Adv. Oper. Theory 3 (2018), no. 3, 459-472
https://doi.org/10.15352/aot.1708-1220
ISSN: 2538-225X (electronic)
https://projecteuclid.org/aot

POMPEIU-ČEBYŠEV TYPE INEQUALITIES FOR SELFADJOINT OPERATORS IN HILBERT SPACES

MOHAMMAD W. ALOMARI
Communicated by M. Krnić

Abstract

In this work, generalizations of some inequalities for continuous h-synchronous (h-asynchronous) functions of selfadjoint linear operators in Hilbert spaces are proved.

1. Introduction

Let $\mathcal{B}(H)$ be the Banach algebra of all bounded linear operators defined on a complex Hilbert space $(H ;\langle\cdot, \cdot\rangle)$ with the identity operator 1_{H} in $\mathcal{B}(H)$. Let $A \in \mathcal{B}(H)$ be a selfadjoint linear operator on $(H ;\langle\cdot, \cdot\rangle)$. Let $C(\mathrm{sp}(A))$ be the set of all continuous functions defined on the spectrum of $A(\operatorname{sp}(A))$ and let $C^{*}(A)$ be the C^{*}-algebra generated by A and the identity operator 1_{H}.

Let us define the map $\mathcal{G}: C(\operatorname{sp}(A)) \rightarrow C^{*}(A)$ with the following properties ([4], p.3):
(1) $\mathcal{G}(\alpha f+\beta g)=\alpha \mathcal{G}(f)+\beta \mathcal{G}(g)$, for all scalars α, β.
(2) $\mathcal{G}(f g)=\mathcal{G}(f) \mathcal{G}(g)$ and $\mathcal{G}(\bar{f})=\mathcal{G}(f)^{*}$; where \bar{f} denotes to the conjugate of f and $\mathcal{G}(f)^{*}$ denotes to the Hermitian of $\mathcal{G}(f)$.
(3) $\|\mathcal{G}(f)\|=\|f\|=\sup _{t \in \operatorname{sp}(A)}|f(t)|$.
(4) $\mathcal{G}\left(f_{0}\right)=1_{H}$ and $\mathcal{G}\left(f_{1}\right)=A$, where $f_{0}(t)=1$ and $f_{1}(t)=t$ for all $t \in \operatorname{sp}(A)$.

[^0]Accordingly, we define the continuous functional calculus for a selfadjoint operator A by

$$
f(A)=\mathcal{G}(f) \text { for all } f \in C(\operatorname{sp}(A))
$$

If both f and g are real valued functions on $\operatorname{sp}(A)$ then the following important property holds:

$$
\begin{equation*}
f(t) \geq g(t) \text { for all } t \in \operatorname{sp}(A) \text { implies } f(A) \geq g(A), \tag{1.1}
\end{equation*}
$$

in the operator order of $\mathcal{B}(H)$.
In [2], Dragomir studied the Čebyšev functional

$$
\begin{equation*}
C(f, g ; A, x):=\langle f(A) g(A) x, x\rangle-\langle g(A) x, x\rangle\langle f(A) x, x\rangle \tag{1.2}
\end{equation*}
$$

for any selfadjoint operator $A \in \mathcal{B}(H)$ and $x \in H$ with $\|x\|=1$.
To study the positivity of (1.2), Dragomir [2] introduced the following two results concerning continuous synchronous (asynchronous) functions of selfadjoint linear operators in Hilbert spaces.

Theorem 1.1. Let A be a selfadjoint operator with $\operatorname{sp}(A) \subset[\gamma, \Gamma]$ for some real numbers γ, Γ with $\gamma<\Gamma$. If $f, g:[\gamma, \Gamma] \rightarrow \mathbb{R}$ are continuous and synchronous (asynchronous) on $[\gamma, \Gamma]$, then

$$
\langle f(A) g(A) x, x\rangle \geq(\leq)\langle g(A) x, x\rangle\langle f(A) x, x\rangle
$$

for any $x \in H$ with $\|x\|=1$.
Theorem 1.2. Let A be a selfadjoint operator with $\operatorname{sp}(A) \subset[\gamma, \Gamma]$ for some real numbers γ, Γ with $\gamma<\Gamma$.
(1) If $f, g:[\gamma, \Gamma] \rightarrow \mathbb{R}$ are continuous and synchronous on $[\gamma, \Gamma]$, then

$$
\begin{aligned}
& \langle f(A) g(A) x, x\rangle-\langle f(A) x, x\rangle \cdot\langle g(A) x, x\rangle \\
& \geq[\langle f(A) x, x\rangle-f(\langle A x, x\rangle)] \\
&
\end{aligned}
$$

for any $x \in H$ with $\|x\|=1$.
(2) If $f, g:[\gamma, \Gamma] \rightarrow \mathbb{R}$ are continuous and asynchronous on $[\gamma, \Gamma]$, then

$$
\begin{aligned}
\langle f(A) x, x\rangle \cdot\langle g(A) x, x\rangle & -\langle f(A) g(A) x, x\rangle \\
\geq & \\
& {[\langle f(A) x, x\rangle-f(\langle A x, x\rangle)] } \\
& \times[\langle g(A) x, x\rangle-g(\langle A x, x\rangle)]
\end{aligned}
$$

for any $x \in H$ with $\|x\|=1$.
For more related results, we refer the reader to [3], [5] and [6].
Let $a, b \in \mathbb{R}, a<b$. Let $f, g, h:[a, b] \rightarrow \mathbb{R}$ be three integrable functions, the Pompeiu-Cebyšev functional was introduced in [1] such as:

$$
\begin{equation*}
\widehat{\mathcal{P}}_{h}(f, g)=\int_{a}^{b} h^{2}(t) d t \int_{a}^{b} f(t) g(t) d t-\int_{a}^{b} f(t) h(t) d t \int_{a}^{b} h(t) g(t) d t \tag{1.3}
\end{equation*}
$$

If we consider $h(x)=1$, then

$$
\widehat{\mathcal{P}}_{1}(f, g)=(b-a) \int_{a}^{b} f(t) g(t) d t-\int_{a}^{b} f(t) d t \int_{a}^{b} g(t) d t=(b-a)^{2} \mathcal{T}(f, g)
$$

which is the celebrated Čebyšev functional.
The corresponding version of Pompeiu-Čebyšev functional (1.3) for continuous functions of selfadjoint linear operators in Hilbert spaces can be formulated such as:

$$
\begin{align*}
& \mathcal{P}(f, g, h ; A, x):=\left\langle h^{2}(A) x, x\right\rangle\langle f(A) g(A) x, x\rangle \\
&-\langle h(A) g(A) x, x\rangle\langle h(A) f(A) x, x\rangle \tag{1.4}
\end{align*}
$$

for $x \in H$ with $\|x\|=1$. This naturally, generalizes the Čebyšev functional (1.2).
In this work, we introduce the h-synchronous (h-asynchronous) where h : $[\gamma, \Gamma] \rightarrow \mathbb{R}_{+}$is a nonnegative function defined on $[\gamma, \Gamma]$ for some real numbers $\gamma<\Gamma$. Accordingly, some inequalities for continuous h-synchronous (h asynchronous) functions of selfadjoint linear operators in Hilbert spaces of the Pompeiu-Čebyšev functional (1.4) are proved. The proof Techniques are similar to that ones used in [3].

2. Main Results

In [1], the author of this paper generalized the concept of monotonicity as follows:

Definition 2.1. A real valued function f defined on $[a, b]$ is said to be increasing (decreasing) with respect to a positive function $h:[a, b] \rightarrow \mathbb{R}_{+}$or simply h increasing (h-decreasing) if and only if

$$
h(x) f(t)-h(t) f(x) \geq(\leq) 0
$$

whenever $t \geq x$ for every $x, t \in[a, b]$. In special case if $h(x)=1$ we refer to the original monotonicity. Accordingly, for $0<a<b$ we say that f is t^{r}-increasing (t^{r}-decreasing) for $r \in \mathbb{R}$ if and only if

$$
x \leq t \Longrightarrow x^{r} f(t)-t^{r} f(x) \geq(\leq) 0
$$

for every $x, t \in[a, b]$.
Example 2.2. Let $0<a<b$ and define $f:[a, b] \rightarrow \mathbb{R}$ given by
(1) $f(s)=1$, then f is t^{r}-decreasing for all $r>0$ and t^{r}-increasing for all $r<0$.
(2) $f(s)=s$, then f is t^{r}-decreasing for all $r>1$ and t^{r}-increasing for all $r<1$.
(3) $f(s)=s^{-1}$, then f is t^{r}-decreasing for all $r>-1$ and t^{r}-increasing for all $r<-1$.

Lemma 2.3. Every h-increasing function is increasing. The converse need not be true.

Proof. If $h=0$ nothing to prove. For $h \neq 0$, if f is h-increasing on $[a, b]$, then

$$
x \leq t \Longrightarrow 0 \leq h(x) f(t)-h(t) f(x) \leq h(t)(f(t)-f(x)) \Longrightarrow f(x) \leq f(t),
$$

which means that f increases on $[a, b]$.
There exists h-increasing (h-decreasing) function which is not increasing (decreasing). For example, consider the function $f:(0,1) \rightarrow \mathbb{R}$, given by $f(s)=$ $s(1-s), 0<s<1$. Clearly, $f(s)$ is increasing on $(0,1 / 2)$ and decreasing on $(1 / 2,1)$. While if $1>t \geq x>0$, then

$$
x t(1-t)-t x(1-x)=x t(x-t) \leq 0
$$

i.e., f is t-decreasing on $(0,1)$. As a special case of Lemma 2.3, for $a, b \in \mathbb{R}$, $0<a<b$ and a positive function $h:[a, b] \rightarrow \mathbb{R}_{+}$, if $f:[a, b] \rightarrow \mathbb{R}$ is t^{r}-increasing for $r>0\left(t^{r}\right.$-decreasing for $\left.r<0\right)$, then f is increasing (decreasing) on $[a, b]$.

The concept of synchronization has a wide range of usage in several areas of mathematics. Simply, two functions $f, g:[a, b] \rightarrow \mathbb{R}$ are called synchronous (asynchronous) if and only if the inequality

$$
(f(t)-f(x))(g(t)-g(x)) \geq(\leq) 0,
$$

holds for all $x, t \in[a, b]$.
Next, we define the concept of h-synchronous (h-asynchronous) functions.
Definition 2.4. The real valued functions $f, g:[a, b] \rightarrow \mathbb{R}$ are called synchronous (asynchronous) with respect to a non-negative function $h:[a, b] \rightarrow \mathbb{R}_{+}$or simply h-synchronous (h-asynchronous) if and only if

$$
(h(y) f(x)-h(x) f(y))(h(y) g(x)-h(x) g(y)) \geq(\leq) 0
$$

for all $x, y \in[a, b]$.
In other words if both f and g are either h-increasing or h-decreasing then

$$
(h(y) f(x)-h(x) f(y))(h(y) g(x)-h(x) g(y)) \geq 0 .
$$

While, if one of the function is h-increasing and the other is h-decreasing then

$$
(h(y) f(x)-h(x) f(y))(h(y) g(x)-h(x) g(y)) \leq 0
$$

In special case if $h(x)=1$ we refer to the original synchronization. Accordingly, for $0<a<b$ we say that f and g are t^{r}-synchronous (t^{r}-asynchronous) for $r \in \mathbb{R}$ if and only if

$$
\left(x^{r} f(t)-t^{r} f(x)\right)\left(x^{r} g(t)-t^{r} g(x)\right) \geq(\leq) 0
$$

for every $x, t \in[a, b]$.
Remark 2.5. In Definition (2.4), if $f=g$ then f and g are always h-synchronous regardless of h-monotonicity of f (or g). In other words, a function f is always h-synchronous with itself.

Example 2.6. Let $0<a<b$ and define $f, g:[a, b] \rightarrow \mathbb{R}$ given by
(1) $f(s)=1=g(s)$, then f and g are t^{r}-synchronous for all $r \in \mathbb{R}$.
(2) $f(s)=1$ and $g(s)=s$, then f is t^{r}-synchronous for all $r \in(-\infty, 0) \cup(1, \infty)$ and t^{r}-asynchronous for all $0<r<1$.
(3) $f(s)=1$ and $g(s)=s^{-1}$, then f is t^{r}-synchronous for all $r \in(-\infty,-1) \cup$ $(0, \infty)$ and t^{r}-asynchronous for all $-1<r<0$.
(4) $f(s)=s$ and $g(s)=s^{-1}$, then f is t^{r}-synchronous for all $r \in(-\infty,-1) \cup$ $(1, \infty)$ and t^{r}-asynchronous for all $-1<r<1$.

Let us start with the following result regarding the positivity of $\mathcal{P}(f, g, h ; A, x)$.
Theorem 2.7. Let A be a selfadjoint operator with $\operatorname{sp}(A) \subset[\gamma, \Gamma]$ for some real numbers γ, Γ with $\gamma<\Gamma$. Let $h:[\gamma, \Gamma] \rightarrow \mathbb{R}_{+}$be a non-negative and continuous function. If $f, g:[\gamma, \Gamma] \rightarrow \mathbb{R}$ are continuous and both f and g are h-synchronous (h-asynchronous) on $[\gamma, \Gamma]$, then

$$
\begin{equation*}
\left\langle h^{2}(A) x, x\right\rangle\langle f(A) g(A) x, x\rangle \geq(\leq)\langle h(A) g(A) x, x\rangle\langle h(A) f(A) x, x\rangle \tag{2.1}
\end{equation*}
$$

for any $x \in H$ with $\|x\|=1$.
Proof. Since f and g are h-synchronous then

$$
(h(s) f(t)-h(t) f(s))(h(s) g(t)-h(t) g(s)) \geq 0
$$

and this is allow us to write

$$
\begin{equation*}
h^{2}(s) f(t) g(t)+h^{2}(t) f(s) g(s) \geq h(s) h(t) f(t) g(s)+h(s) h(t) g(t) f(s) \tag{2.2}
\end{equation*}
$$

for all $t, s \in[a, b]$. We fix $s \in[a, b]$ and apply property (1.1) for inequality (2.2), then we have for each $x \in H$ with $\|x\|=1$, that

$$
\begin{aligned}
\left\langle\left(h^{2}(s) f(A) g(A)+\right.\right. & \left.\left.h^{2}(A) f(s) g(s)\right) x, x\right\rangle \\
& \geq\langle(h(A) f(A) h(s) g(s)+h(A) g(A) h(s) f(s)) x, x\rangle
\end{aligned}
$$

and this equivalent to write

$$
\begin{align*}
h^{2}(s)\langle f(A) & g(A) x, x\rangle+f(s) g(s)\left\langle h^{2}(A) x, x\right\rangle \\
& \geq h(s) g(s)\langle h(A) f(A) x, x\rangle+h(s) f(s)\langle h(A) g(A) x, x\rangle . \tag{2.3}
\end{align*}
$$

Applying property (1.1) again for inequality (2.3), then we have for each $y \in H$ with $\|y\|=1$, that

$$
\begin{aligned}
& \left\langle\left(h^{2}(A)\langle f(A) g(A) x, x\rangle+f(A) g(A)\left\langle h^{2}(A) x, x\right\rangle\right) y, y\right\rangle \\
& \quad \geq\langle(h(A) g(A)\langle h(A) f(A) x, x\rangle+h(A) f(A)\langle h(A) g(A) x, x\rangle) y, y\rangle
\end{aligned}
$$

which gives

$$
\begin{align*}
& \left\langle h^{2}(A) y, y\right\rangle\langle f(A) g(A) x, x\rangle+\left\langle h^{2}(A) x, x\right\rangle\langle f(A) g(A) y, y\rangle \\
& \geq\langle h(A) g(A) y, y\rangle\langle h(A) f(A) x, x\rangle+\langle h(A) g(A) x, x\rangle\langle h(A) f(A) y, y\rangle \tag{2.4}
\end{align*}
$$

for each $x, y \in H$ with $\|x\|=\|y\|=1$, which gives more than we need, so that by setting $y=x$ in (2.4) we get the ' \geq ' case in (2.1). The revers case follows trivially, and this completes the proof.

Corollary 2.8. Let A be a selfadjoint operator with $\operatorname{sp}(A) \subset[\gamma, \Gamma]$ for some real numbers γ, Γ with $\gamma<\Gamma$. Let $h:[\gamma, \Gamma] \rightarrow \mathbb{R}_{+}$be a non-negative and continuous function. If $f:[\gamma, \Gamma] \rightarrow \mathbb{R}$ is continuous and h-synchronous on $[\gamma, \Gamma]$, then

$$
\begin{equation*}
\langle h(A) f(A) x, x\rangle^{2} \leq\left\langle h^{2}(A) x, x\right\rangle\left\langle f^{2}(A) x, x\right\rangle \tag{2.5}
\end{equation*}
$$

for each $x \in H$ with $\|x\|=1$.
Proof. Setting $f=g$ in (2.1) we get the desired result.
Remark 2.9. It is easy to check that the function $f(s)=s^{1 / 2}$ is $t^{-1 / 2}$-synchronous for all $s, t>0$. Applying (2.5) the for $0<\gamma<\Gamma$ we get that

$$
1 \leq\left\langle A^{-1} x, x\right\rangle\langle A x, x\rangle
$$

Also, since $\gamma \cdot 1_{H} \leq A \leq \Gamma \cdot 1_{H}$, then the Kanotrovich inequality reads

$$
\left\langle A^{-1} x, x\right\rangle\langle A x, x\rangle \leq \frac{(\gamma+\Gamma)^{2}}{4 \gamma \Gamma}
$$

combining the above two inequalities we get

$$
1 \leq\left\langle A^{-1} x, x\right\rangle\langle A x, x\rangle \leq \frac{(\gamma+\Gamma)^{2}}{4 \gamma \Gamma}
$$

Corollary 2.10. Let A be a selfadjoint operator with $\operatorname{sp}(A) \subset[\gamma, \Gamma]$ for some real numbers γ, Γ with $0<\gamma<\Gamma$. If $f, g:[\gamma, \Gamma] \rightarrow \mathbb{R}$ are continuous and t-synchronous (t-asynchronous) on $[\gamma, \Gamma]$, then

$$
\left\langle A^{2} x, x\right\rangle\langle f(A) g(A) x, x\rangle \geq(\leq)\langle A g(A) x, x\rangle\langle A f(A) x, x\rangle
$$

for each $x \in H$ with $\|x\|=1$.
Proof. Setting $h(t)=t$ in (2.1) we get the desired result.
Before we state our next remark, we interested to give the following example.
Example 2.11. (1) If $f(s)=s^{p}$ and $g(s)=s^{q}(s>0)$, then f and g are t^{r} synchronous for all $p, q>r>0$ and t^{r}-asynchronous for all $p>r>q>0$.
(2) If $f(s)=s^{p}$ and $g(s)=\log (s)(s>1)$, then f is t^{r}-synchronous for all $p<r<0$ and t^{r}-asynchronous for all $r<p<0$.
(3) If $f(s)=\exp (s)=g(s)$, then f is t^{r}-synchronous for all for all $r \in \mathbb{R}$.

Remark 2.12. From the proof of the above theorem we observe, that, if A and B are selfadjoint operators such that $\operatorname{sp}(A), \operatorname{sp}(B) \in[\gamma, \Gamma]$; and $h:[\gamma, \Gamma] \rightarrow \mathbb{R}_{+}$ is non-negative continuous, then for any continuous functions $f, g:[\gamma, \Gamma] \rightarrow \mathbb{R}$ which are both h-synchronous (h-asynchronous)

$$
\begin{align*}
&\left\langle h^{2}(B) y, y\right\rangle\langle f(A) g(A) x, x\rangle+\left\langle h^{2}(A) x, x\right\rangle\langle f(B) g(B) y, y\rangle \\
& \geq(\leq)\langle h(B) g(B) y, y\rangle\langle h(A) f(A) x, x\rangle \\
&+\langle h(A) g(A) x, x\rangle\langle h(B) f(B) y, y\rangle \tag{2.6}
\end{align*}
$$

for each $x, y \in H$ with $\|x\|=\|y\|=1$. Using Example 2.11 we can observe the following special cases:
(1) If $f(s)=s^{p}$ and $g(s)=s^{q}(s>0)$, then f and g are t^{r}-synchronous for all $p, q>r>0$, so that we have

$$
\begin{aligned}
& \left\langle B^{2 r} y, y\right\rangle\left\langle A^{p+q} x, x\right\rangle+\left\langle A^{2 r} x, x\right\rangle\left\langle B^{p+q} y, y\right\rangle \\
& \quad \geq\left\langle B^{q+r} y, y\right\rangle\left\langle A^{p+r} x, x\right\rangle+\left\langle A^{q+r} x, x\right\rangle\left\langle B^{p+r} y, y\right\rangle .
\end{aligned}
$$

If $p>r>q>0$, then f and g are t^{r}-asynchronous and thus the reverse inequality holds.
(2) If $f(s)=s^{p}$ and $g(s)=\log s(s>1)$, then f and g are t^{r}-synchronous for all $p<r<0$ we have

$$
\begin{aligned}
& \left\langle B^{2 r} y, y\right\rangle\left\langle A^{p} \log (A) x, x\right\rangle+\left\langle A^{2 r} x, x\right\rangle\left\langle B^{p} \log (B) y, y\right\rangle \\
& \quad \geq\left\langle B^{r} \log (B) y, y\right\rangle\left\langle A^{p+r} x, x\right\rangle+\langle A \log (A) x, x\rangle\left\langle B^{p+r} y, y\right\rangle .
\end{aligned}
$$

If $r<p<0$, then f and g are t^{r}-asynchronous and thus the reverse inequality holds.
(3) If $f(s)=\exp (s)=g(s)$, then f and g are t^{r}-synchronous for all $r \in \mathbb{R}$, so that we have

$$
\begin{aligned}
\left\langle B^{2 r} y, y\right\rangle\langle\exp (2 A) & x, x\rangle+\left\langle A^{2 r} x, x\right\rangle\langle\exp (2 B) y, y\rangle \\
& \geq 2\left\langle A^{r} \exp (A) x, x\right\rangle\left\langle B^{r} \exp (B) y, y\right\rangle .
\end{aligned}
$$

Therefore, by choosing an appropriate function h such that the assumptions in Remark 2.12 are fulfilled then one may generate family of inequalities from (2.6).

Corollary 2.13. Let A be a selfadjoint operator with $\operatorname{sp}(A) \subset[\gamma, \Gamma]$ for some real numbers γ, Γ with $0<\gamma<\Gamma$. If $f:[\gamma, \Gamma] \rightarrow \mathbb{R}$ is continuous and f is t-synchronous on $[\gamma, \Gamma]$, then

$$
\left\langle A^{2} x, x\right\rangle\langle f(A) x, x\rangle \geq\langle A x, x\rangle\langle A f(A) x, x\rangle
$$

for each $x \in H$ with $\|x\|=1$. In particular, if $f(s)=s^{p}(p>1)$ for all $s \in[\gamma, \Gamma]$, then

$$
\left\langle A^{2} x, x\right\rangle\left\langle A^{p} x, x\right\rangle \geq\langle A x, x\rangle\left\langle A^{p+1} x, x\right\rangle .
$$

Proof. Setting $f=g$ in Corollary 2.10 we get the desired result.
Corollary 2.14. Let A be a selfadjoint operator with $\operatorname{sp}(A) \subset[\gamma, \Gamma]$ for some real numbers γ, Γ with $\gamma<\Gamma$. Let $h:[\gamma, \Gamma] \rightarrow \mathbb{R}$ be a non-negative continuous. If $f:[\gamma, \Gamma] \rightarrow \mathbb{R}$ is continuous and h-synchronous, then

$$
\begin{equation*}
\left\langle h^{2}(A) x, x\right\rangle\langle f(A) x, x\rangle \geq\langle h(A) x, x\rangle\langle h(A) f(A) x, x\rangle \tag{2.7}
\end{equation*}
$$

for each $x \in H$ with $\|x\|=1$. In particular, if $f(s)=s^{p}$ is h-synchronous for all $s \in[\gamma, \Gamma]$, then we have

$$
\left\langle h^{2}(A) x, x\right\rangle\left\langle A^{p} x, x\right\rangle \geq\langle h(A) x, x\rangle\left\langle h(A) A^{p} x, x\right\rangle .
$$

Remark 2.15. Setting $f(s)=s^{-1}, \forall s \in[\gamma, \Gamma]$ in (2.7) (in this case we assume $0<\gamma<\Gamma)$ then for each $x \in H$ with $\|x\|=1$, we have

$$
\left\langle h^{2}(A) x, x\right\rangle \geq\left\langle h(A) A^{-1} x, x\right\rangle\langle A h(A) x, x\rangle,
$$

provided that s^{-1} is h-synchronous on $[\gamma, \Gamma]$.
Theorem 2.16. Let A be a selfadjoint operator with $\operatorname{sp}(A) \subset[\gamma, \Gamma]$ for some real numbers γ, Γ with $\gamma<\Gamma$. Let $h:[\gamma, \Gamma] \rightarrow \mathbb{R}$ be a non-negative continuous. If $f, g:[\gamma, \Gamma] \rightarrow \mathbb{R}$ are continuous and both f and g are h-synchronous (h asynchronous) on $[\gamma, \Gamma]$, then

$$
\begin{align*}
& h^{2}(\langle A x, x\rangle)\langle f(A) g(A) x, x\rangle-\langle h(A) f(A) x, x\rangle \cdot\langle h(A) g(A) x, x\rangle \\
& \geq(\leq) {\left[h(\langle A x, x\rangle)\langle h(A) f(A) x, x\rangle-\left\langle h^{2}(A) x, x\right\rangle f(\langle A x, x\rangle)\right] \cdot g(\langle A x, x\rangle) } \\
& \quad+[h(\langle A x, x\rangle) f(\langle A x, x\rangle)-\langle h(A) f(A) x, x\rangle] \cdot\langle h(A) g(A) x, x\rangle \quad(2 . \tag{2.8}
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$.
Proof. Since f, g are synchronous and $\gamma \leq\langle A x, x\rangle \leq \Gamma$ for any $x \in H$ with $\|x\|=1$, we have

$$
\begin{align*}
& (h(\langle A x, x\rangle) f(t)-h(t) f(\langle A x, x\rangle)) \\
& \quad \times(h(\langle A x, x\rangle) g(t)-h(t) g(\langle A x, x\rangle)) \geq 0 \tag{2.9}
\end{align*}
$$

for any $t \in[a, b]$ for any $x \in H$ with $\|x\|=1$.
Employing property (1.1) for inequality (2.9) we have

$$
\begin{align*}
\langle[h(\langle A x, x\rangle) f(B)-h & (B) f(\langle A x, x\rangle)] \\
\times & {[h(\langle A x, x\rangle) g(B)-h(B) g(\langle A x, x\rangle)] y, y\rangle \geq 0 } \tag{2.10}
\end{align*}
$$

for any bounded linear operator B with $\operatorname{sp}(B) \subseteq[\gamma, \Gamma]$ and $y \in H$ with $\|y\|=1$.
Now, since

$$
\begin{aligned}
& \langle[h(\langle A x, x\rangle) f(B)-h(B) f(\langle A x, x\rangle)] \\
& \quad \times[h(\langle A x, x\rangle) g(B)-h(B) g(\langle A x, x\rangle)] y, y\rangle \\
& =h^{2}(\langle A x, x\rangle)\langle f(B) g(B) y, y\rangle-h(\langle A x, x\rangle) f(\langle A x, x\rangle)\langle h(B) g(B) y, y\rangle \\
& \quad-h(\langle A x, x\rangle) g(\langle A x, x\rangle)\langle h(B) f(B) y, y\rangle \\
& \quad+\left\langle h^{2}(B) y, y\right\rangle f(\langle A x, x\rangle) g(\langle A x, x\rangle),
\end{aligned}
$$

then from (2.10) we get

$$
\begin{aligned}
& h^{2}(\langle A x, x\rangle)\langle f(B) g(B) y, y\rangle+\left\langle h^{2}(B) y, y\right\rangle f(\langle A x, x\rangle) g(\langle A x, x\rangle) \\
& \geq h(\langle A x, x\rangle) f(\langle A x, x\rangle)\langle h(B) g(B) y, y\rangle \\
&+h(\langle A x, x\rangle) g(\langle A x, x\rangle)\langle h(B) f(B) y, y\rangle,
\end{aligned}
$$

and this is equivalent to write

$$
\begin{align*}
& h^{2}(\langle A x, x\rangle)\langle f(B) g(B) y, y\rangle-\langle h(A) f(A) x, x\rangle \cdot\langle h(A) g(A) x, x\rangle \tag{2.11}\\
& \geq g(\langle A x, x\rangle)\left[h(\langle A x, x\rangle)\langle h(B) f(B) y, y\rangle-\left\langle h^{2}(B) y, y\right\rangle f(\langle A x, x\rangle)\right] \\
& \quad+h(\langle A x, x\rangle) f(\langle A x, x\rangle)\langle h(B) g(B) y, y\rangle-\langle h(A) f(A) x, x\rangle \cdot\langle h(A) g(A) x, x\rangle
\end{align*}
$$

for each $x, y \in H$ with $\|x\|=\|y\|=1$. Setting $B=A$ and $y=x$ in (2.11) we get the required result in (2.8). The reverse sense follows similarly.

Remark 2.17. Let $0<\gamma<\Gamma$ and choose $f(s)=s$ and $g(s)=s^{-1}, s>0$ in Theorem 2.16. So that, if f and g are h-synchronous (h-asynchronous) on $[\gamma, \Gamma]$, then

$$
\begin{aligned}
& h^{2}(\langle A x, x\rangle)-\langle A h(A) x, x\rangle \cdot\left\langle A^{-1} h(A) x, x\right\rangle \\
& \geq(\leq)\left[h(\langle A x, x\rangle)\langle A h(A) x, x\rangle-\left\langle h^{2}(A) x, x\right\rangle\langle A x, x\rangle\right] \cdot\langle A x, x\rangle^{-1} \\
& +[h(\langle A x, x\rangle)\langle A x, x\rangle-\langle A h(A) x, x\rangle] \cdot\left\langle A^{-1} h(A) x, x\right\rangle
\end{aligned}
$$

for any $x \in H$ with $\|x\|=1$. In special case, if $h(t)=1$ for all $t \in[\gamma, \Gamma]$, then s and s^{-1} are asynchronous so that we have

$$
1 \leq\langle A x, x\rangle\left\langle A^{-1} x, x\right\rangle
$$

Corollary 2.18. Let A be a selfadjoint operator with $\operatorname{sp}(A) \subset[\gamma, \Gamma]$ for some real numbers γ, Γ with $\gamma<\Gamma$. Let $h:[\gamma, \Gamma] \rightarrow \mathbb{R}$ be a non-negative continuous. If $f:[\gamma, \Gamma] \rightarrow \mathbb{R}$ is continuous and h-synchronous on $[\gamma, \Gamma]$, then

$$
\begin{align*}
& h^{2}(\langle A x, x\rangle)\left\langle f^{2}(A) x, x\right\rangle-\langle h(A) f(A) x, x\rangle^{2} \\
& \quad \geq\left[h(\langle A x, x\rangle)\langle h(A) f(A) x, x\rangle-\left\langle h^{2}(A) x, x\right\rangle f(\langle A x, x\rangle)\right] \cdot f(\langle A x, x\rangle) \\
& \quad+[h(\langle A x, x\rangle) f(\langle A x, x\rangle)-\langle h(A) f(A) x, x\rangle] \cdot\langle h(A) f(A) x, x\rangle \quad(2 \tag{2.12}
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$.
Proof. Setting $f=g$ in (2.8), respectively, we get the required results.
Corollary 2.19. Let A be a selfadjoint operator with $\operatorname{sp}(A) \subset[\gamma, \Gamma]$ for some real numbers γ, Γ with $0<\gamma<\Gamma$. If $f:[\gamma, \Gamma] \rightarrow \mathbb{R}$ are continuous and t-synchronous on $[\gamma, \Gamma]$, then

$$
\begin{aligned}
& \langle A x, x\rangle^{2}\left\langle f^{2}(A) x, x\right\rangle-\langle A f(A) x, x\rangle^{2} \\
& \geq\left[\langle A x, x\rangle\langle A f(A) x, x\rangle-\left\langle A^{2} x, x\right\rangle f(\langle A x, x\rangle)\right] \cdot f(\langle A x, x\rangle) \\
& \quad+[\langle A x, x\rangle f(\langle A x, x\rangle)-\langle A f(A) x, x\rangle] \cdot\langle A f(A) x, x\rangle
\end{aligned}
$$

for any $x \in H$ with $\|x\|=1$.
Proof. Setting $h(t)=t$ in (2.12), respectively, we get the required results.
Theorem 2.20. Let A be a selfadjoint operator with $\operatorname{sp}(A) \subset[\gamma, \Gamma]$ for some real numbers γ, Γ with $\gamma<\Gamma$. Let $h:[\gamma, \Gamma] \rightarrow \mathbb{R}$ be a non-negative continuous. If $f, g:[\gamma, \Gamma] \rightarrow \mathbb{R}$ are continuous and both f and g are h-synchronous (h asynchronous) on $[\gamma, \Gamma]$, then

$$
\begin{align*}
& h^{2}(\langle A x, x\rangle) f\left(\left\langle A^{-1} x, x\right\rangle\right) g\left(\left\langle A^{-1} x, x\right\rangle\right)+h^{2}\left(\left\langle A^{-1} x, x\right\rangle\right) f(\langle A x, x\rangle) g(\langle A x, x\rangle) \\
& \geq(\leq) h(\langle A x, x\rangle) h\left(\left\langle A^{-1} x, x\right\rangle\right) \\
& \quad \times\left[f\left(\left\langle A^{-1} x, x\right\rangle\right) g(\langle A x, x\rangle)+f(\langle A x, x\rangle) g\left(\left\langle A^{-1} x, x\right\rangle\right)\right] \tag{2.13}
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$.

Proof. Since f, g are synchronous and $\gamma \leq\langle A x, x\rangle \leq \Gamma, \gamma \leq\langle B y, y\rangle \leq \Gamma$ for any $x, y \in H$ with $\|x\|=\|y\|=1$, we have

$$
\begin{align*}
& (h(\langle A x, x\rangle) f(\langle B y, y\rangle)-h(\langle B y, y\rangle) f(\langle A x, x\rangle)) \\
& \quad \times(h(\langle A x, x\rangle) g(\langle B y, y\rangle)-h(\langle B y, y\rangle) g(\langle A x, x\rangle)) \geq 0 \tag{2.14}
\end{align*}
$$

for any $t \in[a, b]$ for any $x \in H$ with $\|x\|=1$.
Employing property (1.1) for inequality (2.14) we have

$$
\begin{aligned}
& h^{2}(\langle A x, x\rangle) f(\langle B y, y\rangle) g(\langle B y, y\rangle) \\
& \quad+h^{2}(\langle B y, y\rangle) f(\langle A x, x\rangle) g(\langle A x, x\rangle) \\
& -h(\langle A x, x\rangle) h(\langle B y, y\rangle) f(\langle B y, y\rangle) g(\langle A x, x\rangle) \\
& \quad-h(\langle B y, y\rangle) h(\langle A x, x\rangle) f(\langle A x, x\rangle) g(\langle B y, y\rangle) \geq 0
\end{aligned}
$$

for any bounded linear operator B with $\operatorname{sp}(B) \subseteq[\gamma, \Gamma]$ and $y \in H$ with $\|y\|=1$. Now, since

$$
\begin{align*}
& h^{2}(\langle A x, x\rangle) f(\langle B y, y\rangle) \cdot g(\langle B y, y\rangle)+h^{2}(\langle B y, y\rangle) f(\langle A x, x\rangle) \cdot g(\langle A x, x\rangle) \\
\geq & h(\langle A x, x\rangle) h(\langle B y, y\rangle)[f(\langle B y, y\rangle) g(\langle A x, x\rangle)+f(\langle A x, x\rangle) g(\langle B y, y\rangle)] \tag{2.15}
\end{align*}
$$

for each $x, y \in H$ with $\|x\|=\|y\|=1$. Setting $B=A^{-1}$ and $y=x$ in (2.15) we get the required result in (2.13). The reverse sense follows similarly.
Remark 2.21. Let $0<\gamma<\Gamma$ and choose $f(s)=s$ and $g(s)=s^{-1}, s>0$ in Theorem 2.20. So that, if f and g are h-synchronous (h-asynchronous) on $[\gamma, \Gamma]$, then

$$
\begin{aligned}
& h^{2}(\langle A x, x\rangle)+h^{2}\left(\left\langle A^{-1} x, x\right\rangle\right) \\
& \geq(\leq) 2 h(\langle A x, x\rangle) h\left(\left\langle A^{-1} x, x\right\rangle\right)\left[\left\langle A^{-1} x, x\right\rangle\langle A x, x\rangle^{-1}+\langle A x, x\rangle\left\langle A^{-1} x, x\right\rangle^{-1}\right]
\end{aligned}
$$

for any $x \in H$ with $\|x\|=1$.
Corollary 2.22. Let A be a selfadjoint operator with $\operatorname{sp}(A) \subset[\gamma, \Gamma]$ for some real numbers γ, Γ with $\gamma<\Gamma$. Let $h:[\gamma, \Gamma] \rightarrow \mathbb{R}$ be a non-negative continuous. If $f:[\gamma, \Gamma] \rightarrow \mathbb{R}$ is continuous and h-synchronous on $[\gamma, \Gamma]$, then

$$
\begin{aligned}
h^{2}(\langle A x, x\rangle) f^{2}\left(\left\langleA^{-1} x,\right.\right. & x\rangle)+h^{2}\left(\left\langle A^{-1} x, x\right\rangle\right) f^{2}(\langle A x, x\rangle) \\
\geq & 2 h(\langle A x, x\rangle) h\left(\left\langle A^{-1} x, x\right\rangle\right) f\left(\left\langle A^{-1} x, x\right\rangle\right) f(\langle A x, x\rangle)
\end{aligned}
$$

for any $x \in H$ with $\|x\|=1$.
Proof. Setting $f=g$ in (2.13), respectively; we get the required results.
An n-operators version of Theorem 2.7 is embodied as follows:
Theorem 2.23. Let A_{j} be a selfadjoint operator with $\operatorname{sp}\left(A_{j}\right) \subset[\gamma, \Gamma]$ for $j \in$ $\{1,2, \cdots, n\}$ for some real numbers γ, Γ with $\gamma<\Gamma$. Let $h:[\gamma, \Gamma] \rightarrow \mathbb{R}$ be a nonnegative continuous. If $f, g:[\gamma, \Gamma] \rightarrow \mathbb{R}$ are continuous and both h-synchronous
(h-asynchronous) on $[\gamma, \Gamma]$, then

$$
\begin{align*}
\sum_{j=1}^{n}\left\langle h^{2}\left(A_{j}\right) x_{j},\right. & \left.x_{j}\right\rangle \sum_{j=1}^{n}\left\langle f\left(A_{j}\right) g\left(A_{j}\right) x_{j}, x_{j}\right\rangle \\
\geq & \geq(\leq) \sum_{j=1}^{n}\left\langle h\left(A_{j}\right) g\left(A_{j}\right) x_{j}, x_{j}\right\rangle \sum_{j=1}^{n}\left\langle h\left(A_{j}\right) f\left(A_{j}\right) x_{j}, x_{j}\right\rangle \tag{2.16}
\end{align*}
$$

for each $x_{j} \in H, j \in\{1,2, \cdots, n\}$ with $\sum_{j=1}^{n}\left\|x_{j}\right\|^{2}=1$.
Proof. As in ([4], p.6), if we put

$$
\widetilde{A}:=\left(\begin{array}{ccc}
A_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & A_{n}
\end{array}\right) \quad \text { and } \quad \widetilde{x}:=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

then we have $\operatorname{sp}(\widetilde{A}) \subset[\gamma, \Gamma],\|\widetilde{x}\|=1,\left\langle h^{2}(\widetilde{A}) \widetilde{x}, \widetilde{x}\right\rangle=\sum_{j=1}^{n}\left\langle h^{2}\left(A_{j}\right) x_{j}, x_{j}\right\rangle$,

$$
\begin{aligned}
\langle f(\widetilde{A}) g(\widetilde{A}) \widetilde{x}, \widetilde{x}\rangle & =\sum_{j=1}^{n}\left\langle f\left(A_{j}\right) g\left(A_{j}\right) x_{j}, x_{j}\right\rangle \\
\langle h(\widetilde{A}) g(\widetilde{A}) x, x\rangle & =\sum_{j=1}^{n}\left\langle h\left(A_{j}\right) g\left(A_{j}\right) x_{j}, x_{j}\right\rangle
\end{aligned}
$$

and $\langle h(\widetilde{A}) f(\widetilde{A}) \widetilde{x}, \tilde{x}\rangle=\sum_{j=1}^{n}\left\langle h\left(A_{j}\right) f\left(A_{j}\right) x_{j}, x_{j}\right\rangle$. Applying Theorem 2.7 for \widetilde{A} and \widetilde{x} we deduce the desired result.

Corollary 2.24. Let A_{j} be a selfadjoint operator with $\operatorname{sp}\left(A_{j}\right) \subset[\gamma, \Gamma]$ for $j \in$ $\{1,2, \cdots, n\}$ for some real numbers γ, Γ with $\gamma<\Gamma$. Let $h:[\gamma, \Gamma] \rightarrow \mathbb{R}$ be a non-negative continuous. If $f:[\gamma, \Gamma] \rightarrow \mathbb{R}$ is continuous and h-synchronous on $[\gamma, \Gamma]$, then

$$
\begin{equation*}
\left(\sum_{j=1}^{n}\left\langle h\left(A_{j}\right) f\left(A_{j}\right) x_{j}, x_{j}\right\rangle\right)^{2} \leq \sum_{j=1}^{n}\left\langle h^{2}\left(A_{j}\right) x_{j}, x_{j}\right\rangle \sum_{j=1}^{n}\left\langle f^{2}\left(A_{j}\right) x_{j}, x_{j}\right\rangle \tag{2.17}
\end{equation*}
$$

for each $x_{j} \in H, j \in\{1,2, \cdots, n\}$ with $\sum_{j=1}^{n}\left\|x_{j}\right\|^{2}=1$.
Proof. Setting $f=g$ in (2.16), we get the desired result.
Corollary 2.25. Let A_{j} be a selfadjoint operator with $\operatorname{sp}\left(A_{j}\right) \subset[\gamma, \Gamma]$ for $j \in$ $\{1,2, \cdots, n\}$ for some real numbers γ, Γ with $0<\gamma<\Gamma$. If $f:[\gamma, \Gamma] \rightarrow \mathbb{R}$ is continuous and t-synchronous on $[\gamma, \Gamma]$, then

$$
\begin{equation*}
\left(\sum_{j=1}^{n}\left\langle A_{j} f\left(A_{j}\right) x_{j}, x_{j}\right\rangle\right)^{2} \leq \sum_{j=1}^{n}\left\langle A_{j}^{2} x_{j}, x_{j}\right\rangle \sum_{j=1}^{n}\left\langle f^{2}\left(A_{j}\right) x_{j}, x_{j}\right\rangle \tag{2.18}
\end{equation*}
$$

for each $x_{j} \in H, j \in\{1,2, \cdots, n\}$ with $\sum_{j=1}^{n}\left\|x_{j}\right\|^{2}=1$.

Proof. Setting $h(t)=t$ in (2.17), we get the desired result.
Remark 2.26. Let A_{j} be a selfadjoint operator with $\operatorname{sp}\left(A_{j}\right) \subset[\gamma, \Gamma]$ for $j \in$ $\{1,2, \cdots, n\}$ for some real numbers γ, Γ with $0<\gamma<\Gamma$. Let $f(s)=s^{1 / 2}$ for $s \in[\gamma, \Gamma]$ then f is $t^{-1 / 2}$-synchronous so that by (2.18) we have

$$
\begin{equation*}
n^{2} \leq\left(\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle\right) \cdot\left(\sum_{j=1}^{n}\left\langle A_{j}^{-1} x_{j}, x_{j}\right\rangle\right) \tag{2.19}
\end{equation*}
$$

The discrete version of Čebyšev inequality, reads that

$$
\frac{1}{m} \sum_{i=1}^{m} a_{i} b_{i} \geq\left(\frac{1}{m} \sum_{i=1}^{m} a_{i}\right)\left(\frac{1}{m} \sum_{i=1}^{m} b_{i}\right)
$$

for all similarly ordered n-tuples $\left(a_{1}, \cdots, a_{m}\right)$ and $\left(b_{1}, \cdots, b_{m}\right)$.
Let $\left\{A_{j}\right\}_{j=1}^{n}$ be a finite positive sequence of invertible self-adjoint operators and consider $a_{j}=\left\langle A_{j} x_{j}, x_{j}\right\rangle$ and $b_{j}=\left\langle A_{j}^{-1} x_{j}, x_{j}\right\rangle$ for all $j=1, \cdots, n$. If $\left(a_{1}, \cdots, a_{n}\right)$ and $\left(b_{1}, \cdots, b_{n}\right)$ similarly ordered n-tuples. Then by employing the Čebyšev inequality on (2.19) we get

$$
1 \leq \frac{1}{n} \sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle \cdot \frac{1}{n} \sum_{j=1}^{n}\left\langle A_{j}^{-1} x_{j}, x_{j}\right\rangle \leq \frac{1}{n} \sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle\left\langle A_{j}^{-1} x_{j}, x_{j}\right\rangle .
$$

On other hand, if $\gamma_{j} \cdot 1_{H} \leq A_{j} \leq \Gamma_{j} \cdot 1_{H}$, then by Kanotrovich inequality we have

$$
\begin{aligned}
1 & \leq \frac{1}{n} \sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle \cdot \frac{1}{n} \sum_{j=1}^{n}\left\langle A_{j}^{-1} x_{j}, x_{j}\right\rangle \\
& \leq \frac{1}{n} \sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle\left\langle A_{j}^{-1} x_{j}, x_{j}\right\rangle \leq \frac{1}{n} \sum_{j=1}^{n} \frac{\left(\Gamma_{j}-\gamma_{j}\right)^{2}}{4 \gamma_{j} \Gamma_{j}} .
\end{aligned}
$$

In case $n=2$, we have

$$
\begin{aligned}
1 & \leq \frac{1}{4}\left[\left\langle A_{1} x_{1}, x_{1}\right\rangle+\left\langle A_{2} x_{2}, x_{2}\right\rangle\right] \cdot\left[\left\langle A_{1}^{-1} x_{1}, x_{1}\right\rangle+\left\langle A_{2}^{-1} x_{2}, x_{2}\right\rangle\right] \\
& \leq \frac{1}{2}\left[\left\langle A_{1} x_{1}, x_{1}\right\rangle\left\langle A_{1}^{-1} x_{1}, x_{1}\right\rangle+\left\langle A_{2} x_{2}, x_{2}\right\rangle\left\langle A_{2}^{-1} x_{2}, x_{2}\right\rangle\right] \\
& \leq \frac{1}{8}\left[\frac{\left(\Gamma_{1}-\gamma_{1}\right)^{2}}{\gamma_{1} \Gamma_{1}}+\frac{\left(\Gamma_{2}-\gamma_{2}\right)^{2}}{\gamma_{2} \Gamma_{2}}\right] .
\end{aligned}
$$

An n-operators version of Theorem 2.16 is incorporated in the following result.
Theorem 2.27. Let A_{j} be a selfadjoint operator with $\operatorname{sp}\left(A_{j}\right) \subset[\gamma, \Gamma]$ for $j \in$ $\{1,2, \cdots, n\}$ for some real numbers γ, Γ with $\gamma<\Gamma$. Let $h:[\gamma, \Gamma] \rightarrow \mathbb{R}$ be a non-negative continuous. If $f, g:[\gamma, \Gamma] \rightarrow \mathbb{R}$ are continuous and both f and g are
h-synchronous (h-asynchronous) on $[\gamma, \Gamma]$, then

$$
\begin{align*}
& h^{2}\left(\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle\right) \sum_{j=1}^{n}\left\langle f\left(A_{j}\right) g\left(A_{j}\right) x_{j}, x_{j}\right\rangle \\
& \quad-\sum_{j=1}^{n}\left\langle h\left(A_{j}\right) f\left(A_{j}\right) x_{j}, x_{j}\right\rangle \sum_{j=1}^{n}\left\langle h\left(A_{j}\right) g\left(A_{j}\right) x_{j}, x_{j}\right\rangle \\
& \geq(\leq)\left[h\left(\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle\right) \sum_{j=1}^{n}\left\langle h\left(A_{j}\right) f\left(A_{j}\right) x_{j}, x_{j}\right\rangle\right. \tag{2.20}\\
& \left.\quad-\sum_{j=1}^{n}\left\langle h^{2}\left(A_{j}\right) x_{j}, x_{j}\right\rangle f\left(\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle\right)\right] \cdot g\left(\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle\right) \\
& \quad+\left[h\left(\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle\right) f\left(\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle\right)\right. \\
& \left.\quad \quad-\sum_{j=1}^{n}\left\langle h\left(A_{j}\right) f\left(A_{j}\right) x_{j}, x_{j}\right\rangle\right] \cdot \sum_{j=1}^{n}\left\langle h\left(A_{j}\right) g\left(A_{j}\right) x_{j}, x_{j}\right\rangle
\end{align*}
$$

for each $x_{j} \in H, j \in\{1,2, \cdots, n\}$ with $\sum_{j=1}^{n}\left\|x_{j}\right\|^{2}=1$.
Proof. The proof is similar to the proof of Theorem 2.23 on employing Theorem 2.16.

Corollary 2.28. Let A_{j} be a selfadjoint operator with $\operatorname{sp}\left(A_{j}\right) \subset[\gamma, \Gamma]$ for $j \in$ $\{1,2, \cdots, n\}$ for some real numbers γ, Γ with $\gamma<\Gamma$. Let $h:[\gamma, \Gamma] \rightarrow \mathbb{R}$ be a non-negative continuous and convex on $[\gamma, \Gamma]$. If $f:[\gamma, \Gamma] \rightarrow \mathbb{R}$ is continuous and h-synchronous on $[\gamma, \Gamma]$, then

$$
\begin{align*}
& h^{2}\left(\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle\right) \sum_{j=1}^{n}\left\langle f^{2}\left(A_{j}\right) x_{j}, x_{j}\right\rangle-\left(\sum_{j=1}^{n}\left\langle h\left(A_{j}\right) f\left(A_{j}\right) x_{j}, x_{j}\right\rangle\right)^{2} \\
& \geq(\leq) \tag{2.21}\\
& \quad\left[h\left(\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle\right) \sum_{j=1}^{n}\left\langle h\left(A_{j}\right) f\left(A_{j}\right) x_{j}, x_{j}\right\rangle\right. \\
& \left.\quad-\sum_{j=1}^{n}\left\langle h^{2}\left(A_{j}\right) x_{j}, x_{j}\right\rangle f\left(\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle\right)\right] \cdot f\left(\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle\right) \\
& +\left[h\left(\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle\right) f\left(\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle\right)\right. \\
& \left.\quad-\sum_{j=1}^{n}\left\langle h\left(A_{j}\right) f\left(A_{j}\right) x_{j}, x_{j}\right\rangle\right] \cdot \sum_{j=1}^{n}\left\langle h\left(A_{j}\right) f\left(A_{j}\right) x_{j}, x_{j}\right\rangle
\end{align*}
$$

for each $x_{j} \in H, j \in\{1,2, \cdots, n\}$ with $\sum_{j=1}^{n}\left\|x_{j}\right\|^{2}=1$.

Proof. Setting $f=g$ in (2.20), respectively; we get the required results.
Corollary 2.29. Let A_{j} be a selfadjoint operator with $\operatorname{sp}\left(A_{j}\right) \subset[\gamma, \Gamma]$ for $j \in$ $\{1,2, \cdots, n\}$ for some real numbers γ, Γ with $0<\gamma<\Gamma$. If $f:[\gamma, \Gamma] \rightarrow \mathbb{R}$ is continuous and t-synchronous on $[\gamma, \Gamma]$, then

$$
\begin{aligned}
& \left(\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle\right)^{2} \sum_{j=1}^{n}\left\langle f^{2}\left(A_{j}\right) x_{j}, x_{j}\right\rangle-\left(\sum_{j=1}^{n}\left\langle A_{j} f\left(A_{j}\right) x_{j}, x_{j}\right\rangle\right)^{2} \\
& \geq(\leq)\left[\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle \sum_{j=1}^{n}\left\langle A_{j} f\left(A_{j}\right) x_{j}, x_{j}\right\rangle\right. \\
& \left.\quad-\sum_{j=1}^{n}\left\langle A_{j}^{2} x_{j}, x_{j}\right\rangle f\left(\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle\right)\right] \cdot f\left(\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle\right) \\
& \quad+\left[\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle f\left(\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle\right)\right. \\
& \left.\quad-\sum_{j=1}^{n}\left\langle A_{j} f\left(A_{j}\right) x_{j}, x_{j}\right\rangle\right] \cdot \sum_{j=1}^{n}\left\langle A_{j} f\left(A_{j}\right) x_{j}, x_{j}\right\rangle
\end{aligned}
$$

for each $x_{j} \in H, j \in\{1,2, \cdots, n\}$ with $\sum_{j=1}^{n}\left\|x_{j}\right\|^{2}=1$.
Proof. Setting $h(t)=t$ in (2.21), we get the desired results.
Remark 2.30. By choosing $h(t)=1$ for all $t \in[a, b]$, in Theorems 2.7, 2.16, 2.23 and 2.27 , then we recapture all inequalities obtained [2] and their consequences.

Acknowledgment. The author wish to thank the referees for their careful reading and for providing very constructive comments that helped improving the presentation of this article.

References

1. M. W. Alomari, On Pompeiu-Chebyshev functional and its generalization, Preprint arXiv:1706.06250v2.
2. S. S. Dragomir, Čebyšev's type inequalities for functions of selfadjoint operators in Hilbert spaces, Linear Multilinear Algebra, 58 no 7-8 (2010), 805-814.
3. S. S. Dragomir, Operator inequalities of the Jensen, Čebyšev and Grüss type, Springer, New York, 2012.
4. T. Furuta, J. Mićić, J. Pečarić, and Y. Seo, Mond-Pečarić method in operator inequalities. Inequalities for bounded selfadjoint operators on a Hilbert space, Element, Zagreb, 2005.
5. M. S. Moslehian and M. Bakherad, Chebyshev type inequalities for Hilbert space operators, J. Math. Anal. Appl. 420 (2014), no. 1, 737-749.
6. J. S. Matharu and M. S. Moslehian, Grüss inequality for some types of positive linear maps, J. Operator Theory 73 (2015), no. 1, 265-278.

Department of Mathematics, Faculty of Science and Information Technology, Irbid National University, P.O. Box 2600, Irbid, P.C. 21110, Jordan.

E-mail address: mwomath@gmail.com

[^0]: Copyright 2018 by the Tusi Mathematical Research Group.
 Date: Received: Aug. 21, 2017; Accepted: Dec. 16, 2017.
 2010 Mathematics Subject Classification. Primary 47A63; Secondary 47A99.
 Key words and phrases. Hilbert space, selfadjoint operators, h-synchronization.

