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ABSTRACT. In this work, generalizations of some inequalities for continuous
h-synchronous (h-asynchronous) functions of selfadjoint linear operators in
Hilbert spaces are proved.

1. INTRODUCTION

Let B(H) be the Banach algebra of all bounded linear operators defined on
a complex Hilbert space (H;(-,-)) with the identity operator 1y in B(H). Let
A € B(H) be a selfadjoint linear operator on (H; (-,-)). Let C (sp (A)) be the set
of all continuous functions defined on the spectrum of A (sp (A)) and let C* (A)
be the C*-algebra generated by A and the identity operator 1.

Let us define the map G : C'(sp(A)) — C* (A) with the following properties

([], p-3):
(1) G(af + Bg) = aG (f) + BG (g), for all scalars «, S.
(2) G(f9)=G(f)G(9) and G (f) = G (f)"; where f denotes to the conjugate
of fand G (f)* denotes to the Hermitian of G (f).
B) I (NI =1f= sup [f ().

tesp(A)

(4) G(fo) = 1y and G(f1) = A, where fo(t) = 1 and f, () = t for all
t €sp(A).

Copyright 2018 by the Tusi Mathematical Research Group.

Date: Received: Aug. 21, 2017; Accepted: Dec. 16, 2017.

2010 Mathematics Subject Classification. Primary 47A63; Secondary 47A99.

Key words and phrases. Hilbert space, selfadjoint operators, h-synchronization.
459



460 M.W. ALOMARI

Accordingly, we define the continuous functional calculus for a selfadjoint operator

A by

f(A) =G (f)forall feC(sp(A)).

If both f and g are real valued functions on sp(A) then the following important
property holds:

f(t)>g(t) for all t € sp(A) implies f(A) > g (A), (1.1)

in the operator order of B(H).
In [2], Dragomir studied the Cebysev functional

C(f,g;A, ZL’) = <f (A)g(A) ZL’,J}> - <g (A) x,x> <f (A) ZE,(L‘>, (12)

for any selfadjoint operator A € B(H) and = € H with ||z| = 1.

To study the positivity of (1.2), Dragomir [2] introduced the following two
results concerning continuous synchronous (asynchronous) functions of selfadjoint
linear operators in Hilbert spaces.

Theorem 1.1. Let A be a selfadjoint operator with sp (A) C [v,T'] for some real
numbers v, T with v < T'. If f,g : [7,T] = R are continuous and synchronous
(asynchronous) on [y,T], then

(f(A)gA)z,z) > (<) (g (A)z,2) ([ (A) z,2)
for any x € H with ||z|| = 1.
Theorem 1.2. Let A be a selfadjoint operator with sp (A) C [y,T'] for some real
numbers v, I with v < T'.
(1) If f,g:[7,T] = R are continuous and synchronous on [y,T], then

(F(A)g(A)z,x) = (f(A)z,2)- (g (A)z,2)
[(f (A) 2, z) — f ((Az, 2))]
x g ({(Az, x)) = (g (A) z, )]

)
>

for any x € H with ||z|| = 1.
(2) If f,g:[v,T] = R are continuous and asynchronous on [y,T], then
(f(A)z,z)-(g(A)z,z) = (f(A) g (A) z,7)
> [(f (A)z,2) —  ((Az, z))]
x [{g(A)z,2) — g ((Az, 2))]
for any x € H with ||z|| = 1.

For more related results, we refer the reader to [3], [5] and [0].

Let a,b € R, a < b. Let f,g,h : [a,b] — R be three integrable functions, the
Pompeiu-Cebysev functional was introduced in [1] such as:

Pulro)= [ wa [ fog@a- [ Fonod [ nog@a. 13
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If we consider h (z) = 1, then

b b
B (fg)=(b—a / ft >dt—/ f(t)dt/g(t)dtzw—afﬂf,g),

which is the celebrated Cebysev functional.

The corresponding version of Pompeiu-Cebysev functional ( 1.3) for continuous
functions of selfadjoint linear operators in Hilbert spaces can be formulated such
as:

P(f.g.hs A, x) = (h* (A) 2, 2) (f (A) g (A) 2, 2)
—(h(A)g(A)z,z) (h(A) f(A)z,z) (1.4)
for x € H with ||z|| = 1. This naturally, generalizes the Cebysev functional (1.2).
In this work, we introduce the h-synchronous (h-asynchronous) where h :
[v,I'] — R4 is a nonnegative function defined on [y,I'] for some real num-
bers 7 < I'.  Accordingly, some inequalities for continuous h-synchronous (h-
asynchronous) functions of selfadjoint linear operators in Hilbert spaces of the

Pompeiu-Cebysev functional (1.4) are proved. The proof Techniques are similar
to that ones used in [3].

2. MAIN RESULTS

In [1], the author of this paper generalized the concept of monotonicity as
follows:

Definition 2.1. A real valued function f defined on [a, b] is said to be increasing
(decreasing) with respect to a positive function h : [a,b] — R, or simply h-
increasing (h-decreasing) if and only if

hz) f(t) =h(t) f(x) = ()0,

whenever t > x for every z,t € [a,b]. In special case if h(z) = 1 we refer to the
original monotonicity. Accordingly, for 0 < a < b we say that f is ¢"-increasing
(t"-decreasing) for r € R if and only if

r<t=a"f(t)—t"f(z) 2(<)0
for every x,t € [a, b].

Example 2.2. Let 0 < a < b and define f : [a,b] — R given by
(1) f(s) = 1, then f is t"-decreasing for all 7 > 0 and ¢"-increasing for all

r < 0.

(2) f(s) = s, then f is t"-decreasing for all » > 1 and t"-increasing for all
r <1

(3) f(s) = s, then f is t"-decreasing for all r > —1 and ¢"-increasing for all
r<-—1

Lemma 2.3. Every h-increasing function is increasing. The converse need not
be true.
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Proof. 1If h = 0 nothing to prove. For h # 0, if f is h-increasing on [a, b], then
P <t = 0<h(@) f ()~ h(t) (@) <h(O)(F(E) — (@) = f(2) < (1),
which means that f increases on [a, b]. O

There exists h-increasing (h-decreasing) function which is not increasing (de-
creasing). For example, consider the function f : (0,1) — R, given by f(s) =
s(1 —s), 0 < s < 1. Clearly, f(s) is increasing on (0,1/2) and decreasing on
(1/2,1). While if 1 > ¢ > 2 > 0, then

xt(l —t) —te(l —x) =xt(z —t) <0,
i.e., f is t-decreasing on (0,1). As a special case of Lemma 2.3, for a,b € R,
0 < a < b and a positive function h : [a,b] — Ry, if f : [a,b] — R is t"-increasing
for r > 0 (t"-decreasing for r < 0), then f is increasing (decreasing) on |a, b].
The concept of synchronization has a wide range of usage in several areas of

mathematics. Simply, two functions f,g : [a,b] — R are called synchronous
(asynchronous) if and only if the inequality

(f @) = f (@) (g(t) —g(x)) = ()0,
holds for all z,t € [a, b].
Next, we define the concept of h-synchronous (h-asynchronous) functions.

Definition 2.4. The real valued functions f, g : [a,b] — R are called synchronous
(asynchronous) with respect to a non-negative function A : [a,b] — R or simply
h-synchronous (h-asynchronous) if and only if

(h(y) f () =h(x) f () (h(y)g(x) =h(x)g(y) = (<) 0
for all z,y € [a, b].
In other words if both f and g are either h-increasing or h-decreasing then

(h(y) f(z) = h(x) f(y) (h(y)g(x) —h(z)g(y)) > 0.

While, if one of the function is h-increasing and the other is h-decreasing then

(h(y) f(z) = h(x) f(y) (h(y)g(x) —h(z)g(y)) <O0.

In special case if h(xz) = 1 we refer to the original synchronization. Accordingly,
for 0 < a < b we say that f and g are ¢"-synchronous (¢"-asynchronous) for r € R
if and only if

(@"f(t) =" f () (2"g (t) = t7g (z)) = (<) O
for every z,t € [a,b].
Remark 2.5. In Definition (2.4), if f = g then f and g are always h-synchronous

regardless of h-monotonicity of f (or g). In other words, a function f is always
h-synchronous with itself.

Example 2.6. Let 0 < a < b and define f, g : [a,b] — R given by
(1) f(s) =1=g(s), then f and g are t"-synchronous for all r € R.
(2) f(s) =1and g(s) = s, then f is t"-synchronous for all r € (—o0, 0)U(1, 00)
and t"-asynchronous for all 0 < r < 1.
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f(s) =1 and g(s) = s~!, then f is t"-synchronous for all r € (—oo0, —1) U
(0,00) and t"-asynchronous for all —1 < r < 0.
f(
(1,

(3)
(4)

s) = s and g(s) = s71, then f is t"-synchronous for all r € (—oo, —1) U
o0) and t"-asynchronous for all —1 < r < 1.

Let us start with the following result regarding the positivity of P (f, g, h; A, x).

Theorem 2.7. Let A be a selfadjoint operator with sp (A) C [y,T'] for some real
numbers v, ' with v < T'. Let h : [y,I'] = R, be a non-negative and continuous
function. If f,g: [v,T] = R are continuous and both f and g are h-synchronous
(h-asynchronous) on [y,T], then

(0 (A)z,2) (f (A) g (A) z,2) > () (h(A) g (A) 2, 2) (h (A) f(A)z,2)  (2.1)
for any x € H with ||z| = 1.
Proof. Since f and g are h-synchronous then
(h(s) f (&) =h(t)f(s))(h(s)g(t)—h(t)g(s)) >0,

and this is allow us to write

W (s) f () g (&) +h*(8) f(s) g (s) = h(s)h(t) () g(s)+h(s)h(t)g(t) f ((;)2)

for all t,s € [a,b]. We fix s € [a,b] and apply property (1.1) for inequality (2.2),
then we have for each z € H with [|z|| = 1, that

(W2 (s) £ (A) g (A) + W2 (A) £ (5) g (5)) z, )
> ((h(A) f(A) R (s)g(s)+h(A) g(A) h(s) f(s)) x,z),

and this equivalent to write

12 (s) (f (A) g (A) z,2) + [ (s) g (5) (h* (A) @, )
> h(s)g(s) (h(A) f(A)z,2) +h(s) f(s) (h(A)g(A)z,z). (23)

Applying property (1.1) again for inequality (2.3), then we have for each y € H
with [|y|| = 1, that

((P* (A)(f (A) g (A) z,2) + f (A) g (A) (* (A) =, 2)) 5,y
> ((h(A) g (A) (h(A) f(A)z,z) + h(A) f(A) (h(

which gives

(h* (A)y,y) (f (A) g (A) 2, 2) + (B* (A) z,2) (f (A) g (A) y,)
> (h(A) g (A)y,y) (W (A) f(A)z,2) + (h(A) g (A) z,2) (W (A) f(A)y,y) (24)
for each x,y € H with [|z|| = ||ly|| = 1, which gives more than we need, so that

by setting y = x in (2.4) we get the ‘>’ case in (2.1). The revers case follows
trivially, and this completes the proof. O

)
A) g (A)z,2))y,y),
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Corollary 2.8. Let A be a selfadjoint operator with sp (A) C [v,T] for some real
numbers v, T with v < T. Let h : [y,T] = R, be a non-negative and continuous
function. If f: [v,I'] = R is continuous and h-synchronous on [y,I'], then

(h(A) F(A) 2 < (B2 (A)z, ) (f2 (A) . ) (2.5)
for each x € H with ||z|| = 1.
Proof. Setting f = g in (2.1) we get the desired result. O

Remark 2.9. It is easy to check that the function f(s) = s'/2 is t~'/2-synchronous
for all s, > 0. Applying (2.5) the for 0 < v < I' we get that

1< (A'z,z) (Az, z) .
Also, since v -1y < A <T'-1p, then the Kanotrovich inequality reads

_ + 1)
AL A < L
combining the above two inequalities we get

(y+T)°

1 < (A2, 2) (Az,z) < T

Corollary 2.10. Let A be a selfadjoint operator with sp (A) C [v,T] for some
real numbers v, T with 0 < v < T. If f,g : [v,T] — R are continuous and
t-synchronous (t-asynchronous) on [y,T], then

(A%,2) (F (A) g (A)2,2) = (<) (Ag (A) 2.2) (Af (A) )
for each v € H with ||z|| = 1.
Proof. Setting h(t) =t in (2.1) we get the desired result. O
Before we state our next remark, we interested to give the following example.

Example 2.11. (1) If f(s) = s and g(s) = s? (s > 0), then f and g are t'-
synchronous for all p, ¢ > r > 0 and t"-asynchronous for all p > r > ¢ > 0.
(2) If f(s) = s and g(s) = log(s) (s > 1), then f is t"-synchronous for all
p < r < 0 and t"-asynchronous for all » < p < 0.
(3) If f(s) =exp(s) = g(s), then f is t"-synchronous for all for all r € R.

Remark 2.12. From the proof of the above theorem we observe, that, if A and
B are selfadjoint operators such that sp (4),sp (B) € [7,I']; and h: [y,T] — Ry
is non-negative continuous, then for any continuous functions f,g : [y,['] — R
which are both h-synchronous (h-asynchronous)

(h* (B)y,y) (f (A) g (A) z,z) + (h* (A) z,z) (f (B) g (B) y,y)
> (Z)(h(B)g(B)y,y) (h(A) f(A)z,x)
+ (h(A) g (A)z,z) (h(B) f(B)y,y) (2.6)

for each z,y € H with ||z|| = |ly|| = 1. Using Example 2.11 we can observe the
following special cases:
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(1) If f(s) =s? and g(s) = s? (s > 0), then f and g are t"-synchronous for
all p,q > r > 0, so that we have
(B*y,y) (A" 9z, 0) + (A% x, x) (B iy, y)
> <Bq+ry, y> <Ap+rx, x> + <Aq+ra7, x> <Bp+’"y, y> )

Ifp>r>q>0,then f and g are t"-asynchronous and thus the reverse
inequality holds.

(2) If f(s) = s? and g (s) = logs (s > 1), then f and g are t"-synchronous
for all p < r < 0 we have
(B*y,y) (A log (A) 2, 2) + (A¥z,x) (B" log (B) y,y)
> (B"log (B)y,y) (A"""z,2) + (Alog (A) x,z) (B"""y,y) .

If r <p <0, then f and g are t"-asynchronous and thus the reverse in-
equality holds.

(3) If f(s) =exp(s) =g(s), then f and g are t"-synchronous for all r € R,
so that we have

(B>y,y) (exp (24) z,z) + (A* z,x) (exp (2B) y, y)
> 2(A"exp (A) z, x) (B"exp (B)y,y) .

Therefore, by choosing an appropriate function A such that the assumptions in
Remark 2.12 are fulfilled then one may generate family of inequalities from (2.6).

Corollary 2.13. Let A be a selfadjoint operator with sp (A) C [v,T] for some
real numbers v,I" with 0 < v < I'. If f : [v,I] — R is continuous and f is
t-synchronous on [y, T, then

(Az,2) (f (A) z,z) > (Az,z) (Af (A) 2, x)

for each x € H with ||z|| = 1. In particular, if f(s) = s? (p > 1) for all s € [y,17],
then

(Az,2) (AP, z) > (Az,z) (AP 'z o) .
Proof. Setting f = g in Corollary 2.10 we get the desired result. OJ

Corollary 2.14. Let A be a selfadjoint operator with sp (A) C [v,T] for some
real numbers v, T with v < T'. Let h : [7,T] = R be a non-negative continuous.
If f: [v,T] = R is continuous and h-synchronous, then

(h* (A)z,z) (f (A)z,2) > (h(A)z,2) (h (A) f (A) 2, 2) (2.7)

for each x € H with ||x|| = 1. In particular, if f(s) = sP is h-synchronous for all
s € [v,1, then we have

(h? (A)z,z) (APz,z) > (h(A)z,z) (h(A) APz, z) .
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Remark 2.15. Setting f(s) = s7!, Vs € [y,I] in (2.7) (in this case we assume
0 <y <7T) then for each z € H with ||z|| = 1, we have
(h* (A)z,z) > (h(A) A7 'z, 2) (Ah (A) z, ),
provided that s~ is h-synchronous on [y, I'].

Theorem 2.16. Let A be a selfadjoint operator with sp (A) C [v,T] for some
real numbers v, T with v < T. Let h : [7,T] = R be a non-negative continuous.
If f,g : [v,T] — R are continuous and both f and g are h-synchronous (h-
asynchronous) on [y,1], then

1 ((Az,2)) (f (A) g (A) 2, 2) — (h(A)f(A) > (h(A)g(A)w,x)
> (<) [h ({Az, 2)) (b (A) £ (4) 2,2) — (B (A) 2, ) | ((Az,2))] - g ((Az,2))
+[h ((Az, 2)) | ({Ax, CU>) (h(A) ( ) o)l - (h(A) g (A)z,z) (2.8)
for any x € H with ||z| = 1.

Proof. Since f,g are synchronous and 7 < (Az,z) < I for any x € H with
|z|| = 1, we have

(h ((Az,z)) f (t) = h(t) f ((Az, z)))
X (h((Az,2)) g (t) = h(t) g ((Az,x))) =0 (2.9)
for any t € [a,b] for any x € H with ||z|| = 1.
Employing property (1.1) for inequality (2.9) we have
((h({Az,x)) f (B) = h(B) f ((Az, z))]
x [h({(Az,z)) g (B) — h(B) g ((Az,z))]y,y) 2 0 (2.10)

g
for any bounded linear operator B with sp (B) C [y,['] and y € H with ||y|| = 1.
Now, since

([hn((Az,z)) f (B) — h(B) f ({(Az, z))]
x [h((Az,z)) g (B) — h(B) g ({(Az, z))]y,y)
= h* ((Az,2)) (f (B) g (B) y,y) — h ({(Az,z)) f ((Az,2)) (b (B) g (B) y,)
— h((Az,x)) g ((Az, z)) (h (B) f (B) y, y)
+(h*(B)y,y) [ ((Az,z)) g ((Az,z))
then from (2.10) we get

h? ((Az, ) (f (B) g (B)y,y) + (h* (B) y,y) f ((Az,x)) g ((Az, z))
> h((Az, z)) f ((Az, x)) (h (B) g (B)y,y)
+ h((Az,2)) g ((Az, z)) (b (B) f (B)y,y) ,
and this is equivalent to write
B ((Ax,2)) {f (B) g (B) y,y) — (h (A) f (A),2) - (I (A) g (A) 2, ) (2.11)
> g ((Az,z)) [h ((Az,2)) (W (B) f (B) y,y) — (* (B) y,y) f ({(Az,2))]
+ h((Az, ) f ((Az,2)) (h(B) g (B)y,y) — (h(A) f (A) z,z) - (h(A) g (A) z, 7)
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for each z,y € H with ||z|| = |ly|| = 1. Setting B = A and y = x in (2.11) we get
the required result in (2.8). The reverse sense follows similarly. 0

Remark 2.17. Let 0 < v < ' and choose f(s) = s and g(s) = s7%, s > 0 in
Theorem 2.16. So that, if f and g are h-synchronous (h-asynchronous) on [y, I'],
then

h ((Az,z)) — (Ah (A) z,z) - (A" h (A) 2, z)
> (<) [h({(Az, z)) (Ah (A) z,2) — (h* (A) z,2) (Az,z)] - (Az, )"
+ [h ((Az, ) (Az,z) — (Ah (A)z,2)] - (A" h (A) 2, z)

for any x € H with ||z|| = 1. In special case, if h(t) =1 for all ¢ € [y,I'], then s
and s~! are asynchronous so that we have

1 < (Az,z) (A 'z, z)

Corollary 2.18. Let A be a selfadjoint operator with sp (A) C [v,T] for some
real numbers v, T with v < T. Let h : [7,T] = R be a non-negative continuous.
If f: [v,T] = R is continuous and h-synchronous on [y,1'], then

h* ((Az, ) (f* (A) z,2) — (h(A) f(A) 2, $>2
> [h((Az,z)) (h(A) f (A) z,z) — (W* (A)z,z) [ ((Az,2))] - f ((Az, z))
+ [h((Az, 2)) f ((Az, 2)) = (h(A) f(A)z,2)] - (h(A) f (A) 2, 7) (2.12)
for any x € H with ||z|| = 1.

Proof. Setting f = g in (2.8), respectively, we get the required results. O
Corollary 2.19. Let A be a selfadjoint operator with sp (A) C [y, ] for some real
numbers v, T with 0 <~ <T. If f : [7,T] = R are continuous and t-synchronous
on [v,T], then
(Az,2)* (f* (A) z,z) - f( > z)*
> [(Az,2) (Af (A) 2, 2) — (A%x,z) f ((Aw,2))] - f ((Az, )

[<A$,3?>f((Axa$>) —{Af(A)z,2)] - (Af (A) 2, 2)
for any x € H with ||z|| = 1.

Proof. Setting h(t) =t in (2.12), respectively, we get the required results. O

Theorem 2.20. Let A be a selfadjoint operator with sp (A) C [v,T] for some
real numbers v, T with v < T'. Let h : [,T] = R be a non-negative continuous.
If f,g : [v,T] — R are continuous and both [ and g are h-synchronous (h-
asynchronous) on [y,T], then

W ((Az,z)) f ({(A7 'z, 2)) g ((A7 'z, 2)) + B° ((A7 M2, @) f ((Az, 2)) g ((Az, z))
> () ((Az,2)) h ((A™ 12, )
x [f ({(A7 2, 2)) g ((Az,2)) + f ((Az,2)) g ((A 2, 2))] (2.13)
for any x € H with ||z|| = 1.
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Proof. Since f, g are synchronous and v < (Az,z) < T, v < (By,y) <T for any
x,y € H with ||z]| = ||y|| = 1, we have

(h ({Az, z)) f ((By,y)) — h ((By,y)) f ({(Az, 1))
x (h({(Az, ) g ((By,y)) — h ((By,y)) g ((Az,2))) =2 0 (2.14)

for any t € [a,b] for any x € H with ||z|| = 1.
Employing property (1.1) for inequality (2.14) we have
h* ({(Az,z)) f ((By,)) 9 ((By,y))
+ 12 ((By, ) f (A, 2)) g (Az, 2))
— h({Az,z)) h ((By,y)) [ ((By,y)) g ((Az, z))
—h((By,y)) h ({(Az, z)) f ({(Az,z)) g ((By,y)) = 0
r

for any bounded linear operator B with sp (B) C [y,I'] and y € H with ||y|| = 1.
Now, since

W ((Az,z)) f ((By.y) - 9 ((By,y)) + h* ((By,)) f ({Az,2)) - g ((Az, z))

> h((Az,x)) h ((By, y)) [f (By,y)) g ((Az, x)) + f ((Az,2)) g ((By,y))] (2.15)

for each =,y € H with [|z|| = |ly|| = 1. Setting B = A~ and y = z in (2.15) we
get the required result in (2.13). The reverse sense follows similarly. U

Remark 2.21. Let 0 < v < I and choose f(s) = s and g(s) = s7%, s > 0 in
Theorem 2.20. So that, if f and g are h-synchronous (h-asynchronous) on [y, '],
then

W ((Az,z)) + h* ((A 'z, x))
> (<)2h ((Az,z)) h ({(A7 'z, 2)) [<A‘1:p,x> (Az,z) " + (Az, z) <A_15E,$>71]
for any = € H with ||z|| = 1.

Corollary 2.22. Let A be a selfadjoint operator with sp (A) C [v,T] for some
real numbers v, T with v < T'. Let h : [,T] = R be a non-negative continuous.
If f: [v,T] = R is continuous and h-synchronous on [y,T], then

R ((Az,z)) [ ((A7 2, 2)) + h* ((A7 2, 2)) f? ((Az, z))
> 9h (Az,2)) h (A7, ) £ (A7, 2) £ ((Ax, )
for any x € H with ||z|| = 1.
Proof. Setting f = g in (2.13), respectively; we get the required results. O
An n-operators version of Theorem 2.7 is embodied as follows:

Theorem 2.23. Let A; be a selfadjoint operator with sp (A;) C [v,T] for j €
{1,2,--- ,n} for some real numbers v,T" with v < T. Let h: [y,T] = R be a non-
negative continuous. If f,g : [y,I'] = R are continuous and both h-synchronous
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(h-asynchronous) on [y,T], then

Z<h2 :z:J,xJ>Z /(A Aj) g, x5)

> ()Y (i (A)) g (Ap) g a) Y (R (Ay) | (Ay) zj,x5) (2.16)

j=1 j=1

n
for each x; € H, j € {1,2,-- ,n} with 3 [lz;||* = 1.
j=1

Proof. As in ([4], p.6), if we put

A - 0 1
A= oo, and T := :
0o --- A, T,
then we have sp (ﬁ) c I, Iz|| = 1, <h2 (ﬁ) z, 55> = z": (h? (Aj) x5, 25),
j=1
(7 (3) 9 (A) 1:7) = S 05 (4 9 (4)) .2,
(1 () 9 (A) 2.2) = (4 9 (4)) 5.2,
and <h <Z> f <Z> z, §> = ji:l (h(A;) f (Aj)xj,z;). Applying Theorem 2.7 for
A and T we deduce the desired result. OJ

Corollary 2.24. Let A; be a selfadjoint operator with sp (4;) C [v,I] for j €
{1,2,--- ,n} for some real numbers v,I'" with v < T'. Let h : [y,T] — R be a

non-negative continuous. If f : [y,T'] = R is continuous and h-synchronous on
[, T, then

n

(Z(h(Aj)f(A %7%) <Z<h2 D ag) Y (P (A agag)  (217)

j=1 j=1

for each x; € H, j € {1,2,--- ,n} with Z ||9UJ||2 =1
j=1

Proof. Setting f = g in (2.16), we get the desired result. O

Corollary 2.25. Let A; be a selfadjoint operator with sp (A;) C [y,I] for j €
{1,2,--- ,n} for some real numbers v, 1" with 0 < v < T'. If f: [y,I'] = R is
continuous and t-synchronous on [y,T'], then

(Z (A f (Aj) w5, 25 ) < Z<A2x],xj Z<f2 xj,xj> (2.18)

for cach w; € H, j € {1,2,-- ,n} with 3" ||z;|* = 1.
j=1
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Proof. Setting h(t) =t in (2.17), we get the desired result. O

Remark 2.26. Let A; be a selfadjoint operator with sp (4;) C [v,1] for j €
{1,2,--- ,n} for some real numbers v,T" with 0 < v < I'. Let f(s) = s'/2 for
s € [7,T] then f is t~'/2-synchronous so that by (2.18) we have

n? < <Z (ijj,xj)> : (Z <Aj_1xj,xj>> . (2.19)

J=1

The discrete version of Cebysev inequality, reads that

1 & 1 & 1 &
E;aibiz <EZZICL@> <Ezzlbz)

for all similarly ordered n-tuples (ai,- -+ ,a,,) and (by,- - ,by).
Let {A;}7_, be a finite positive sequence of invertible self-adjoint operators
and consider a; = (A;jz;,z;) and b; = <A;1:cj,xj> forall j = 1,---,n. If

(ay,--- ,a,) and (by,--- ,b,) similarly ordered n-tuples. Then by employing the

Cebysev inequality on (2.19) we get

n n

1 & 1 _ 1 _
1< EZ (Ajzj, z5) - EZ (A7l xy) < EZ (Ajy, ay) (A g, x)).
j=1

j=1 j=1

On other hand, if ;- 15 < A; < T, -1y, then by Kanotrovich inequality we have

1 — e,
1<~ > (Ajaj ) - - > (At ey,
j=1 j=1
IS~ g gt oy o L~ @i =)’
SanI<AJxJJxJ><Aj %mﬂ>§n; 4y,

In case n = 2, we have

—
IA

Ol = N

[<A1$1,[L’1> + <A21’2,l‘2>] . [<A1_1.T1, l’1> + <A2_1$2,ZL'2>]

IA

[(Aﬂ?l, T1) <AI1$1>$1> + (Agxy, x2) <A51$2, 1‘2>]

Ty —m)° . (T — )
’erl ’}/QFQ

IA

An n-operators version of Theorem 2.16 is incorporated in the following result.

Theorem 2.27. Let A; be a selfadjoint operator with sp (A;) C [v,T] for j €
{1,2,--- ,n} for some real numbers v,I" with v < T'. Let h : [y,T] — R be a
non-negative continuous. If f, g : [v,I'] = R are continuous and both f and g are
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h-synchronous (h-asynchronous ) on [y,T], then

h? (Z <Ajmj,xj)> Z (f (4)) g (Aj) zj,25)

n

=D (A (A g 5) D (A)) g (Ay) 5, 5)

j=1

> (<) [h (Z <ijj,xj>> D (h(A)) f(A)) x5,2)) (2.20)

—Z<h2 (Aj) xj,x5) f (Z <Aj-’]€j>%>)] ‘g (Z <Aﬂj>%>)
+ |h (Z <Aj$j,ﬂfj>> f (Z (Ajffjvi'«“ﬂ)

— 3 (A £ (A)) 2y )

for each z; € H, j € {1,2,--- ,n} with >_ ||z;||* = 1.

j=1
Proof. The proof is similar to the proof of Theorem 2.23 on employing Theorem
2.16. OJ

Corollary 2.28. Let A; be a selfadjoint operator with sp (A4;) C [v,I] for j €
{1,2,--- ,n} for some real numbers v,I" with v < T'. Let h : [y,T'] — R be a

non-negative continuous and convex on [y, T]. If f : [y,T] = R is continuous and
h-synchronous on [y,T], then

h’ (Z <ijj,xj)> > (P (A)) zj,25) — (Z <h(Aj)f(Aj)xj,xj>>

7j=1 J=1 7=1

> (<) [h (Z (ijj,xj>> D (h(A)) f(A)) x5,25) (2.21)

—Z(fﬂ (Aj)zj,2)) f (Z (Aj$j>$j>)] - f (Z (ijjaﬂfﬂ)
+ |h (Z <Ajasj,xj)> / (Z <Aj$j>%‘>)

n

(h(Ay) f(Aj) g, 25

j=1
n

—Z (h(Ay) f(Aj) g, 25

for each x; € H, j € {1,2,--- ,n} with 3 ||z;|* = 1.
j=1
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Proof. Setting f = g in (2.20), respectively; we get the required results. O

Corollary 2.29. Let A; be a selfadjoint operator with sp (A;) C [y,I] for j €
{1,2,--- ,n} for some real numbers v,I" with 0 < v < T. If f: [y,I'] = R is
continuous and t-synchronous on [v,1'], then

3

(Z <ijj,$j>) Z<f2 (Aj)ivj»%>—< (Ajf(Aj)$j>$j>>

> (<) Z(Aj$j>$j>Z<Ajf(Aj)$jaxj>
_Z<A§$j7xj>f (Z <Aj$jaxj>>] - f ( <Aj3?j793j>>
+ Z (Ajag, a) f (Z (/‘b’%‘»%?)

n

Y (A (A)) g, 5)

Jj=1

- Z (Ajf (4)) x5, 25)

for each wj € H, j € {1,2,--- ,n} with 3 |lz;||> = 1.
j=1

Proof. Setting h(t) =t in (2.21), we get the desired results. O

Remark 2.30. By choosing h (t) =1 for all t € [a,b], in Theorems 2.7, 2.16, 2.23
and 2.27, then we recapture all inequalities obtained [2] and their consequences.
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