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T1 THEOREM FOR INHOMOGENEOUS TRIEBEL–LIZORKIN
AND BESOV SPACES ON RD-SPACES AND ITS
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Abstract. Using Calderón’s reproducing formulas and almost orthogonal es-
timates, the T1 theorem for the inhomogeneous Triebel–Lizorkin and Besov
spaces on RD-spaces is obtained. As an application, new characterizations for
these spaces with “half” the usual conditions of the approximate to the identity
are presented.

1. Introduction and Statement of Main Results

The main purpose of this paper is to characterize the inhomogeneous Triebel–
Lizorkin and Besov spaces on RD-spaces with “half” the usual conditions of the
approximation to the identity. For this purpose, we prove a new T1 theorem of
these spaces, where the inhomogeneous Calderón–Zygmund kernel satisfies “half”
smoothness conditions.

To state the main results, let us first recall spaces of homogeneous type which
were introduced by Coifman and Weiss [1]. A quasi-metric ρ on a set X is a
function ρ: X × X → [0,∞) satisfying (i) ρ(x, y) = 0 if and only if x = y; (ii)
ρ(x, y) = ρ(y, x) for all x, y ∈ X; (iii) There exists a constant A ∈ [1,∞) such
that, for all x, y and z ∈ X,

ρ(x, y) ≤ A[ρ(x, z) + ρ(z, y)].
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Any quasi-metric defines a topology, for which the balls

B(x, r) = {y ∈ X : ρ(y, x) < r},

for all x ∈ X and all r > 0, form a basis. We say that (X, ρ, µ) is a space of
homogeneous type in the sense of Coifman and Weiss if ρ is a quasi-metric and µ
is a nonnegative Borel regular measure on X satisfying the doubling condition;
that is, for all x ∈ X, r > 0, then 0 < µ(B(x, r)) <∞ and

µ(B(x, 2r)) ≤ Cµ(B(x, r)), (1.1)

where µ is assumed to be defined on a σ-algebra which contains all Borel sets
and all balls B(x, r), and the constant 0 < C < ∞ is independent of x ∈ X and
r > 0.

Maćıas and Segovia [14] showed that the quasi-metric ρ can be replaced by
another quasi-metric d such that the topologies induced on X by ρ and d coincide,
and d has the regularity property; there exist constants C > 0 and 0 < θ < 1
such that, for all x, x′, y ∈ X,

|d(x, y)− d(x′, y)| ≤ Cd(x, x′)θ[d(x, y) + d(x′, y)]1−θ.

Moreover, if B(x, r), the ball defined by the quasi-metric d, then

µ(B(x, r)) ≈ r. (1.2)

Note that the condition (1.2) is much stronger than the doubling property (1.1).
In [15], Nagel and Stein developed the product theory on Carnot–Carathéodory

spaces with a smooth quasi-metric d and a measure µ satisfying the condition
(1.1) and the “reverse” doubling condition; that is, there exist constants a0 and
C ∈ (1,∞) such that, for all x ∈ X and all 0 < r < sup

x,y∈X
d(x, y)/a0,

Cµ(B(x, r)) ≤ µ(B(x, a0r)). (1.3)

Such “reverse” doubling condition was further extended by Han, Müller, and
Yang in [6] and [7] into metric measure spaces.

We point out that the doubling condition (1.1) and “reverse” doubling condi-
tion (1.3) imply that there exist positive constants ω (the upper dimension of µ),
κ ∈ (0, ω] (the lower dimension of µ), c ∈ (0, 1], and C ≥ 1, such that, for all
x ∈ X, 0 < r < sup

x,y∈X
d(x, y)/2, and 1 ≤ λ < sup

x,y∈X
d(x, y)/2r,

cλκµ(B(x, r)) ≤ µ(B(x, λr)) ≤ Cλωµ(B(x, r)).

Such spaces of homogeneous type satisfying the “reverse” doubling condition are
called RD-spaces, which was originally introduced in [7]. See also [6] and [18] for
more equivalent characterizations of RD-spaces.

Throughout this paper, (X, d, µ) denotes an RD-space with µ(X) = ∞. We use
C to denote a positive constant, whose value may vary from line to line. Constants
with subscripts, such as C1, do not change in different occurrences. Let θ be the
regularity exponent of X, and letM be the Hardy–Littlewood maximal operator.
We denote by f ∼ g if there exists a constant C > 0 independent of the main
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parameters such that C−1g ≤ f ≤ Cg. Let Z+ = N ∪ {0}. For all x ∈ X and all
r > 0, we use the abbreviations

Vr(x) = µ(B(x, r)) and (x, y) = µ(B(x, d(x, y))).

In order to introduce the inhomogeneous Triebel–Lizorkin and Besov spaces,
we need the following definitions of approximates to the identity and spaces of
test functions.

Definition 1.1. [7] A sequence {Sk}k∈Z+ of linear operators is said to be an
approximation to the identity if there exists a constant C > 0 such that, for all
k ∈ Z+ and all x, x′, y, y′ ∈ X, Sk(x, y), the kernel of Sk, satisfies the following
conditions:
(i) Sk(x, y) = 0 if d(x, y) ≥ C2−k and |Sk(x, y)| ≤ C 1

V
2−k (x)+V

2−k (y)
;

(ii) |Sk(x, y)− Sk(x
′
, y)| ≤ C2kθd(x, x′)θ 1

V
2−k (x)+V

2−k (y)
;

(iii) |Sk(x, y)− Sk(x, y
′
)| ≤ C2kθd(y, y′)θ 1

V
2−k (x)+V

2−k (y)
;

(iv)

|[Sk(x, y)− Sk(x, y
′
)]− [Sk(x

′
, y)− Sk(x

′
, y

′
)]|

≤ C22kθd(x, x′)θd(y, y′)θ
1

V2−k(x) + V2−k(y)
;

(v)
∫
X
Sk(x, y) dµ(y) = 1;

(vi)
∫
X
Sk(x, y) dµ(x) = 1.

Definition 1.2. [7] Suppose that 0 < β, γ ≤ θ. A function f defined on X is
said to be a test function of type (β, γ) centered at x0 ∈ X with width r > 0 if
f satisfies
(i) |f(x)| ≤ C 1

Vr(x0)+V (x0,x)
rγ

(r+d(x,x0))γ
;

(ii) |f(x) − f(y)| ≤ C
(

d(x,y)
r+d(x,x0)

)β
1

Vr(x0)+V (x0,x)
rγ

(r+d(x,x0))γ
for d(x, y) ≤ 1

2A
(r +

d(x, x0)).
If f is a test function of type (β, γ) centered at x0 with width r > 0, we write

f ∈ M(x0, r, β, γ), and the norm of f in M(x0, r, β, γ) is defined by

∥f∥M(x0,r,β,γ) = inf{C > 0 : (i)− (ii) hold }.

We denote by M(β, γ) the class of all f ∈ M(x0, 1, β, γ). It is easy to see that
M(x1, d, β, γ) = M(β, γ) with the equivalent norms for all x1 ∈ X and r > 0.
Furthermore, it is easy to check that M(β, γ) is a Banach space with respect to
the norm in M(β, γ).

Let M̃(β, γ) be the completion of the space M(θ, θ) in M(β, γ) when 0 <

β, γ ≤ θ. If f ∈ M̃(β, γ), we define ∥f∥M̃(β,γ) = ∥f∥M(β,γ).

We define the distribution space (M̃(β, γ))
′
by all linear functionals L from

M̃(β, γ) to C with the property that there exists a constant C ≥ 0 such that, for

all f ∈ M̃(β, γ),

|L(f)| ≤ C∥f∥M̃(β,γ).
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Now we recall definitions of the inhomogeneous Triebel–Lizorkin and Besov
spaces, and the authors [7] showed that these spaces are well defined.

Definition 1.3. Suppose that {Sk}k∈Z+ be an approximation to the identity, and
Dk = Sk − Sk−1 for k ∈ N and D0 = S0. Let −θ < α < θ, and let 1 < p, q < ∞.

The inhomogeneous Triebel–Lizorkin space is the collection of f ∈ (M̃(β, γ))′

with 0 < β, γ < θ such that

∥f∥Fα,q
p

= ∥D0(f)∥Lp +
∥∥∥{ ∞∑

k=1

(
2kα|Dk(f)|

)q} 1
q
∥∥∥
Lp
<∞.

The inhomogeneous Besov space is the collection of all f ∈ (M̃(β, γ))′ with
0 < β, γ < θ such that

∥f∥Bα,q
p

= ∥D0(f)∥Lp +
{ ∞∑

k=1

(
2kα∥Dk(f)∥Lp

)q} 1
q
<∞.

To formulate the main results of this paper, we need the following definitions.
For η ∈ (0, θ], let Cη

0 (X) be the set of all continuous functions f on X with
compact support such that

∥f∥Cη
0 (X) = sup

x ̸=y

|f(x)− f(y)|
d(x, y)η

<∞.

Endow Cη
0 (X) with the natural topology, and let (Cη

0 (X))′ be its dual space.
The following is the inhomogeneous Calderón–Zygmund kernel which was in-

troduced by Meyer [12]. See, for example, [8], [16], [5], and references therein.

Definition 1.4. A continuous complex-valued function K on Ω = {(x, y) ∈
X × X : x ̸= y} is called an inhomogeneous Calderón–Zygmund kernel of type
(ϵ, σ) if there exist constants ϵ ∈ (0, θ], σ > 0, and C1 > 0 such that
(i) |K(x, y)| ≤ C1

1
V (x,y)

;

(ii) |K(x, y)| ≤ C1
1

d(x,y)σ
1

V (x,y)
for d(x, y) ≥ 1;

(iii) |K(x, y)−K(x′, y)| ≤ C1
d(x,x′)ϵ

d(x,y)ϵ
1

V (x,y)
for d(x, x′) ≤ d(x, y)/2A;

(iv) |K(x, y)−K(x, y′)| ≤ C1
d(y,y′)ϵ

d(x,y)ϵ
1

V (x,y)
for d(y, y′) ≤ d(x, y)/2A.

We now define Calderón–Zygmund singular integral operators with inhomoge-
neous kernels.

Definition 1.5. A continuous linear operator T : Cη
0 → (Cη

0 )
′
is an inhomoge-

neous Calderón–Zygmund singular integral operator if there exists an inhomoge-
neous kernels K such that

⟨Tf, g⟩ =
∫
X

∫
X

K(x, y)f(y)g(x) dµ(x) dµ(y)

for all f, g ∈ Cη
0 with disjoint supports.

We also need the notion of the weak boundedness property.
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Definition 1.6.[3] A Calderón-Zygmund singular integral operator T is said to
have the weak boundedness property, if there exist constants C2 > 0 and η ∈ (0, θ]
such that, for all x0 ∈ X and r > 0,

|⟨Tf, g⟩| ≤ C2Vr(x0)r
2η∥g∥Cη

0
∥f∥Cη

0
,

where f, g ∈ Cη
0 with supp f , supp g ⊂ B(x0, r), ∥f∥∞ ≤ 1, ∥g∥∞ ≤ 1, ∥f∥Cη

0
≤

r−η, and ∥g∥Cη
0
≤ r−η. If T satisfies the weak boundedness property, then we

denote it by T ∈ WBP .

The T1 theorem of the inhomogeneous Triebel–Lizorkin and Besov spaces can
be stated as follows. We use T ∗ to denote the adjoint operator of T .

Theorem 1.7. Suppose that T is a singular integral operator with the kernel
which satisfies (i), (ii) and (iii), of Definition 1.4, T (1) = 0, and T ∈ WBP .
Then T can be extended to a bounded linear operator on Fα,q

p and Bα,q
p , for 0 <

α < ϵ and 1 < p, q <∞.

Theorem 1.8. Suppose that T is a singular integral operator with the kernel
which satisfies (i), (ii), and (iv) of Definition 1.4, T ∗(1) = 0, and T ∈ WBP .
Then T can be extended to a bounded linear operator on Fα,q

p and Bα,q
p , for −ϵ <

α < 0 and 1 < p, q <∞.

Han and Sawyer [9] established the T1 theorem for the Triebel–Lizorkin and
Besov spaces on spaces of homogeneous type. Moreover, they obtained new char-
acterizations of the Triebel–Lizorkin and Besov spaces with “half” smoothness
and cancellation conditions. See [13], [16], [17], [10], and [7] for the related re-
sults.

As an application of the T1 theorem, we give new characterizations of the
inhomogeneous Triebel–Lizorkin and Besov spaces which only need “half” the
usual conditions on the approximate to the identity.

Theorem 1.9. Let 0 < α < θ, and let 1 < p, q < ∞. Suppose that Sk (k ∈ Z+)
is an approximation to the identity satisfying (i), (ii), and (v) of Definition 1.1,
and that Ek = Sk − Sk−1 when k ∈ N and E0 = S0.
(i) For f ∈ F α,q

p , then∥∥∥{ ∞∑
k=0

(
2kα|Ek(f)|

)q} 1
q
∥∥∥
Lp

∼ ∥f∥Fα,q
p
. (1.4)

(ii) For f ∈ Bα,q
p , then{ ∞∑

k=0

(
2kα∥Ek(f)∥Lp

)q} 1
q ∼ ∥f∥Bα,q

p
. (1.5)

Theorem 1.10. Let −θ < α < 0, and let 1 < p, q <∞. Assume that Sk (k ∈ Z+)
is an approximation to the identity satisfying (i), (iii), and (vi) of Definition 1.1,
and that Ek = Sk − Sk−1 when k ∈ N and E0 = S0, then (1.4) and (1.5) also
hold.
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2. Proof of the T1 Theorem

In this section, the T1 theorem of the inhomogeneous Triebel–Lizorkin and
Besov spaces on RD-spaces is presented. We first formulate Calderón’s reproduc-
ing formulas which are main tools in this paper.

Lemma 2.1. [7] Let Sk (k ∈ Z+) be as in Definition 1.1. Set Dk = Sk − Sk−1

for k ∈ N and D0 = S0. Then there exist families of linear operators D̃k and
˜̃
Dk,

for k ∈ Z+, such that, for all f ∈ M̃(β, γ) with 0 < β, γ < θ,

f =
∞∑
k=0

D̃kDk(f) =
∞∑
k=0

Dk
˜̃
Dk(f),

where the series converges in the both norm of M̃(β′, γ′) with 0 < β′ < β and

0 < γ′ < γ, and norm of Lp with 1 < p < ∞. When f ∈ (M̃(β, γ))
′
, the series

converges in the norm of (M̃(β′, γ′))′ with β < β′ < θ, γ < γ′ < θ. Moreover,

for any θ′ ∈ (0, θ), D̃k(x, y), and
˜̃
Dk(x, y), the kernels of D̃k and

˜̃
Dk, satisfy the

similar estimates but with x and y interchanged in (ii):
(i)

|D̃k(x, y)| ≤ C
1

V2−k(x) + V (x, y)

2−kθ

(2−k + d(x, y))θ
;

(ii)

|D̃k(x, y)− D̃k(x
′, y)| ≤ C

( d(x, x′)

2−k + d(x, y)

)θ′ 1

V2−k(x) + V (x, y)

2−kθ

(2−k + d(x, y))θ

for d(x, x′) ≤ 1
2A
(2−k + d(x, y));

(iii) ∫
X

D̃0(x, y) dµ(y) =

∫
X

D̃0(x, y) dµ(x) = 1;

and for k ∈ N ∫
X

D̃k(x, y) dµ(y) =

∫
X

D̃k(x, y) dµ(x) = 0.

We describe a fundamental estimate before we give the proof of Theorem 1.7.
In what follows, we denote min{a, b} by a ∧ b for any a, b ∈ R.

Proposition 2.2. Suppose that 0 < α < ϵ and that T satisfies the hypotheses of
Theorem 1.7 and that Dk (k ∈ Z+) is the same as in Definitions 1.3. Then there
exists a constant C > 0 such that

|DlTDk(x, y)| ≤ C
(
2(k−l)ϵ ∧ 1

) 1 + (l − l ∧ k)
V2−(k∧l)(x) + V (x, y)

2−(k∧l)σ′

(2−(k∧l) + d(x, y))σ′ , (2.1)

where σ′ = σ if l = 0, otherwise σ′ = ϵ.
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Proof. We only consider the cases: l = 0, k ∈ Z+ and l > 0, k = 0. When k, l > 0,
the proof of (2.1) is just [11, Proposition 2.1]. In what follows, we fix a smooth
cut-off function ϕ0 ∈ C∞

0 (R) with ϕ0(x) = 1 when |x| ≤ 1 and ϕ0(x) = 0 when
|x| > 2, and set ϕ1 = 1− ϕ0. When l = 0, k ∈ Z+, we consider two cases. When
d(x, y) ≤ 3A2C, we have

D0TDk(x, y) =⟨TDk(·, y)(u), D0(x, ·)(u)⟩

=
⟨
T
(
Dk(·, y)ϕ0

(d(x, ·)
2AC

))
(u), D0(x, ·)(u)

⟩
+
⟨
T
(
Dk(·, y)ϕ1

(d(x, ·)
2AC

))
(u), D0(x, ·)(u)

⟩
:=I1.1 + I1.2.

For I1.1, let ψ(u) = D0(x, u), and let φ(u) = Dk(u, y)ϕ0

(
d(x,u)
2AC

)
. Since T ∈ WBP ,

then

|I1.1| = |⟨Tφ, ψ⟩| ≤ CV1(x)∥φ∥Cη
0
∥ψ∥Cη

0
≤ C

1

V1(x)
.

Now we consider I1.2. For any given x, since supp(D0(x, ·))
∩

supp
(
Dk(·, y)ϕ1

(d(x,·)
2AC

)
)
=

∅, so we can write I1.2 as

I1.2 =

∫
X

∫
X

D0(x, u)K(u, v)Dk(v, y)ϕ1

(d(x, v)
2AC

)
dµ(u)dµ(v).

Notice that d(x, u) ≤ C and by the support of ϕ1, d(x, v) ≥ 2AC, then we obtain
that d(x, v) ≤ Cd(x, u) and

V (u, v) ≥ V1(u) ∼ CV1(x).

By the above fact, we have

|I1.2| ≤
∫
X

∫
X

|D0(x, u)K(u, v)Dk(v, y)ϕ1

(d(x, v)
2AC

)
|dµ(u)dµ(v)

≤C
∫
X

∫
X

|D0(x, u)|
1

V (u, v)
|Dl(v, y)|dµ(u)dµ(v)

≤C 1

V1(x)
.

When d(x, y) > 3A2C, note that d(x, u) ≤ C and d(v, y) ≤ C, we have d(u, v) ≥
d(x,y)
3A2 .
Thus, in this case, we obtain

|D0TDk(x, y)| ≤C
∫
X

∫
X

|D0(x, u)|
1

d(u, v)σ
1

V (u, v)
|Dk(v, y)| dµ(u) dµ(v)

≤C 1

V (x, y)

1

d(x, y)σ
≤ C

1

V (x, y) + V1(x)

1

(1 + d(x, y))σ
,

where σ be as in Definition 1.4. Therefore, the above estimates enable us to get

|D0TDk(x, y)| ≤ C
1

V (x, y) + V1(x)

1

(1 + d(x, y))σ
.
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We now estimate the case that l > 0 and k = 0, and consider it by two cases.
When d(x, y) ≤ 3A2C, since T (1) = 0, then

DlTD0(x, y) =⟨TD0(·, y)(u), Dl(x, ·)(u)⟩

=
⟨
T
(
D0(·, y)−D0(x, y)

)
(u), Dl(x, ·)(u)

⟩
=
⟨
T
(
[D0(·, y)−D0(x, y)]ϕ0

( d(x, ·)
2AC2−l

))
(u), Dl(x, ·)(u)

⟩
+
⟨
T
(
[D0(·, y)−D0(x, y)]ϕ1

( d(x, ·)
2AC2−l

))
(u), Dl(x, ·)(u)

⟩
:=I2.1 + I2.2.

Let ψ(u) = Dl(x, u), and let φ(u) = [D0(u, y)−D0(x, y)]ϕ0

( d(x,u)
2AC2−l

)
. By the fact

T ∈ WBP , then

|I2.1| ≤CV2−l(x)2−2lη[V2−l(x)]−12lη[V2−l(y)]−12−lϵ2lη ≤ C2−lϵ[V2−l(y)]−1,

where η ∈ (0, ϵ]. To estimate I2.2, by
∫
X
Dl(x, u)dµ(u) = 0, we have

|I2.2|

≤
∫
X

∫
d(x,v)>C2−l

∣∣∣Dl(x, u)[K(u, v)−K(x, v)][D0(v, y)−D0(x, y)]
∣∣∣ dµ(u) dµ(v)

≤ C

∫
X

∫
d(x,v)>C

|Dl(x, u)|
d(x, u)ϵ

d(x, v)ϵ
1

V (x, v)

1

V1(y)
dµ(u) dµ(v)

+

∫
X

∫
C≥d(x,v)>C2−l

|Dl(x, u)|
d(x, u)ϵ

d(x, v)ϵ
1

V (x, v)

1

V1(y)

( d(x, v)

1 + d(v, y)

)ϵ

dµ(u) dµ(v)

≤ C(1 + l)2−lϵ 1

V1(y)
.

When d(x, y) ≥ 3A2C, since
∫
X
Dl(x, u) dµ(u) = 0, we obtain

|DlTD0(x, y)| =
∣∣∣ ∫

X

∫
X

Dl(x, u)[K(u, v)−K(x, v)]D0(v, y) dµ(u) dµ(v)
∣∣∣

≤C
∫
X

∫
d(x,u)≤C2−l

|Dl(x, u)|
d(x, u)ϵ

d(u, v)ϵ
1

V (u, v)
|D0(v, y)| dµ(u) dµ(v)

≤C2−lϵ 1

V (x, y) + V1(x)

1

(1 + d(x, y))ϵ
,

which completes the proof of Proposition 2.2. □

Now we prove the Theorem 1.7.
Proof of Theorem 1.7. By an analogue argument to [2], we obtain that T can

be extended to a continuous linear operator from M̃(β, γ) to (Cη
0 )

′. For f ∈
M̃(β, γ) ∩ F α,q

p , then

T (f) =
∑
k∈Z+

TDk
˜̃
Dk(f)
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in (Cη
0 )

′. When f ∈ M̃(β, γ) ∩ Fα,q
p , applying Lemma 2.1, Proposition 2.2,

Fefferman-Stein’s vector-valued maximal inequality(see, for example, [4]), and
notice that Dk(x, ·) ∈ Cη

0 , we have

∥Tf∥Fα,q
p

≤C
∥∥∥{ ∞∑

l=0

(
2lα|Dl(Tf)|

)q}1/q∥∥∥
Lp

≤C
∥∥∥{ ∞∑

l=0

( ∞∑
k=0

2lα
∣∣∣DlTDk

˜̃
Dk(f)

∣∣∣)q}1/q∥∥∥
Lp

≤C
∥∥∥{ ∞∑

l=0

( ∞∑
k=0

2lα
(
2(k−l)ϵ ∧ 1

)
M

( ˜̃
Dk(f)

))q}1/q∥∥∥
Lp

≤C∥f∥Fα,q
p
,

where 0 < α < ϵ. Since M̃(β, γ) ∩ F α,q
p is dense in F α,q

p with 0 < α < ϵ, 1 <
p, q < ∞ ([7, Proposision 5.46]). Therefore, when f ∈ F α,q

p with 0 < α < ϵ,
1 < p, q <∞, we have

∥Tf∥Fα,q
p

≤ C∥f∥Fα,q
p
.

The proof of the case f ∈ Bα,q
p is similar, and we conclude the proof of Theorem

1.7. □
By an analogous argument to Proposition 2.2, then we have the following propo-

sition.

Proposition 2.3. Suppose that −ϵ < α < 0, T satisfies the hypotheses of Theo-
rem 1.8 and that Dk (k ∈ Z+) is the same as in the Definition 1.3. Then there
exists a constant C > 0 such that

|DlTDk(x, y)| ≤ C
(
2(l−k)ϵ ∧ 1

) 1 + (k − k ∧ l)
V2−(k∧l)(x) + V (x, y)

2−(k∧l)ϵ

(2−(k∧l) + d(x, y))ϵ
,

where σ′ = σ if k = 0, otherwise σ′ = ϵ.

As an immediate result of Lemma 2.1 and Proposition 2.3, we can obtain
Theorem 1.8. Here we omit the details.

3. New Characterizations of the Triebel–Lizorkin and Beosv
spaces

In this section, we will use the T1 theorem to prove Theorems 1.9 and 1.10.
We first give some estimates.

Proposition 3.1. (i) Suppose that Ek is the same as in Theorem 1.9 and
that Ek(x, y) is the kernel of Ek for k ∈ Z+. Then Ek(x, y) ∈ Fα,q

p and
Ek(x, y) ∈ Bα,q

p for any fixed x, −θ < α < 0, and 1 < p, q <∞.

(ii) Suppose that Ek is the same as in Theorem 1.10 and that Ek(x, y) is the
kernel of Ek for k ∈ Z+. Then Ek(x, y) ∈ F α,q

p and Ek(x, y) ∈ Bα,q
p for

any fixed x, 0 < α < θ, and 1 < p, q <∞.
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Proof. For given x ∈ X, we claim that

|Dk(El(x, ·))(y)| ≤ C
(
2(k−l)θ ∧ 1

) 1

V2−(l∧k)(x) + V (x, y)

2−(l∧k)θ

(2−(l∧k) + d(x, y))θ
.

(3.1)

When l > k ≥ 0, notice that

|Dk(El(x, ·))(y)| =
∣∣∣ ∫

X

[Dk(y, z)−Dk(y, x)]El(x, z)dµ(z)
∣∣∣, (3.2)

then the proof of (3.1) is the same as (3.7) of [7, Lemma 3.2]. When k ≥ l ≥ 0,
we just use the size conditions of Dk and El, and consider d(x, y) ≤ 4A2−k and
d(x, y) > 4A2−k, respectively; the estimate in (3.2) follows easily. Here we omit
the details.

(i) Given x ∈ X, when 0 < α < θ and 1 < p, q <∞, we have∥∥∥{ ∑
k∈Z+

(
2kα|Dk(El(x, ·))|

)q}1/q∥∥∥
Lp

≤C
∑
k∈Z+

2kα
(
2(k−l)θ ∧ 1

)(∫
X

( 1

V2−(l∧k)(x) + V (x, y)

2−(l∧k)θ

(2−(l∧k) + d(x, y))θ

)p

dµ(y)
)1/p

≤C
∑
k∈Z+

2kα
(
2(k−l)θ ∧ 1

) 1

V2−(l∧k)(x)1−
1
p

≤C
∑
0≤k≤l

2(k−l)(θ+α)2lα
1

V2−l(x)1−
1
p

+
∑
0<l≤k

2(k−l)α2lα
1

V2−l(x)1−
1
p

≤Cl <∞,

where −θ < α < 0. Therefore, we get Ek(x, y) ∈ Fα,q
p for any fixed x. We can

similarly conclude the case Ek(x, y) ∈ Bα,q
p for any fixed x.

(ii) Given x ∈ X, when 0 < α < θ and 1 < p, q <∞, we only consider the case
Ek(x, y) ∈ Bα,q

p , and the case Ek(x, y) ∈ Fα,q
p can be handled similarly. For given

x ∈ X, by an analogous argument to (3.1), then

|Dk(El(x, ·))(y)| ≤ C
(
2(l−k)θ ∧ 1

) 1

V2−(l∧k)(x) + V (x, y)

2−(l∧k)θ

(2−(l∧k) + d(x, y))θ
.

(3.3)

Using (3.3), we obtain{ ∑
k∈Z+

(
2kα

∥∥∥Dk(El(·, y))
∥∥∥
Lp

)q}1/q

≤
∑
k∈Z+

2kα
(
2(l−k)θ ∧ 1

)(∫
X

( 1

V2−(l∧k)(x) + V (x, y)

2−(l∧k)θ

(2−(l∧k) + d(x, y))θ

)p

dµ(x)
)1/p

≤Cl <∞,

where 0 < α < θ. The proof of (ii) is finished. □
We now prove the following proposition.
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Proposition 3.2. Let 0 < α < θ, and let 1 < p, q < ∞, and suppose that
Ek(k ∈ Z+) is the same as in Theorem 1.9. Then there exists a constant C > 0
such that ∥∥∥{ ∞∑

k=0

(
2kα|Ek(f)|

)q} 1
q
∥∥∥
Lp

≤ ∥f∥Fα,q
p

(3.4)

and { ∞∑
k=0

(
2kα∥Ek(f)∥Lp

)q} 1
q ≤ ∥f∥Bα,q

p
. (3.5)

Proof. Suppose that f ∈ F α,q
p for 0 < α < θ and 1 < p, q < ∞. By [7,

Theorems 7.4 and 8.18] and Proposition 3.1, we can write

Ek(f) = Ek

( ∞∑
l=0

D̃lDl(f)
)
=

∞∑
l=0

EkD̃lDl(f). (3.6)

When 0 < α < θ; then (3.6), Hölder’s inequality, and Fefferman-Stein’s vector-
valued maximal inequality imply that∥∥∥{ ∞∑

k=0

(
2kα|Ek(f)|

)q} 1
q
∥∥∥
Lp

≤
∥∥∥{ ∞∑

k=0

( ∞∑
l=0

2kα|EkDl
˜̃
Dl(f)|

)q} 1
q
∥∥∥
Lp

≤C
∥∥∥{ ∞∑

k=0

( ∞∑
l=0

2kα
(
2(l−k)θ ∧ 1

)
M(

˜̃
Dl((f))

)q} 1
q
∥∥∥
Lp

≤C∥f∥Fα,q
p
.

We can verify (3.5) similarly. Thus, we finish the proof of Proposition 3.2. □

To finish the proofs of Theorem 1.9 and Theorem 1.10, we need to show the
converse inequalities of (3.4) and (3.5). We use Coifman’s idea to achieve the
goal. Let I be the identity operator, and let Ek be the same as in Theorem 1.9,

for k ∈ Z+; then I =
∞∑
k=0

Ek in L2. In the norm of L2, we rewrite

I =
∞∑
k=0

∞∑
l=0

ElEk =
∞∑
k=0

∑
|l|≤N

El+kEk +
∞∑
k=0

∑
|l|>N

El+kEk

=
∞∑
k=0

EN
k Ek +

∞∑
k=0

∑
|l|>N

El+kEk := TN +RN ,

where EN
k =

∑
|l|≤N

El+k and Ek = 0 for −l ∈ N.

We now show that RN is bounded on F α,q
p and Bα,q

p with an operator norm less

than 1. We write RN =
∑

|l−k|>N

ElEk, and consider the sums for k − l > N and

l − k > N , respectively.
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Proposition 3.3. Let 0 < α < θ, and let 1 < p, q < ∞, and suppose that
El (l ∈ Z+) is the same as in Theorem 1.9. Then there exists a constant C > 0
such that ∥∥∥ ∑

k−l>N

ElEk(f)
∥∥∥
Fα,q
p

≤ C2−Nα∥f∥Fα,q
p

(3.7)

and ∥∥∥ ∑
k−l>N

ElEk(f)
∥∥∥
Bα,q

p

≤ C2−Nα∥f∥Bα,q
p
. (3.8)

Proof. We only prove (3.7), and the proof of (3.8) is similar. By the definition of
Fα,q
p , (3.1), and Fefferman-Stein’s vector-valued maximal inequality, then∥∥∥ ∑

k−l>N

ElEk(f)
∥∥∥
Fα,q
p

=
∥∥∥{ ∞∑

j=0

(
2jα

∣∣∣Dj

( ∑
k−l>N

ElEk(f)
)∣∣∣)q} 1

q
∥∥∥
Lp

≤ C
∥∥∥{ ∞∑

j=0

( ∑
k−l>N

2jα
(
2(l−j)θ ∧ 1

)
M(Ek(f))

)q} 1
q
∥∥∥
Lp

≤ C
∥∥∥{ ∞∑

j=0

( ∑
k−l>N

(
2(l−j)θ ∧ 1

)
2(j−l)α2(l−k)α2kαM(Ek(f))

)q} 1
q
∥∥∥
Lp

≤ C
∥∥∥{ ∞∑

k=0

(
2kαM(Ek(f))

)q} 1
q
∥∥∥
Lp

≤ C2−Nα∥f∥Fα,q
p
,

which is a desired result. □
Now we need to prove the following proposition.

Proposition 3.4. Let 0 < α < θ′ < θ, and let 1 < p, q < ∞, and assume that
El (l ∈ Z+) is the same as in Theorem 1.9. Then there exist constants C > 0
and δ > 0 such that ∥∥∥ ∑

l−k>N

ElEk(f)
∥∥∥
Fα,q
p

≤ C2−Nδ∥f∥Fα,q
p

and ∥∥∥ ∑
l−k>N

ElEk(f)
∥∥∥
Bα,q

p

≤ C2−Nδ∥f∥Bα,q
p
.

Proof. Let R̃N(x, y) be the kernel of R̃N :=
∑

l−k>N

ElEk(f). We claim that there

exist C > 0 and δ, σ > 0 such that R̃N(x, y) satisfies R̃N(1) = 0, and

|R̃N(x, y)| ≤ C2−Nδ 1

V (x, y)
; (3.9)
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|R̃N(x, y)| ≤ C2−Nδ 1

d(x, y)σ
1

V (x, y)
(3.10)

for d(x, y) > 1;

|R̃N(x, y)− R̃N(x
′, y)| ≤ C2−Nδ d(x, x

′)ϵ

d(x, y)ϵ
1

V (x, y)
(3.11)

for d(x, x′) ≤ 1
2A
d(x, y);

|⟨R̃Nϕ, ψ⟩| ≤ C2−NδVr(x0) (3.12)

for all ϕ, ψ ∈ Cη
0 with supp ϕ, supp ψ ∈ B(x0, r), ∥ϕ∥∞ ≤ 1, ∥ψ∥∞ ≤ 1, ∥ϕ∥Cη

0
≤

r−η, and ∥ψ∥Cη
0
≤ r−η.

We rewrite R̃N =
∑

l−k>N

ElEk =
∑
l>N

∑
k∈Z+

Ek+lEk and
˜̃
RN :=

∑
k∈Z+

Ek+lEk. Ob-

viously, R̃N(1) = 0. Applying [7, Lemma 3.21], by an analogous arguments to
[11, Proposition 3.6], we can get (3.9), (3.11), and (3.12). Now we verify (3.10).
When d(x, y) > 1, we have∣∣∣ ˜̃RN(x, y)

∣∣∣ ≤C ∑
k∈Z+

2−lθ 1

V2−k(x) + V (x, y)

2−kϵ

(2−k + d(x, y))θ

≤C
∑
k∈Z+

2−lθ 1

V (x, y)

2−k

d(x, y)θ

≤C2−lθ 1

V (x, y)

1

d(x, y)θ
;

(3.13)

then |R̃N(x, y)| ≤ C2−Nθ 1
V (x,y)

1
d(x,y)θ

. Thus, when d(x, y) > 1, from (3.9) and

(3.13), it is easy to get

| ˜̃RN(x, y)| ≤ C2−Nδ 1

V (x, y)

1

d(x, y)σ

for some δ, σ > 0.
By Theorem 1.7, for all f ∈ F α,q

p , then∥∥∥ ∑
l−k>N

ElEk(f)
∥∥∥
Fα,q
p

≤ C2−Nδ∥f∥Fα,q
p
.

For all f ∈ Bα,q
p , we also have∥∥∥ ∑

l−k>N

ElEk(f)
∥∥∥
Bα,q

p

≤ C2−Nδ∥f∥Bα,q
p
.

We finish the proof of Proposition 3.4. □

By the fact that T−1
N = (I − RN)

−1 =
∞∑

m=0

Rm
N and Proposition 3.4, we can

obtain that T−1
N exists and is bounded on F α,q

p and Bα,q
p for large integer N .
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Similar to the proof of (3.1), given a large integer N , let Ek and EN
l be as in

Definition 1.3 and (3.7), for k, l ∈ Z+, respectively, then we have

|DkE
N
l (x, y)| ≤ CN

(
2(l−k)θ ∧ 1

) 1

V2−(k∧l)(x) + V (x, y)

2−(k∧l)θ

(2−(k∧l) + d(x, y))θ
, (3.14)

where the constant CN depends only on N .
Using (3.14), by analogous arguments to (3.5) and (3.6), for f ∈ L2 ∩ Fα,q

p , we
have

∥TN(f)∥Fα,q
p

≤
∥∥∥{ ∞∑

k=0

( ∞∑
l=0

2kα|DkE
N
l El(f)|

)q} 1
q
∥∥∥
Lp

≤
∥∥∥{ ∞∑

k=0

( ∞∑
l=0

2kα
(
2(l−k)θ ∧ 1

)
M(El((f))

)q} 1
q
∥∥∥
Lp

≤
∥∥∥{ ∞∑

l=0

(
2lα|El(f)|

)q} 1
q
∥∥∥
Lp
,

and then

∥f∥Fα,q
p

= ∥T−1
N TN(f)∥Fα,q

p
≤ C∥TN(f)∥Fα,q

p
≤

∥∥∥{ ∞∑
l=0

2lα|El(f)|
)q} 1

q
∥∥∥
Lp
.

Since L2 ∩ Fα,q
p is dense in Fα,q

p , and let f ∈ Fα,q
p with∥∥∥{ ∞∑

k=0

(
2kα|Ek(f)|

)q} 1
q
∥∥∥
Lp
<∞;

we can choose a sequence {fn}∞n=1 with fn ∈ L2 ∩ F α,q
p such that

lim
n→∞

∥fn − f∥Fα,q
p

= 0.

Thus, using the above fact and (3.4), then

∥f∥Fα,q
p

= lim
n→∞

∥fn∥Fα,q
p

≤ C lim
n→∞

∥∥∥{ ∞∑
k=0

(
2kα|Ek(fn)|

)q}1/q∥∥∥
Lp

≤C lim
n→∞

∥fn − f∥Fα,q
p

+ C
∥∥∥{ ∞∑

k=0

(
2kα|Ek(f)|

)q}1/q∥∥∥
Lp

=C
∥∥∥{ ∞∑

k=0

(
2kα|Ek(f)|

)q}1/q∥∥∥
Lp
,

which finishes the proof of the converse inequality of (3.4). The case f ∈ Bα,q
p

can be dealt similarly. We conclude the proof of Theorem 1.9.
Applying Proposition 3.1, the proof of Theorem 1.10 is similar to Theorem 1.9

with necessary modifications. We leave the details to the interested reader.
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