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Abstract. The main purpose of this paper is to analyze the existence and
uniqueness of Besicovitch almost automorphic solutions and weighted Besicov-
itch pseudo-almost automorphic solutions of nonautonomous differential equa-
tions of first order. We provide an interesting application of our abstract
theoretical results.

1. Introduction and preliminaries

Abstract linear nonautonomous parabolic equations of first order are still an
active field of scientific research (see [1], [7], [23] and references cited therein for
the basic information on the subject). Almost periodic and almost automorphic
type solutions of nonautonomous parabolic equations have been examined, among
many other research papers, in [4], [7]–[17] and [22]–[24].

As mentioned in the abstract, the main aim of this paper is to analyze the
existence and uniqueness of Besicovitch almost automorphic type solutions of
nonautonomous differential equations of first order. The organization and main
ideas of paper are briefly described as follows. After giving some preliminary
results on hyperbolic evolution systems, we collect the basic properties of Besi-
covitch almost automorphic type functions in subsection 1.1. Our main results
are presented in section 2, where we continue our recent research studies raised
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in [17]–[20] (see also [21] and the forthcoming monograph [22]). Motivated by
the consideration of Diagana [9], we apply our abstract results in the analysis
of existence and uniqueness of Besicovitch almost automorphic solutions to the
nonautonomous one-dimensional heat equation with Dirichlet boundary condi-
tions (see section 3).

We use the standard notation throughout the paper. X and L(X) denote a
complex Banach space and the space of all continuous linear mappings from X
into X, respectively. If A is a linear operator acting on X, then the domain, kernel
space, and range of A will be denoted by D(A), N(A), and R(A), respectively.
Since no confusion seems likely, we will identify A with its graph. The resolvent
set of A is denoted by ρ(A), while the resolvent of A is denoted by R(· : A). Given
α ∈ (0, π] in advance, set Σα := {z ∈ C \ {0} : | arg(z)| < α}. Let I = [0,∞) or
I = R. The space of all bounded continuous functions from I into X is denoted
by Cb(I : X). Equipped with the sup-norm, this space becomes one of Banach’s.

We need to recall some basic definitions and results about hyperbolic evolution
systems and Green’s functions (see [1], [7] and [23] for further information).

Definition 1.1. A family {U(t, s) : t ≥ s, t, s ∈ R} ⊆ L(X) is said to be an
evolution system if and only if the following holds:

(a) U(s, s) = I, U(t, s) = U(t, r)U(r, s) for t ≥ r ≥ s and t, r, s ∈ R,
(b) {(τ, s) ∈ R2 : τ > s} ∋ (t, s) 7→ U(t, s)x is continuous for any fixed

element x ∈ X.

Henceforward, we assume that the family A(·) satisfies the following condition
introduced by Acquistapace and Terreni in [1] (with ω = 0):

(H1): There is an ω ≥ 0 such that the family of closed linear operators A(t),
t ∈ R on X satisfies Σϕ ⊆ ρ(A(t)− ω),∥∥R(λ : A(t)− ω)

∥∥ = O
((

1 + |λ|
)−1

)
, t ∈ R, λ ∈ Σϕ, and∥∥∥(A(t)− ω)R(λ : A(t)− ω)

[
R(ω : A(t))−R(ω : A(s))

]∥∥∥ = O
(
|t− s|µ|λ|−ν

)
,

for any t, s ∈ R, λ ∈ Σϕ, where ϕ ∈ (π/2, π), 0 < µ, ν ≤ 1 and µ+ν > 1.

Then there exists an evolution system U(·, ·) generated by A(·), satisfying that
∥U(t, s)∥ = O(1) for t ≥ s, as well as several other important conditions and
estimates; see [1] for more details. In what follows, we assume that the following
condition holds true, as well:

(H2): The evolution system U(·, ·) generated by A(·) is hyperbolic (or, equiv-
alently, has exponential dichotomy); that is, there exist a family of pro-
jections (P (t))t∈R ⊆ L(X), being uniformly bounded and strongly contin-
uous in t, and constants M ′, ω > 0 such that the following holds, with
Q := I − P and Q(·) := I − P (·),
(a) U(t, s)P (s) = P (t)U(t, s) for all t ≥ s,
(b) the restriction UQ(t, s) : Q(s)X → Q(t)X is invertible for all t ≥ s

(here we define UQ(s, t) = UQ(t, s)
−1),

(c) ∥U(t, s)P (s)∥ ≤ M ′e−ω(t−s) and ∥UQ(s, t)Q(t)∥ ≤ M ′e−ω(t−s) for all
t ≥ s.
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In the case that the choice P (t) = I, for all t ∈ R, is possible, then we say
that U(·, ·) is exponentially stable; U(·, ·) is said to be (bounded) exponentially
bounded if and only if there exist real constants M > 0 and (ω = 0) ω ∈ R such
that ∥U(t, s)P (s)∥ ≤ Me−ω(t−s) for all t ≥ s.

Define the associated Green’s function Γ(·, ·) by

Γ(t, s) :=

{
U(t, s)P (s), t ≥ s, t, s ∈ R,
−UQ(t, s)Q(s), t < s, t, s ∈ R.

Let M ′ be the constant from (H2). Then

∥Γ(t, s)∥ ≤ M ′e−ω|t−s|, t, s ∈ R, (1.1)

and the function

u(t) :=

∫ +∞

−∞
Γ(t, s)f(s) ds, t ∈ R (1.2)

is a unique mild solution of abstract Cauchy problem

u′(t) = A(t)u(t) + f(t), t ∈ R, (1.3)

which means that u(·) is a unique bounded continuous function on R satisfying

u(t) = U(t, s)u(s) +

∫ t

s

U(t, τ)f(τ) dτ, t ≥ s;

see [23].
Assume that f : [0,∞) → X is continuous. By a mild solution of the abstract

Cauchy problem

u′(t) = A(t)u(t) + f(t), t > 0 with u(0) = x, (1.4)

we mean the function

u(t) := U(t, 0)x+

∫ t

0

U(t, s)f(s) ds, t ≥ 0.

1.1. Besicovitch almost automorphic type functions in Banach spaces.
The class of Besicovitch almost automorphic functions has been introduced by
Bedouhene, Challali, Mellah, Raynaud de Fitte, and Smaali in [2] (see [3] for
the fundamental monograph concerning scalar-valued Besicovitch almost peri-
odic functions). This class extends the classes of Weyl almost automorphic func-
tions and Stepanov almost automorphic functions (see [19] and references cited
therein).

Definition 1.2. Let p ≥ 1. Then we say that a function f ∈ Lp
loc(R : X) is

Besicovitch p-almost automorphic if and only if for every real sequence (sn),
there exist a subsequence (snk

) and a function f ∗ ∈ Lp
loc(R : X) such that

lim
k→∞

lim sup
l→+∞

1

2l

∫ l

−l

∥∥∥f(t+ snk
+ x

)
− f ∗(t+ x)

∥∥∥p

dx = 0 (1.5)

and

lim
k→∞

lim sup
l→+∞

1

2l

∫ l

−l

∥∥∥f ∗(t− snk
+ x

)
− f(t+ x)

∥∥∥p

dx = 0 (1.6)
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for each t ∈ R. The set of all such functions are denoted by BpAA(R : X).

It can be simply proved that the set BpAA(R : X), equipped with the usual
operations, has a linear vector structure ([19]).

The class of weighted pseudo-almost automorphic functions has been intro-
duced by Blot, Mophou, N’Guérékata, and Pennequin in [6]. Set

U := {ρ ∈ L1
loc(R) : ρ(t) > 0 a.e. t ∈ R},

U∞ := {ρ ∈ U : inf
x∈R

ρ(x) < ∞ and ν(T, ρ) := lim
T→+∞

∫ T

−T

ρ(t) dt = ∞},

and

Ub := L∞(R) ∩ U∞.

Then we have Ub ⊆ U∞ ⊆ U. It is said that the weights ρ1(·) and ρ2(·) are
equivalent, ρ1 ∼ ρ2 for short, if and only if ρ1/ρ2 ∈ Ub. UT denote the space
consisting of all weights ρ ∈ U∞ which are equivalent with all its translations.
Unless stated otherwise, we assume henceforth that ρ1, ρ2 ∈ U∞.

The following definition has been recently introduced in [20] (see also [5] and
[8]):

Definition 1.3. A function f ∈ Lp
loc(R : X) is said to be weighted Besicovitch

p-pseudo almost automorphic if and only if it admits a decomposition f(t) =
g(t) + q(t), t ∈ R, where g(·) is Bp-almost automorphic and q(·) ∈ Lp

loc(R : X)
satisfies

lim
T→+∞

1

2
∫ T

−T
ρ1(t) dt

∫ T

−T

[
lim sup
l→+∞

1

2l

∫ t+l

t−l

∥q(s)∥p ds

]1/p

ρ2(t) dt = 0. (1.7)

Denote by BpWPAA(R, X, ρ1, ρ2) the set of such functions and by
BpWPAA0(R, X, ρ1, ρ2) the set of locally p-integrable X-valued functions q(·)
such that (1.7) holds.

Equipped with the usual operations, the sets BpWPAA(R, X, ρ1, ρ2) and
BpWPAA0(R, X, ρ1, ρ2) become vector spaces ([19]).

We also need the following notions. Define

Up := {ρ ∈ L1
loc([0,∞)) : ρ(t) > 0 a.e. t ≥ 0},

Ub,p := {ρ ∈ L∞([0,∞)) : ρ(t) > 0 a.e. t ≥ 0},
and

U∞,p := {ρ ∈ Up : ν(T, ρ) := lim
T→+∞

∫ T

0

ρ(t) dt = ∞}.

Then Ub,p ⊆ U∞,p ⊆ Up. If ρ1, ρ2 ∈ U∞,p, then we define

PAP0

(
[0,∞), X, ρ1, ρ2

)
:=

{
f ∈ Cb([0,∞) : X) : lim

T→+∞

1∫ T

0
ρ1(t) dt

∫ T

0

∥f(t)∥ρ2(t) dt = 0

}
.
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2. Formulation and proofs of main results

The main result of this paper reads as follows:

Theorem 2.1. Let f ∈ B1AA(R : X) ∩ L∞(R : X). Then the function u(·),
defined by (1.2), is a unique mild solution of the abstract Cauchy problem (1.3).
Furthermore, if

lim
l→+∞

1

2l

∫ l

−l

∫ x

−∞

∥∥∥Γ(x+ α, s+ α)− Γ(x, s)
∥∥∥ ds dx = 0 (α ∈ R), (2.1)

then u ∈ B1AA(R : X) ∩ Cb(R : X).

Proof. Due to (1.1), we have∫ x

−∞
∥Γ(x+α, s+α)−Γ(x, s)∥ ds ≤ 2M ′

∫ x

−∞
e−ω(x−s) ds = 2M ′/ω, x ∈ R (α ∈ R).

Writing
∫ l+t

−l+t
· =

∫ l

−l
·+

∫ l+t

l
· −

∫ −l+t

−l
·, and using (2.1) after that, we get that

lim
l→+∞

1

2l

∫ l+t

−l+t

∫ x

−∞

∥∥∥Γ(x+ α, s+ α)− Γ(x, s)
∥∥∥ ds dx = 0, t ∈ R (α ∈ R). (2.2)

Furthermore, we have u(t) = u1(t)+u2(t), t ∈ R, where u1(t) :=
∫ t

−∞ Γ(t, s)f(s) ds

and u2(t) :=
∫∞
t

Γ(t, s)f(s) ds (t ∈ R). It can be easily shown that u1, u2 ∈
L∞(R : X). We will first prove that u1 ∈ C(R : X). Define, for every k ∈ N,
Ψk(t) :=

∫ t−k

t−k+1
Γ(t, s)f(s) ds, t ∈ R. Since

∑∞
k=1Ψk(t) = u1(t) uniformly for

t ∈ R (see e.g. the proof of [11, Theorem 2.3]), it is sufficient to show that for
any fixed k ∈ N one has Ψk ∈ C(R : X). Since, due to (1.1),∥∥∥∥∥

∫ t−k

t−k+1

Γ(t, s)f(s) ds−
∫ t′−k

t′−k+1

Γ(t′, s)f(s) ds

∥∥∥∥∥
≤

∥∥∥∥∥
∫ t−k

t′−k

Γ(t, s)f(s) ds

∥∥∥∥∥+

∥∥∥∥∥
∫ t−k+1

t′−k+1

Γ(t′, s)f(s) ds

∥∥∥∥∥
+

∫ t−k+1

t′−k

∥∥∥∥∥[Γ(t, s)− Γ(t′, s)
]
f(s)

∥∥∥∥∥ ds
≤ 2M ′∥f∥∞

∣∣t− tk|+
∫ t−k+1

t′−k

∥∥∥∥∥[Γ(t, s)− Γ(t′, s)
]
f(s)

∥∥∥∥∥ ds, (2.3)

the right continuity of Ψk(·) follows by applying the dominated convergence the-
orem and the fact that Γ(t′, s)f(s) = U(t′, s)P (s)f(s) converges to Γ(t, s)f(s) =
U(t, s)P (s)f(s) as t′ → t. For the left continuity of Ψk(·), we can apply the same
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argument as above, by observing the following consequence of (2.3):∥∥∥∥∥
∫ t−k

t−k+1

Γ(t, s)f(s) ds−
∫ t′−k

t′−k+1

Γ(t′, s)f(s) ds

∥∥∥∥∥
≤ M ′∥f∥∞

∣∣t−−tk
∣∣+ ∫ t′−k+1

t′−k

∥∥∥∥∥[Γ(t, s)− Γ(t′, s)
]
f(s)

∥∥∥∥∥ ds
+

∥∥∥∥∥
∫ t′−k+1

t−k+1

[
Γ(t, s)− Γ(t′, s)

]
f(s) ds

∥∥∥∥∥
≤ 3M ′∥f∥∞

∣∣t−−tk
∣∣+ ∫ t′−k+1

t′−k

∥∥∥∥∥[Γ(t, s)− Γ(t′, s)
]
f(s)

∥∥∥∥∥ ds.
Let us prove that u1 ∈ B1AA(R : X). Fix a real sequence (sn) and a number
t ∈ R. Then there exist a subsequence (snk

) and a function f ∗ ∈ L1
loc(R : X)

such that (1.5)–(1.6) hold with p = 1. First of all, we will prove that there exists
l0 > 0 such that

1

2l

∫ l

−l

∥∥f ∗(s)
∥∥ ds ≤ ∥f∥∞ + 1, l > l0. (2.4)

To see this, it suffices to observe that there exist k0 ∈ N and l′0 > 0 such that, for
each l ≥ l′0, we have

1

2l

∫ l

−l

∥∥∥f(snk0
+ s

)
− f ∗(s)

∥∥∥ ds < 1/2;

see (1.5) with ϵ = 1/3 and t = 0. This yields

1

2l

∫ l

−l

∥∥f ∗(s)
∥∥ ds ≤ 1

2l

∫ l

−l

∥∥∥f(snk0
+ s

)
− f ∗(s)

∥∥∥ ds+ 1

2l

∫ l

−l

∥∥∥f(snk0
+ s

)∥∥∥ ds
≤1

2
+ ∥f∥∞, l ≥ l′0,

so that (2.4) holds with l0 = l′0. As a simple consequence of (2.4), we have that∫ s

0

∥∥f ∗(t+ r)
∥∥ dr ≤ Const. · (|t|+ |s|), s ≥ 0. (2.5)

Next, we will prove that for each s ≥ 0 we have

lim
l→+∞

1

l

∫ −l+t

−l+t−s

∥∥f ∗(s)
∥∥ ds = 0. (2.6)
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Let ϵ > 0 be fixed. Then, owing to (1.5), there exist k(ϵ) ∈ N and l1(ϵ) > 0 such
that

1

l

∫ −l+t

−l+t−s

∥∥f ∗(s)
∥∥ ds

≤ 1

l

∫ −l+t

−l+t−s

∥∥∥f(snk
+ s

)
− f ∗(s)

∥∥∥ ds+ 1

l

∫ −l+t

−l+t−s

∥∥∥f(snk
+ s

)∥∥∥ ds
≤ 1

l

∫ l+s+t

−l+t−s

∥∥∥f(snk
+ s

)
− f ∗(s)

∥∥∥ ds+ s

l
∥f∥∞ ≤ ϵ

l + s

l
+

s

l
∥f∥∞, l ≥ l1(ϵ).

This gives (2.6). Define u∗
1(t) :=

∫ t

−∞ Γ(t, s)f ∗(s) ds, t ∈ R. Then u∗
1(·) is well-

defined and locally bounded since the partial integration in combination with
(1.1) and (2.5) implies that∥∥∥∥∥

∫ t

−∞
Γ(t, s)f ∗(s) ds

∥∥∥∥∥ =

∥∥∥∥∥
∫ ∞

0

Γ(t, t+ s)f ∗(t+ s) ds

∥∥∥∥∥
≤

∫ ∞

0

Γ(t, t+ s)
∥∥f ∗(t+ s)

∥∥ ds ≤ M ′
∫ ∞

0

e−ωs
∥∥f ∗(t+ s)

∥∥ ds
≤ M ′

∫ ∞

0

ωe−ωs

∫ s

0

∥∥f ∗(t+ r)
∥∥ dr ds ≤ Const. · (1 + |t|).

Furthermore, by the Fubini theorem and a straightforward calculation, we have

1

2l

∫ l+t

−l+t

∥∥∥∫ x+snk

−∞
Γ(x+ snk

, s)f(s) ds−
∫ x

−∞
Γ(x, s)f ∗(s) ds

∥∥∥ dx
≤ 1

2l

∫ l+t

−l+t

∫ x

−∞

∥∥∥Γ(x+ snk
, s+ snk

)− Γ(x, s)
∥∥∥∥f(s+ snk

)∥ ds dx

+
1

2l

∫ l+t

−l+t

∫ x

−∞

∥∥Γ(x, s)∥∥∥∥f(snk
+ s

)
− f ∗(s)

∥∥ ds dx
≤ ∥f∥∞

2l

∫ l+t

−l+t

∫ x

−∞

∥∥∥Γ(x+ snk
, s+ snk

)− Γ(x, s)
∥∥∥ ds dx

+
1

2l

∫ l+t

−l+t

∫ x

−∞

∥∥Γ(x, s)∥∥∥∥f(snk
+ s

)
− f ∗(s)

∥∥ ds dx
=

∥f∥∞
2l

∫ l+t

−l+t

∫ x

−∞

∥∥∥Γ(x+ snk
, s+ snk

)− Γ(x, s)
∥∥∥ ds dx

+
1

2l

∫ −l+t

−∞

∫ l+t

−l+t

∥∥Γ(x, s)∥∥∥∥f(snk
+ s

)
− f ∗(s)

∥∥ dx ds
+

1

2l

∫ l+t

−l+t

∫ l+t

s

∥∥Γ(x, s)∥∥∥∥f(snk
+ s

)
− f ∗(s)

∥∥ dx ds.
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Keeping in mind (1.1) and (2.2), it suffices to show that

lim
k→∞

lim sup
l→+∞

1

2l

∫ −l+t

−∞

∫ l+t

−l+t

e−ω|x−s|∥∥f(snk
+ s

)
− f ∗(s)

∥∥ dx ds = 0 (2.7)

and

lim
k→∞

lim sup
l→+∞

1

2l

∫ l+t

−l+t

∫ l+t

s

e−ω|x−s|∥∥f(snk
+ s

)
− f ∗(s)

∥∥ dx ds = 0. (2.8)

The proof of (2.8) is almost trivial since (1.5) holds with p = 1 and

1

2l

∫ l+t

−l+t

∫ l+t

s

e−ω|x−s|∥∥f(snk
+ s

)
− f ∗(s)

∥∥ dx ds
≤

[∫ ∞

0

e−ωr dr

][
1

2l

∫ l+t

−l+t

∥∥f(snk
+ s

)
− f ∗(s)

∥∥ ds].
To prove (2.7), we can argue as follows:

1

2l

∫ l+t

−l+t

∫ l+t

s

e−ω|x−s|∥∥f(snk
+ s

)
− f ∗(s)

∥∥ dx ds
≤ Const. · 1

2l

∫ −l+t

−∞
e−ω(−l+t−s)

∥∥f(snk
+ s

)
− f ∗(s)

∥∥ ds
≤ Const. · ∥f∥∞

1

2l

∫ −l+t

−∞
e−ω(−l+t−s) ds

+ Const. · 1

2l

∫ −l+t

−∞
e−ω(−l+t−s)

∥∥f ∗(s)
∥∥ ds

≤ Const. · ∥f∥∞
1

2l

∫ ∞

0

e−ωs ds+ Const. · 1

2l

∫ ∞

0

e−ωs
∥∥f ∗(−l + t− s)

∥∥ ds.
The first addend in the last estimate clearly tends to zero as l → +∞. But, the
situation is similar with the second addend since the reverse Fatou’s lemma and
(2.6) together imply that

0 ≤ lim sup
l→+∞

1

2l

∫ ∞

0

e−ωs
∥∥f ∗(−l + t− s)

∥∥ ds
= Const. · lim sup

l→+∞

1

2l

∫ ∞

0

e−ωs

∫ s

0

∥∥f ∗(−l + t− r)
∥∥ dr ds

= Const. · lim sup
l→+∞

1

2l

∫ ∞

0

e−ωs

∫ −l+t

−l+t−s

∥∥f ∗(r)
∥∥ dr ds

≤ Const. · 1

2l

∫ ∞

0

e−ωs lim sup
l→+∞

∫ −l+t

−l+t−s

∥∥f ∗(r)
∥∥ dr ds = 0,

so that actually

lim
l→+∞

1

2l

∫ ∞

0

e−ωs
∥∥f ∗(−l + t− s)

∥∥ ds = 0.
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Hence, u1 ∈ B1AA(R : X), as claimed; we can similarly prove that u2 ∈ C(R :
X) ∩ B1AA(R : X) (for the proof of continuity of u2(·), it is only worth noting
that the mapping (t, s) 7→ UQ(t, s)Q(s) is strongly continuous for t < s; see [23]).
The proof of the theorem is thereby completed. □

Before proceeding further, we would like to observe that the condition (1.1) has
not been well explored within the existing theory of nonautonomous differential
equations of first order (see [4, Lemma 3.2, Theorem 3.3] for two broad-sense
results in this direction).

We have already proved that any Besicovitch p-vanishing function is Besicovich-
p-almost periodic on [0,∞) (Besicovich-Doss-p-almost periodic on [0,∞)), as well
as that its extension by zero outside the interval [0,∞) is a Besicovitch p-almost
automorphic (see [22] for the notion and precise formulations of these results).
Therefore, in some sense, it is ridiculous to introduce the notion of an asymp-
totically Besicovitch p-almost automorphic function. Concerning the existence
and uniqueness of mild solutions of the abstract Cauchy problem (1.4) belong-
ing to the class of Besicovitch p-almost automorphic functions, we can state the
following result with p = 1 (see also [17, Theorem 4.1]).

Theorem 2.2. Let f ∈ B1AA(R : X) ∩ L∞(R : X), and let (2.1) hold. Suppose

that x ∈ P (0)X. Define u(t) := U(t, 0)x+
∫ t

0
U(t, s)f(s) ds, t ≥ 0. If the mapping

t 7→
∫ t

0
U(t, s)Q(s)f(s) ds, t ≥ 0 is in the class B1AA(R : X), then u(·) is in the

same class, as well.

Proof. Clearly, we have the following decomposition:

u(t) = U(t, 0)x+

∫ t

−∞
Γ(t, s)f(s) ds−

∫ 0

−∞
Γ(t, s)f(s) ds+

∫ t

0

U(t, s)Q(s)f(s) ds,

for any t ≥ 0. Since x ∈ P (0)X, the function U(·, 0)x is exponentially decaying
due to (1.1). Keeping in mind the prescribed assumption that the mapping

t 7→
∫ t

0
U(t, s)Q(s)f(s) ds, t ≥ 0 is in the class B1AA(R : X), as well as Theorem

2.1, it suffices to show that
∫ 0

−∞ Γ(t, s)f(s) ds → 0 as t → +∞. But, this simply
follows from the next estimates (t ≥ 0),∥∥∥∥∥

∫ 0

−∞
Γ(t, s)f(s) ds

∥∥∥∥∥ ≤ M ′∥f∥∞
∫ 0

−∞
e−ω|t−s| ds ≤ M ′∥f∥∞e−ωt

∫ 0

−∞
eωs ds.

□

Remark 2.3. If x ∈ P (0)X ∩ D(A(0)), then the mapping t 7→ U(t, 0)x, t ≥
0 is continuous (see e.g. [23]). Since the mapping t 7→

∫ t

−∞ Γ(t, s)f(s) ds −∫ 0

−∞ Γ(t, s)f(s) ds, t ≥ 0 is bounded and continuous, by the proof of Theorem

2.1, we have that the assumption that the mapping t 7→
∫ t

0
U(t, s)Q(s)f(s) ds,

t ≥ 0 is in the class B1AA(R : X)∩C(R : X) (B1AA(R : X)∩Cb(R : X)), which
implies that u(·) is in the same class. It is clear that the above condition holds if
the evolution system U(·, ·) is exponentially stable.
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In the following theorem, we examine the weighted Besicovitch p-pseudo almost
automorphic solutions of abstract Cauchy problem (1.3); see also [20, Proposition
4.2] for a similar result in this direction.

Theorem 2.4. Suppose that g ∈ B1AA(R : X) ∩ L∞(R : X), as well as q ∈
B1WPAA0(R, X, ρ1, ρ2) ∩ L∞(R : X). Set f(t) := g(t) + q(t), t ∈ R. Then the
function u(·), defined by (1.2), is a unique mild solution of the abstract Cauchy
problem (1.3). Suppose that

lim
T→+∞

∫ T

−T
ρ2(t) dt∫ T

−T
ρ1(t) dt

= 0, (2.9)

and (2.1) holds. Then we have u ∈ B1WPAA(R, X, ρ1, ρ2) ∩ Cb(R : X).

Proof. By Theorem 2.1 and its proof, it suffices to show that the mapping t 7→
uq(t) :=

∫∞
−∞ Γ(t, s)q(s) ds, t ∈ R belongs to the class B1WPAA0(R, X, ρ1, ρ2). It

is clear that uq(t) = uq1(t) + uq2(t), t ∈ R, where uq1(t) :=
∫ t

−∞ Γ(t, s)q(s) ds and

uq2(t) :=
∫∞
t

Γ(t, s)q(s) ds (t ∈ R). We have

1

2
∫ T

−T
ρ1(t) dt

∫ T

−T

[
lim sup
l→+∞

1

2l

∫ t+l

t−l

∥uq1(s)∥ ds

]
ρ2(t) dt

=
1

2
∫ T

−T
ρ1(t) dt

∫ T

−T

[
lim sup
l→+∞

1

2l

∫ t+l

t−l

∥∥∥∥∥
∫ ∞

0

Γ(s, s− v)q(s− v) dv

∥∥∥∥∥ ds
]
ρ2(t) dt

≤ 1

2
∫ T

−T
ρ1(t) dt

∫ T

−T

[
lim sup
l→+∞

1

2l

∫ t+l

t−l

∫ ∞

0

∥∥Γ(s, s− v)
∥∥∥∥q(s− v)

∥∥ dv ds]ρ2(t) dt
≤ 1

2
∫ T

−T
ρ1(t) dt

∫ T

−T

[
lim sup
l→+∞

1

2l

∫ ∞

0

∫ t+l

t−l

∥∥Γ(s, s− v)
∥∥∥∥q(s− v)

∥∥ ds dv]ρ2(t) dt
≤ M ′

2
∫ T

−T
ρ1(t) dt

∫ T

−T

[
lim sup
l→+∞

1

2l

∫ ∞

0

e−ωv

∫ t+l−v

t−l−v

∥q(r)∥ dr dv

]
ρ2(t) dt

≤ M ′∥q∥∞
2ω

∫ T

−T
ρ1(t) dt

∫ T

−T

ρ2(t) dt, T > 0.

Therefore, (2.9) yields that uq1 ∈ B1WPAA0(R, X, ρ1, ρ2).We can similarly prove
that uq2 ∈ B1WPAA0(R, X, ρ1, ρ2), finishing the proof of theorem. □

Concerning the abstract Cauchy problem (1.4), we have the following result
(see also [17, Proposition 4.5]).

Theorem 2.5. Suppose that g ∈ B1AA(R : X) ∩ L∞(R : X), as well as
q ∈ B1WPAA0([0,∞), X, ρ1, ρ2), x ∈ P (0)X, (2.1), and the following conditions
hold:

(i) The mapping t 7→
∫ t

0
U(t, s)Q(s)f(s) ds, t ≥ 0 is in the class B1AA(R :

X) +B1WPAA0([0,∞), X, ρ1, ρ2).
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(ii) There exist finite numbers M ′′ > 0 and γ > 1 such that

∥U(t, s)Q(s)∥ ≤ M ′′

1 + (t− s)γ
for t ≥ s ≥ 0.

(iii) There exists a non-negative measurable function g : [0,∞) → [0,∞) such
that ρ2(t) ≤ g(s)ρ2(t− s) for 0 ≤ s ≤ t < ∞, and∫ ∞

0

g(s)

1 + sγ
ds < ∞.

Define u(t) := U(t, 0)x+
∫ t

0
U(t, s)[g(s) + q(s)] ds, t ≥ 0. Then u(·) is essentially

bounded and belongs to the class B1AA(R : X) +B1WPAA0([0,∞), X, ρ1, ρ2).

Proof. The mapping t 7→ U(t, 0)x, t ≥ 0 is bounded since U(·, ·) is bounded. This
is also clear for the mapping t 7→

∫ t

0
U(t, s)[g(s) + q(s)] ds, t ≥ 0 since, due to

(1.1) and (iii),∥∥∥∥∥
∫ t

0

U(t, s)[g(s) + q(s)] ds

∥∥∥∥∥
≤

∫ t

0

∥Γ(t, s)∥∥g(s) + q(s)∥ ds+
∫ t

0

∥U(t, s)Q(s)∥∥g(s) + q(s)∥ ds

≤
(
∥g∥∞ + ∥q∥∞

) ∫ t

0

[
∥Γ(t, s)∥+ ∥U(t, s)Q(s)∥

]
ds

≤
(
∥g∥∞ + ∥q∥∞

) ∫ t

0

[
M ′e−ω(t−s) +

M ′′

1 + (t− s)γ

]
ds

≤ Const. ·
(
∥g∥∞ + ∥q∥∞

)
, t ≥ 0.

Summa summarum, u(·) is essentially bounded. As in the proof of [17, Theorem
4.1], we have the following decomposition:

u(t) = U(t, 0)x+

∫ t

−∞
Γ(t, s)g(s) ds−

∫ 0

−∞
Γ(t, s)g(s) ds+

∫ t

0

Γ(t, s)q(s) ds

+

∫ t

0

U(t, s)Q(s)g(s) ds+

∫ t

0

U(t, s)Q(s)q(s) ds, t ≥ 0.

Since x ∈ P (0)X, the function U(·, 0)x is exponentially decaying due to (1.1).
Keeping in mind (i) and the proof of Theorem 2.1, it suffices to show that the

mappings t 7→
∫ t

0
Γ(t, s)q(s) ds, t ≥ 0, and t 7→

∫ t

0
U(t, s)Q(s)q(s) ds, t ≥ 0,

belong to the class B1WPAA0([0,∞), X, ρ1, ρ2). We will prove this only for the

second mapping. By the foregoing, t 7→
∫ t

0
U(t, s)Q(s)q(s) ds, t ≥ 0, is a bounded
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continuous mapping. Furthermore, we have

1∫ T

0
ρ1(t) dt

∫ T

0

∥∥∥∥∥
∫ t

0

U(t, s)Q(s)q(s) ds

∥∥∥∥∥ρ2(t) dt
≤ 1∫ T

0
ρ1(t) dt

∫ T

0

[∫ t

0

∥U(t, t− s)Q(t− s)∥∥q(t− s)∥ ds

]
ρ2(t) dt

=
1∫ T

0
ρ1(t) dt

∫ T

0

∫ T

s

∥U(t, t− s)Q(t− s)∥∥q(t− s)∥ρ2(t) dt ds

≤ 1∫ T

0
ρ1(t) dt

∫ T

0

g(s)

1 + sγ

[∫ T

s

∥q(t− s)∥ρ2(t− s) dt

]
ds

=
1∫ T

0
ρ1(t) dt

∫ T

0

g(s)

1 + sγ

[∫ T−s

0

∥q(r)∥ρ2(r) dr

]
ds

≤

[∫ ∞

0

g(s)

1 + sγ
ds

]
·

[
1∫ T

0
ρ1(t) dt

∫ T

0

∥q(r)∥ρ2(r) dr

]
, T > 0.

Since (iii) holds and q ∈ B1WPAA0([0,∞), X, ρ1, ρ2), we have that the mapping

t 7→
∫ t

0
U(t, s)Q(s)q(s) ds, t ≥ 0, is in the same class, as claimed. The proof of

the theorem is thereby completed. □
Remark 2.6. As in Remark 2.3, the continuity of mapping u(·) is ensured by

the continuity of mapping t 7→
∫ t

0
U(t, s)Q(s)f(s) ds, t ≥ 0 and the validity of

condition x ∈ P (0)X ∩D(A(0)).

Remark 2.7. All established results continue to hold in the case that the operator
family (A(t))t∈R generates an exponentially stable evolution family (U(t, s))t≥s

in the sense of [9, Definition 3.1] (therefore, the condition (H1) need not be
necessarily satisfied and (H2) holds with P (t) = I and Q(t) = 0, t ∈ R; Γ(t, s) ≡
U(t, s)). The only thing worth noting here is that, with the notation already
employed, the condition (iii) from the formulation of Theorem 2.5 can be slightly
weakened by assuming that

∫∞
0

e−ωsg(s) ds < ∞, which follows from the fact that
we can estimate the term ∥U(t, t − s)∥ in the proof of this theorem by M ′e−ωs

(t ≥ s ≥ 0).

3. An application

In a series of his research papers, Diagana has examined the existence and
uniqueness of almost periodic and almost automorphic type solutions of nonau-
tonomous differential equations of first order (see e.g. [7] and references cited
therein). In the following example, we continue the analysis carried out in [9,
Section 4], which nicely fit into consideration of Besicovitch almost automorphic
solutions.

Example 3.1. Assume that X := L2[0, π] and that ∆ denotes the Dirichlet
Laplacian in X, acting with the domain H2[0, π] ∩H1

0 [0, π]. Then ∆ generates a
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strongly continuous semigroup (T (t))t≥0 on X, satisfying the estimate ∥T (t)∥ ≤
e−t, t ≥ 0. Consider the following problem

ut(t, x) = uxx(t, x) + q(t, x)u(t, x) + f(t, x), t ≥ 0, x ∈ [0, π]; (3.1)

u(0) = u(π) = 0, u(0, x) = u0(x) ∈ X, (3.2)

where q : R× [0, π] → R is a jointly continuous function satisfying that q(t, x) ≤
−γ0, (t, x) ∈ R× [0, π], for some number γ0 > 0. Define

A(t)φ := ∆φ+ q(t, ·)φ, φ ∈ D(A(t)) := D(∆) = H2[0, π] ∩H1
0 [0, π], t ∈ R.

Then (A(t))t∈R generates an exponentially stable evolution family (U(t, s))t≥s in
the sense of [9, Definition 3.1], which is given by

U(t, s)φ := T (t− s)e
∫ t
s q(r,·) drφ, t ≥ s.

It is clear that we can rewrite the initial value problem (3.1)–(3.2) in the following
form:

u′(t) = A(t)u(t) + f(t), t ≥ 0; u(0) = u0.

Hence, Theorems 2.2 and 2.5 are susceptible to applications provided that the
following condition holds:

lim
l→+∞

1

2l

∫ l

−l

∫ v

−∞
sup

x∈[0,π]

∣∣∣e∫ v+α
s+α q(r,x) dr − e

∫ v
s q(r,x) dr

∣∣∣ ds dv = 0 (α ∈ R); (3.3)

see (2.1). The condition (3.3) holds for a substantially large class of functions
q(·, ·), and we will prove here, for the sake of completeness, that this condition
particularly holds for the function q(t, x) = −γ0 − 3t2 − f(x), t ∈ R, x ∈ [0, π],
where f : R → [0,∞) is a continuous function. Let α ∈ R be fixed. In our
concrete situation, we have the following estimate of the integrand:

sup
x∈[0,π]

∣∣∣e∫ v+α
s+α q(r,x) dr − e

∫ v
s q(r,x) dr

∣∣∣ ≤ Const. ·
[
es

3−v3 + es
3−v3+3|α|(v−s)2

]
.

Using substitution x = v − s, the only thing we need to prove is that

lim
l→+∞

1

2l

∫ l

−l

∫ ∞

0

e3x
2v−3xv2−x3+3|α|x2

dx dv = 0.

For v ∈ [−l, 0], we have e3x
2v−3xv2−x3+3|α|x2 ≤ e−3xv2−x3+3|α|x2

, so that the Fubini
theorem yields that∫ 0

−l

∫ ∞

0

e3x
2v−3xv2−x3+3|α|x2

dx dv

≤
∫ 0

−l

∫ ∞

0

e−3xv2−x3+3|α|x2

dx dv

≤
∫ ∞

0

e−x3+3|α|x2

[∫ 0

−∞
e−3xv2 dv

]
dx

=

[∫ ∞

0

1√
3x

e−x3+3|α|x2

dx

][∫ ∞

0

e−y2 dy

]
, l > 0.
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Since the integrand is always bounded by the proof of Theorem 2.1, the above
computation shows that we only need to prove yet that

lim
l→+∞

1

2l

∫ l

1

∫ ∞

0

e3x
2v−3xv2−x3+3|α|x2

dx dv = 0.

For x ∈ [0, 1], we have e3x
2v−3xv2−x3+3|α|x2 ≤ Const. · e3xv(1−v), so that∫ l

1

∫ 1

0

e3x
2v−3xv2−x3+3|α|x2

dx dv

≤ Const. ·
∫ l

1

∫ 1

0

e3xv(1−v)dv

= Const.

∫ 1

0

∫ l−1

0

e−3xy(1+y) dy dx

≤ Const.

∫ 1

0

∫ ∞

0

e−3xy2 dy dx

=

[∫ 1

0

dx√
3x

][∫ ∞

0

e−y2 dy

]
(l ≥ 1),

so that we need to prove that

lim
l→+∞

1

2l

∫ l

1

∫ ∞

1

e3x
2v−3xv2−x3+3|α|x2

dx dv = 0. (3.4)

Let ϵ ∈ (0, 1) be given. For a given v ≥ 1, the function F (x) := 3x2v−3xv2−(1−
ϵ)x3, x ≥ 1, attains its local minimum (resp., maximum) at the point x = v 1−

√
ϵ

1−ϵ

(resp., x = v 1+
√
ϵ

1−ϵ
). We have∫ l

1

∫ ∞

1

e3x
2v−3xv2−x3+3|α|x2

dx dv

=

∫ l

1

∫ v 1−
√

ϵ
1−ϵ

1

e3x
2v−3xv2−x3+3|α|x2

dx dv +

∫ l

1

∫ ∞

v 1−
√

ϵ
1−ϵ

e3x
2v−3xv2−x3+3|α|x2

dx dv

≤

[∫ ∞

1

e−3v2
(

1−
√

ϵ
1−ϵ

−1
)
dv

][∫ ∞

0

e−x3+3|α|x2

dx

]

+

[∫ ∞

1

e−cϵv3 dv

][∫ ∞

0

e−ϵx3+3|α|x2

dx

]
,

where limϵ→0+ cϵ = 1. Hence, the mapping

l 7→
∫ l

1

∫ ∞

1

e3x
2v−3xv2−x3+3|α|x2

dx dv, l ≥ 1,

is bounded, finishing the proof of (3.4).

Acknowledgments. The author is partially supported by grant 174024 of
Ministry of Science and Technological Development, Republic of Serbia.



BESICOVITCH ALMOST AUTOMORPHIC SOLUTIONS 505

References

1. P. Acquistapace and B. Terreni, A uniffied approach to abstract linear nonautonomous
parabolic equations, Rend. Sem. Mat. Univ. Padova 78 (1987), 47–107.

2. F. Bedouhene, N. Challali, O. Mellah, P. Raynaud de Fitte, and M. Smaali, Almost auto-
morphy and various extensions for stochastic processes, J. Math. Anal. Appl. 429 (2015),
no. 2, 1113–1152.

3. A. S. Besicovitch, Almost periodic functions, Dover Publications Inc., New York, 1954.
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