0, and so there exists a unitary matrix U such that ψ = Uϕa (U ∈
G0). If ψ ∈ Aut(D) has an isolated fixed point in D, then ψ has a unique fixed
point and each ϕa hasma as a unique fixed point. It is also not difficult to see that
for any a and b in D, there exists a unitary U ∈ G0 such that ϕb ◦ ϕa = Uϕϕa(b).
This can be verified as follows:
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let U = ϕb ◦ ϕa ◦ ϕϕa(b). Then U(0) = ϕb ◦ ϕa(ϕa(b)) = ϕb(b) = 0; thus U ∈ G0

is a unitary.

It is also not difficult to check that if a ∈ D, then ma =
1−
√

1−|a|2
|a|2 a. One can

also check that ka(ma) = 1, for all a ∈ D, and that Uakma = 1, for all a ∈ D,
and that ϕλ(ma) = mϕλ(a) for any λ ∈ D and a ∈ D. Let L(H) be the set of all
bounded linear operators from the Hilbert space H into itself. Let IL(H) denote
the identity operator in L(H). Recall that an operator T ∈ L(H) is said to be
hyponormal if T ∗T ≥ TT ∗. An operator T ∈ L(H) is an involution if T 2 = IL(H).

The layout of this paper is as follows: In section 2, we introduce the unitary
operator Va, a ∈ D, and prove certain elementary properties of the operator Va. In
section 3, we calculate the fixed points of a class of weighted composition operators
Wa, a ∈ D, defined on L2

a(C+). We then use it to calculate the fixed points of
the unitary operators Va, a ∈ D. In section 4, we discuss certain intertwining
properties of the operators Va, a ∈ D.

2. The unitary operator Va

In this section, we shall introduce a class of unitary operators Va, a ∈ D, and
establish certain elementary properties of these operators.

Define M : C+ → D by Ms = 1−s
1+s

. Then M is one-one, onto, and M−1 : D →
C+ is given by M−1(z) = 1−z

1+z
. Thus M is its self-inverse. Let W : L2

a(D) →
L2
a(C+) be defined by Wg(s) = 2√

π
g(Ms) 1

(1+s)2
. Then W−1 : L2

a(C+) → L2
a(D) is

given by W−1G(z) = 2
√
πG(Mz) 1

(1+z)2
, where Mz = 1−z

1+z
.

Lemma 2.1. If a ∈ D and a = c + id, c, d ∈ R, then ta(s) = −ids+(1−c)
(1+c)s+id

is an

automorphism from C+ onto C+.

Proof. It is not difficult to see that ta(s) is an one-one map from C+ onto C+.
□

Proposition 2.2. For a ∈ D and s ∈ C+, define ψs(a) = ta(s). Then the follow-
ing conditions hold:

(1) (ta ◦ ta)(s) = s;

(2) t′a(s) = −la(s), where la(s) = 1−|a|2
((1+c)s+id)2

;

(3) ϕma ◦ ϕa = −ϕma ;
(4) The function ψs, as a function in a, is one-one and onto for any fixed

s ∈ C+.

Proof. One can prove (1) and (2) by direct calculations. To establish (3), let U =
ϕma ◦ ϕa ◦ ϕma . Then U(0) = ϕma ◦ ϕa(ma) = ϕma(ma) = 0. Thus U ∈ G0 is a
unitary. Moreover, U2 = ϕma ◦ ϕa ◦ ϕma ◦ ϕma ◦ ϕa ◦ ϕma = ξ where ξ(z) = z,
since ϕa ◦ ϕa = ξ for all a ∈ D. Hence the eigenvalues of U are either 1 or
−1. We shall show that all the eigenvalues of U are −1. In fact, if there exists
z ̸= 0, z ∈ C, such that Uz = z, then U(ϵz) = ϵz for all ϵ ∈ (0, 1). Choose ϵ
small enough; so that z0 = ϵz ∈ D; then Uz0 = z0 implies ϕma ◦ ϕa ◦ ϕma(z0) = z0
or ϕa(ϕma(z0)) = ϕma(z0). Therefore, ϕma(z0) is a fixed point of ϕa. Since ϕa

has ma as a unique fixed point; hence we get ϕma(z0) = ma. This implies z0 =
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ϕma ◦ ϕma(z0) = ϕma(ma) = 0, contradicting the fact that z0 = ϵz ̸= 0. Hence all
the eigenvalues of U are −1, and we have U = −ξ, or ϕma ◦ ϕa = −ϕma . This
proves (3). To prove (4), suppose that ψs(a1) = ψs(a2). Then ta1(s) = ta2(s).
Hence (M ◦ ϕa1 ◦M) = (M ◦ ϕa2 ◦M). This implies ϕa1(z) = ϕa2(z) for some
fixed z ∈ D. We shall now show that ϕa(z), as a function in a, is one-one and
onto for any fixed z ∈ D. Let w = ϕa(z) =

a−z
1−az

. Then w − azw = a− z. Taking
conjugates both the sides, we obtain w− az w = a− z. Solving for a and a yield

a =
w + z − z|w|2 − w|z|2

1− |zw|2
.

The result (4) follows. □
Suppose that a ∈ D and that w = 1−a

1+a
=Ma ∈ C+.Define bw(s) =

1√
π
1+w
1+w

2Rew
(s+w)2

.

Lemma 2.3. The set of vectors {bw : w ∈ C+} spans L2
a(C+).

Proof. Suppose that g ∈ L2
a(D) and that g is orthogonal to Ka, a ∈ D. Then

g(a) = ⟨g,Ka⟩ = 0 for all a ∈ D; that is, g = 0. Hence span {ka : a ∈ D} is dense
in L2

a(D).
Let w ∈ C+, and let w = Ma, a ∈ D. Since bw = Wka and W is an unitary

operator from L2
a(D) onto L2

a(C+), hence {bw : w ∈ C+} spans L2
a(C+). This can

be verified as follows.
Let f ∈ L2

a(C+). Then f = Wg for some g ∈ L2
a(D). Now since g = lim

n→∞
gn,

where the functions gn are linear combinations of certain normalized Bergman
kernels ka, a ∈ D, hence f =Wg = lim

n→∞
Wgn, where Wgn is a linear combination

of certain bw, w ∈ C+. Thus the set span{bw : w ∈ C+} is dense in L2
a(C+). □

For a ∈ D and f ∈ L2
a(C+), define Va from L2

a(C+) into itself by Vaf = (f ◦ta)la.
In Proposition 2.4, we show that Va is a self-adjoint unitary operator which is
also an involution.

Proposition 2.4. For a ∈ D. The following conditions hold:

(1) Vala = 1.
(2) V −1

a = Va, V
2
a = I.

(3) Va is self-adjoint.
(4) Va is unitary.
(5) VaP+ = P+Va.

Proof. One can prove (1), (2), (3), and (4) by direct calculations. Notice that Va
can also defined on L2(C+) and Va(L

2(C+)) ⊆ L2(C+). To prove (5), observe that
Va(L

2
a(C+)) ⊆ L2

a(C+) and that Va(L
2
a(C+))

⊥ ⊆ (L2
a(C+))

⊥. Now let f ∈ L2(C+),
and let f = f1 + f2, where f1 ∈ L2

a(C+) and f2 ∈ (L2
a(C+))

⊥. Hence,

P+Vaf = P+Va(f1 + f2)

= P+(Vaf1 + Vaf2)

= P+Vaf1

= Vaf1

= VaP+f.
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□

Let L(L2
a(C+)) be the set of all bounded linear operators from the Hilbert space

H into itself.

Lemma 2.5. For any sequence {am}∞m=1 ⊂ D with |am| → 1, then Vam → 0 in
the weak operator topology in L(L2

a(C+)).

Proof. From Lemma 2.3, it follows that span{bw : w ∈ C+} is dense in L2
a(C+).

Thus it suffices to show that for all w1, w2 ∈ C+, we have lim
m→∞

⟨Vambw1 , bw2⟩ = 0.

Let w1 = Mz1 and w2 = Mz2, z1, z2 ∈ D. Fix w1, w2 ∈ C+. Now, for each
m ≥ 1,

⟨Vambw1 , bw2⟩ = ⟨WUamW
−1bw1 , bw2⟩

= ⟨WUamW
−1Wkz1 ,Wkz2⟩

= ⟨Uamkz1 , kz2⟩

=

⟨
Uamkz1 ,

Kz2

∥Kz2∥

⟩
= (1− |z2|2)(Uamkz1)(z2)

= (1− |z2|2)kz1(ϕam(z2))kam(z2)

=
(1− |z2|2)(1− |z1|2)(1− |am|2)

(1− ⟨ϕam(z2), z1⟩)2(1− ⟨z2, am⟩)2
.

Since |⟨ϕam(z2), z1⟩| ≤ |z1| and |⟨z2, am⟩| ≤ |z2|, we obtain

|⟨Uamkz1 , kz2⟩| ≤
(1− |z2|2)(1− |z1|2)(1− |am|2)

((1− |z1|)(1− |z2|))2
.

Hence it follows that lim
m→∞

⟨Uamkz1 , kz2⟩ = 0. Thus lim
m→∞

⟨Vambw1 , bw2⟩ = 0. □

3. The fixed points of Va

In this section, we shall first calculate the fixed points of a class of weighted
composition operators Wa, a ∈ D, defined on L2

a(C+). We then use it to calcu-
late the fixed points of the unitary operators Va, a ∈ D. But we begin with the
following proposition which will be frequently used in establishing results of the
section.

Proposition 3.1. For a ∈ D and s ∈ C+, the following equalities hold:

(1) (M ◦ tma ◦ ta)(s) = −(M ◦ tma)(s);
(2) (M ′ ◦ tma ◦ ta)(s)lma(ta(s))la(s) = (M ′ ◦ tma)(s)lma(s).

Proof. Since ϕma ◦ ϕa = −ϕma , hence

(M ◦ tma ◦M ◦M ◦ ta ◦M)(z) = −(M ◦ tma ◦M)(z)

for all z ∈ D, and therefore

(M ◦ tma ◦ ta)(s) = −(M ◦ tma)(s)
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for all s ∈ C+. This proves (1). To prove (2), consider the identity

ϕma ◦ ϕa = −ϕma . (3.1)

Since ϕ′
a(z) = −ka(z), taking derivatives both the sides in (3.1), we obtain

(kma ◦ ϕa)ka = kma .

That is, Uakma = kma for all a ∈ D. Hence, UaUma1 = Uma1. This implies,

(WUaW
−1)(WUmaW

−1)

(
(−1)√
π
M ′

)
= (WUmaW

−1)

(
(−1)√
π
M ′

)
.

Hence

VaVma

(
(−1)√
π
M ′

)
= Vma

(
(−1)√
π
M ′

)
. (3.2)

Now, observe that for all a ∈ D, Vabw = (−1)√
π
M ′, where w =Ma. Thus,

VmabMma =

(
−1√
π

)
M ′.

In other words,

bMma = V −1
ma

(
(−1)√
π
M ′

)
= Vma

(
(−1)√
π
M ′

)
.

Thus from (3.2), it follows that

VabMma = bMma and Va

(
(−1)√
π
(M ′ ◦ tma)lma

)
=

(−1)√
π
(M ′ ◦ tma)lma .

This implies that

Va[(M
′ ◦ tma)lma ] = (M ′ ◦ tma)lma .

Thus,

(M ′ ◦ tma ◦ ta)(lma ◦ ta)la = (M ′ ◦ tma)lma .

This proves the proposition. □

For a ∈ D, define the weighted composition operator Wa on L2
a(C+) by Waf =

(f ◦ta) M ′

M ′◦ta . In the following theorem, we describe the fixed points of the weighted
composition operator Wa which will enable us to obtain the fixed points of the
unitary operator Va.

Theorem 3.2. Given a ∈ D and a function f ∈ L2(C+), we have Waf = f
if and only if there exists an even function g on C+ (i.e, g(z) = g(−z)) such
that f = (g ◦M ◦ tma)M

′. Further, Waf = −f if and only if there exists an odd
function g on C+ (i.e. g(z) = −g(−z)) such that f = (g ◦M ◦ tma)M

′.
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Proof. We shall prove the first assertion. The second one has a similar proof.
Suppose that g(z) = g(−z) and that f = (g ◦M ◦ tma)M

′. Then by Proposition
3.1, we obtain

Waf = (f ◦ ta)
M ′

M ′ ◦ ta

= (g ◦M ◦ tma ◦ ta)(M ′ ◦ ta)
M ′

M ′ ◦ ta
= (g ◦M ◦ tma ◦ ta)M ′

= g(−(M ◦ tma))M
′

= g(M ◦ tma)M
′

= (g ◦M ◦ tma)M
′ = f.

Conversely, suppose that Waf = f ; that is, (f ◦ ta) M ′

M ′◦ta = f . Suppose that

g =
(

f
M ′ ◦ ta ◦ tma ◦M

)
. Then

(g ◦M ◦ tma)M
′ =

(
f

M ′ ◦ ta ◦ tma ◦M ◦M ◦ tma

)
M ′

=

(
f

M ′ ◦ ta ◦ tma ◦ tma

)
M ′

=

(
f

M ′ ◦ ta
)
M ′

=

(
f ◦ ta
M ′ ◦ ta

)
M ′

= (f ◦ ta)
M ′

M ′ ◦ ta
= f.

Hence

(g ◦M ◦ tma)(z)M
′(z) = f(z) = (f ◦ ta)(z)

M ′

M ′ ◦ ta
(z)

= (g ◦M ◦ tma ◦ ta)(z)(M ′ ◦ ta)(z)
M ′(z)

M ′ ◦ ta(z)
= g(−(M ◦ tma))(z)M

′(z).

Thus g((M ◦ tma)(z)) = g(−(M ◦ tma)(z)). Putting (tma ◦M)(z) in place of z,
we obtain g(z) = g((M ◦ tma ◦ tma ◦M)(z)) = g(−(M ◦ tma ◦ tma ◦M)(z)) = g(−z).
Thus g is an even function, and f = (g ◦M ◦ tma)M

′. This completes the proof
of theorem. □

Theorem 3.3. Let a ∈ D, and let f ∈ L2
a(C+). Then

(1) Vaf = f if and only if there exists an even function g ∈ L2
a(C+) such that

f = (M ′ ◦ tma)lma(g ◦M ◦ tma).
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(2) Vaf = −f if and only if there exists an odd function g ∈ L2
a(C+) such that

f = (M ′ ◦ tma)lma(g ◦M ◦ tma).

Proof. We shall only prove (1). The proof of (2) is similar. Suppose that g(s) =
g(−s) and that f = (M ′ ◦ tma)lma(g ◦M ◦ tma). Then

Vaf = la(f ◦ ta) = la(M
′ ◦ tma ◦ ta)(lma ◦ ta)(g ◦M ◦ tma ◦ ta).

Since by Proposition 3.1,

M ◦ tma ◦ ta = −M ◦ tma and la(M
′ ◦ tma ◦ ta)(lma ◦ ta) = (M ′ ◦ tma)lma ,

we obtain

Vaf = (M ′ ◦ tma)lmag(−M ◦ tma) = (M ′ ◦ tma)lmag(M ◦ tma) = f.

Conversely, suppose that Vaf = f ; we seek to find an even function g such that

f = (M ′ ◦ tma)lma(g ◦M ◦ tma).

Let g(Ms) = (M ′ ◦M)(s)lma(s)f(tma(s)). Since lma(s)lma(tma(s)) ≡ 1, we have

g(Ms)lma(tma(s)) =M ′(Ms)f(tma(s)). (3.3)

Replacing s by tma(s) in (3.3), we get f(s) = (M ′ ◦ tma)(s)lma(s)(g ◦M ◦ tma)(s).
Now it remains to show that g is even. It follows from Proposition 3.1 that, for
any s ∈ C+,

(g ◦M ◦ tma)(s) = (M ′ ◦M ◦ tma)(s)lma(tma(s))f(s)

= (M ′ ◦M ◦ tma)(s)lma(tma(s))la(s)f(ta(s))

= (M ′ ◦M ◦ tma)(s)

lma(tma(s))la(s)(M
′ ◦ tma ◦ ta)(s)lma(ta(s))(g ◦M ◦ tma ◦ ta)(s)

= (M ′ ◦M ◦ tma)(s)

lma(tma(s))(M
′ ◦ tma)(s)lma(s)g(−(M ◦ tma)(s))

= g(−M ◦ tma(s)).
(3.4)

The last identity follows from the fact that lma(tma(s))lma(s) = 1, for all s ∈ C+,
and

(M ′ ◦M ◦ tma)(s)(M
′ ◦ tma)(s) = ([(M ′ ◦M)M ′] ◦ tma)(s)

= [(1 ◦ tma)](s) = 1.

Replacing s by (tma ◦M)(s) in (3.4), we obtain g(s) = g(−s) for all s ∈ C+. This
proves our claim. □

Corollary 3.4. Suppose that a ∈ D and that f ∈ L2
a(C+). Then Vaf = f if and

only if

f = (M ′ ◦ tma)(g1 ◦M ◦ tma)lma ,
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where

(g1 ◦M)(s) =
1

2
[(M ′ ◦M)(s)(f ◦ tma)(s)lma(s)

+ (M ′ ◦M)(−s)(f ◦ tma)(−s)lma(−s)], s ∈ C+,

and Vaf = −f if and only if f = (M ′ ◦ tma)(g2 ◦ tma)lma, where

(g2 ◦M)(s) =
1

2
[(M ′ ◦M)(s)(f ◦ tma)(s)lma(s)

− (M ′ ◦M)(−s)(f ◦ tma)(−s)lma(−s)], s ∈ C+.

Proof. Let Va = Pa − P⊥
a be the spectral decomposition of Va. Then Vaf = f if

and only if Paf = f for any f ∈ L2(C+, dÃ)(or L
2
a(C+)). Thus if Ma is the range

space of Pa, then we have Ma = {(M ′ ◦ tma)(g ◦M ◦ tma)lma : g even}. Suppose
that f ∈ L2(C+, dÃ)(or L

2
a(C+)); then the even function g1 satisfying

Paf = (M ′ ◦ tma)(g1 ◦M ◦ tma)lma = f

is given by the formula

(g1 ◦M)(s) =
1

2
[(M ′ ◦M)(s)(f ◦ tma)(s)lma(s)

+ (M ′ ◦M)(−s)(f ◦ tma)(−s)lma(−s)]

and the odd function g2 with P⊥
a f = (M ′ ◦ tma)(g2 ◦M ◦ tma)lma = f is given by

the formula

(g2 ◦M)(s) =
1

2
[(M ′ ◦M)(s)(f ◦ tma)(s)lma(s)

− (M ′ ◦M)(−s)(f ◦ tma)(−s)lma(−s)].

They are obtained by using the formula Pa =
1
2
(I + Va) and Theorem 3.3. □

4. Intertwining properties of the unitary operator Va

In this section, we discuss certain intertwining proposition of the operators
Va, a ∈ D.

Theorem 4.1. Suppose that ϕ ∈ L∞(C+, dÃ), ϕ ≥ 0, A ≥ 0, A ∈ L(L2
a(C+)) and

that Tϕ ≤ A ≤ VaTϕVa for some a ∈ D. Then A = Tϕ = Tϕ◦ta .

Proof. Suppose that Tϕ ≤ A ≤ VaTϕVa = Tϕ◦ta . Since ϕ ≥ 0, hence ⟨Tϕf, f⟩ =

⟨P+(ϕf), f⟩ = ⟨ϕf, f⟩ =
∫
C+

ϕ|f |2dÃ ≥ 0 for every f ∈ L2
a(C+). Hence Tϕ ≥ 0.

Choose λ > 0 such that Tϕ + λ > 0. Put S = (Tϕ + λ)
1
2Va. Thus

SS∗ = Tϕ + λ ≤ A+ λ ≤ Va(Tϕ + λ)Va = S∗S. (4.1)

Hence S is a hyponormal operator. Further |S| = Va(Tϕ + λ)
1
2Va = VaS. Let

S = V |S| be the polar decomposition of S. Hence S = V VaS. It follows from the
invertibility of S that I = V Va; that is, V = Va. By [9], the operator S is normal,
and from (4.1) it follows that A = Tϕ = Tϕ◦ta . □
Theorem 4.2. Let T ∈ L(L2

a(C+)). The following conditions hold:



FIXED POINTS OF UNITARY OPERATORS 547

(1) If TVa = VaT , for all a ∈ D, then T = αIL(L2
a(C+)) for some α ∈ C.

(2) If TVϕa = VϕaT , for all a ∈ D, then T = βIL(L2
a(C+)) for some β ∈ C.

(3) If TVa = VaT , for some a ∈ D, then Ma = {(M ′ ◦ tma)lma(g ◦M ◦ tma) :
g even} is a reducing subspace of T.

Proof. To prove (1), suppose TVa = VaT for all a ∈ D. Let WSW−1WUaW
−1 =

WUaW
−1WSW−1 for some S ∈ L(L2

a(D)). This implies that SUa = UaS, for all
a ∈ D where S = W−1TW. Hence, by [2], S = αIL(L2

a(D)) for some α ∈ C. Hence
T = αIL(L2

a(C+)).
For proof of (2), assume that TVϕa = VϕaT for all a ∈ D. Let T =WSW−1, S ∈

L(L2
a(D)). Then (WSW−1)(WUϕaW

−1) = (WUϕaW
−1)(WSW−1) for all a ∈ D.

Therefore SUϕa = UϕaS for all a ∈ D. Hence S = βIL(L2
a(D)) for some β ∈ C. This

follows from a well-known fact from representation theory [6] of the Lie group
Aut(D) = SU(1, 1) = SL2(R). Thus T = βIL(L2

a(C+)).
To prove (3), let TVa = VaT for some a ∈ D. Let Va = Pa −P⊥

a be the spectral
decomposition of Va. Then Vaf = f if and only if Paf = f for any f ∈ L2

a(C+).
It follows from Theorem 3.3 that Vaf = f if and only if there exists an even
function g ∈ L2

a(C+) such that f = (M ′ ◦ tma)lma(g ◦M ◦ tma). Thus if Ma is the
range space of Pa, then we have Ma = {(M ′ ◦ tma)lma(g ◦M ◦ tma) : g even}. Now
TVa = VaT , for some a ∈ D, if and only if TPa = PaT. This is true if and only if
Ma is a reducing subspace of T. □

For T ∈ L(L2
a(C+)), let σ(T ) denote the spectrum of T.

Theorem 4.3. Let T ∈ L(L2
a(C+)). Suppose there exists a ∈ D such that TVa =

−VaT. Then
(1) there exist T1, T2 ∈ L(L2

a(C+)) such that T 2
1 = T 2

2 = 0 and σ(T ) = σ(−T );
(2) if T 2 = −I, then T = 1

2
(T + Va) +

1
2
(T − Va), and

(3) if T is invertible, then T is similar to S ⊕ (−S) for some invertible S ∈
L(L2

a(C+)).

Proof. Let T ∈ L(L2
a(C+)), and let TVa = −VaT for some a ∈ D. Let T1 =

1
2
T (I − Va), and let T2 =

1
2
T (I + Va). Then it is easy to verify that T 2

1 = T 2
2 = 0

and T = T1 + T2. Further, if S = T1 − T2 and λ ∈ C, then
(T − λI)(S − T − λI) = TS − λS − T 2 + λT − λT + λ2I

= (T1 + T2)(T1 − T2)− λS − T 2 + λ2I

= −ST − λS − T 2 + λ2I

= (S + T − λI)(−T − λI).

It is not difficult to see that (S − T )2 = (S + T )2 = 0. Now, if λ ̸= 0, then both
S−T−λI and S+T−λI are invertible. We deduce from the above that (T−λI)
is invertible if and only if (−T − λI) is too. Thus σ(T ) \ {0} = σ(−T ) \ {0}.
Therefore, σ(T ) = σ(−T ). This proves (1).

To prove (2), assume that T 2 = −I. Then as TVa = −Va, we have T = 1
2
(T +

Va) +
1
2
(T − Va) = T1 + T2 and T

2
1 = 0 = T 2

2 . To establish (3), assume in addition
that T is invertible and that TVa = −VaT for some a ∈ D. Since V 2

a = I and
σ(Va) = {+1,−1}, Va is similar to an operator of the form I1⊕(−I2), where I1 and
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I2 are the identity operators on some Hilbert spaces H1 and H2, respectively. Let
X be an invertible operator implementing this similarity, XVa = (I1 ⊕ (−I2))X.

We have XTX−1(I1⊕ (−I2)) = −(I1⊕ (−I2))XTX−1. If XTX−1 =

(
A B
C D

)
on

the decomposition H1 ⊕ H2, then carrying out the above matrix multiplication
yields that (

A −B
C −D

)
=

(
−A −B
C D

)
.

Therefore, A = 0 and D = 0. In other words, T is similar to

(
0 B
C 0

)
on H1⊕H2.

Since

T 2 ≈
(
0 B
C 0

)2

=

(
BC 0
0 CB

)
,

BC and CB are both invertible. Thus B and C are invertible. Hence we may
assume, for simplicity, that H1 = H2. We have σ(BC) = σ(CB) = σ(T 2) (for

details, see [5]). By our assumption, S ≡ (CB)
1
2 exists. If

X =

(
C−1S −C−1S
I I

)
,

then X is invertible [5] and(
0 B
C 0

)
X = X

(
S 0
0 −S

)
.

This implies that T is similar to S ⊕ (−S).
□

Remark 4.4. Notice that

(
S 0
0 −S

)
= 1

2

(
S −S
S −S

)
+ 1

2

(
S S
−S S

)
is the sum of

two operators whose squares are zero.

Corollary 4.5. Let T ∈ L(L2
a(C+)) be an invertible operator. Then there exist

T1, T2 ∈ L(L2
a(C+)) such that T = T1+T2 where T 2

1 = T 2
2 = 0 if and only if there

exists an involution V such that TV = −V T.

Proof. Assume that T = T1 + T2 where T 2
1 = T 2

2 = 0. Let V = (T1 − T2)T
−1.

Since

(T1 − T2)T = (T1 − T2)(T1 + T2)

= T1T2 − T2T1

= −(T1 + T2)(T1 − T2)

= −T (T1 − T2)

and

(T1 − T2)
2 = −T1T2 − T2T1

= −(T1 + T2)
2

= −T 2,
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we have

V 2 = (T1 − T2)T
−1(T1 − T2)T

−1

= (T1 − T2)
2T−2 = I.

Moreover, TV = T (T1 − T2)T
−1 = −(T1 − T2)TT

−1 = −(T1 − T2)T
−1T = −V T.

Now suppose there exists an involution V such that TV = −V T. Let T1 =
1
2
T (I − V ) and T2 = 1

2
T (I + V ). Then T = T1 + T2 where T 2

1 = T 2
2 = 0. The

result follows. □
Theorem 4.6. Let A ∈ L(L2

a(C+)). Suppose that ImA = A−A∗

2i
> k > 0. Then

AVa ̸= VaA
∗ for all a ∈ D.

Proof. Suppose that A ∈ L(L2
a(C+)) and that ImA > k > 0. Let a ∈ D, and

let Va = C + iD be the Cartesian decomposition of Va. We shall show that
∥AC − CA∗∥ > 2k∥C∥ and that ∥AD − DA∗∥ > 2k∥D∥. Let |c0| = ∥C∥; then
there is a sequence {fn} of unit vectors in L2

a(C+) such that ∥(C − c0)fn∥ → 0 as
n→ ∞. Therefore,

∥AC − CA∗∥
> |⟨(AC − CA∗)fn, fn⟩|
= |⟨A(C − c0)fn, fn⟩ − ⟨(C − c0)A

∗fn, fn⟩+ c0⟨Afn, fn⟩ − c0⟨A∗fn, fn⟩|
> |c0| |⟨(A− A∗)fn, fn⟩| − |⟨A(C − c0)fn, fn⟩| − |⟨(C − c0)A

∗fn, fn⟩|
> 2|c0|k − term which goes to zero as n→ ∞.

Thus ∥AC − CA∗∥ > 2k∥C∥. Similarly we get ∥AD − DA∗∥ > 2k∥D∥. Since
AC−CA∗ = Re(AVa−VaA

∗) and AD−DA∗ = Im(AVa−VaA
∗), it follows that

2∥AVa − VaA
∗∥ > ∥AC − CA∗∥+ ∥AD −DA∗∥
> 2k(∥C∥+ ∥D∥)
> 2k∥Va∥ = 2k.

Hence ∥AVa − VaA
∗∥ > k. The result follows. □

References

1. C. A. Berger, L. A. Coburn, and K. H. Zhu, Function theory on certain domains and the
Berezin-Toeplitz symbol calculus, Amer. J. Math. 110 (1988), no. 5, 921–953.

2. N. Das, The Berezin transform of bounded linear operators, J. Indian Math. Soc. 76 (2009),
no. 1, 47–60.

3. S. Elliott and A. Wynn, Composition operators on weighted Bergman spaces of a half plane,
Proc. Edinburgh Math. Soc. 54 (2011), no. 2, 373–380.

4. S. Grudsky, A. Karapetyants, and N. Vasilevski, Dynamics of properties of Toeplitz opera-
tors on the upper half-plane: parabolic case, J. Operator Theory 52 (2004), no. 1, 185–214.

5. P. R. Halmos, A Hilbert space problem book, Second edition. Graduate Texts in Mathe-
matics, 19. Encyclopedia of Mathematics and its Applications, 17. Springer-Verlag, New
York-Berlin, 1982.

6. S. Helgason, Groups and geometric analysis. Integral geometry, invariant differential opera-
tors, and spherical functions, Corrected reprint of the 1984 original. Mathematical Surveys
and Monographs, 83. American Mathematical Society, Providence, RI, 2000.



550 N. DAS, J. K. BEHERA

7. S. H. Kang, Berezin transforms and Toeplitz operators on the weighted Bergman space of
the half plane, Bull. Korean Math. Soc. 44 (2007), no. 2, 281–290.
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