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MAXIMUM BIAS CURVES FOR ROBUST REGRESSION WITH
NON-ELLIPTICAL REGRESSORS

By José R. Berrendero1 and Ruben H. Zamar2

Universidad Autónoma de Madrid and University of British Columbia

Maximum bias curves for some regression estimates were previously
derived assuming that (i) the intercept term is known and/or (ii) the re-
gressors have an elliptical distribution. We present a single method to ob-
tain the maximum bias curves for a large class of regression estimates.
Our results are derived under very mild conditions and, in particular, do
not require the restrictive assumptions (i) and (ii) above. Using these re-
sults it is shown that the maximum bias curves heavily depend on the
shape of the regressors’ distribution which we call the x-configuration. De-
spite this big effect, the relative performance of different estimates remains
unchanged under different x-configurations. We also explore the links be-
tween maxbias curves and bias bounds. Finally, we compare the robustness
properties of some estimates for the intercept parameter.

1. Introduction. The concept of maximum asymptotic bias was intro-
duced by Huber (1964) for the simple location model. Extensions to scale and
location-dispersion models were later obtained by Martin and Zamar (1989,
1993). Adrover (1998) derived the maximum asymptotic bias of dispersion
matrices within the class of M-estimates. Martin Yohai and Zamar (1989),
Croux, Rousseeuw and Hössjer (1994, 1996), Hennig (1995) and Berrendero
and Romo (1998) considered the linear regression model. See also Donoho and
Liu (1988), He and Simpson (1993) and Zamar (1992).

We will focus on the regression model where the maximum bias theory has
two main possible applications:

(i) the comparison of competing robust regression estimates in terms of
their bias behavior and

(ii) the estimation of bias bounds for robust estimates in practical situa-
tions.

Given two estimates, the one with smaller maxbias curve is obviously more
robust. In particular, its maxbias curve will have a smaller derivative at
zero (called gross-error-sensitivity) and a larger asymptote (called breakdown
point, BP). The comparison of maxbias functions naturally leads to the min-
imax bias theory also initiated by Huber’s seminal 1964 work. The minimax
bias theory seeks estimates which minimize the maximum asymptotic bias
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in a certain class of estimates. Huber (1964) showed that the median min-
imizes the maxbias curve among translation equivariant location estimates.
Martin Yohai and Zamar (1989) showed that the least median of square esti-
mate (LMS) introduced by Rousseeuw (1984) is nearly minimax in the class
of regressionM-estimates with general scale. Yohai and Zamar (1993) extend
this result to the larger class of residual admissible estimates [see He (1990)].

A main criticism of the maxbias theory when applied to the comparison
of regression estimates is that its results apply only to regression-through-
the-origin models and/or to neighborhoods of a central regression model with
elliptically distributed regressors. We address these criticisms by considering
regression models with general regressors and including the intercept. Our
results will also help to unify the existing theory because they yield a general
methodology applicable to the large class of regression estimates satisfying (3)
below. This class includes most regression and affine equivariant estimates for
which maxbias curves were known.

Regarding the second application, we notice that, in general, estimates face
two sources of uncertainty: sampling variability and bias. In the case of robust
estimates, the sampling variability can be assessed by their standard errors
(estimated using their asymptotic variances). On the other hand, the bias
caused by outliers and other departures from symmetry can be assessed using
their maximum asymptotic bias. To fix ideas, consider the location case and the
median functional,M�F�. Suppose we have a large sample from a distribution
F containing at most a fraction ε100% of contamination. Suppose we wish to
bound the absolute difference D�F� = �M�F� −M�F0�� between the median
M�F� of the contaminated distribution and the median M�F0� of the core
(uncontaminated) distribution. Huber (1964) showed that∣∣∣∣M�F� −M�F0�

σ0

∣∣∣∣ ≤ F−1
0

(
1

2�1− ε�
)
	= B�ε�(1)

and therefore D�F� is bounded by σ0B�ε�. In practice σ0 is seldom known and
must be estimated by a robust scale functional S�F�, for example, the median
of absolute deviations about the median. Unfortunately the quantity S�F�B�ε�
is not an upper bound for D�F� because S�F� may underestimate σ0. For
instance, if F = 0	90N�0�1� + 0	10δ0	15, then �M�F� −M�F0�� = 0	1397 >
MAD�F�B�0	10� = 0	8818 × 0	1397 = 0	1232. A quantity, K�ε� such that
S�F�K�ε� is a bound for D�F� will be called bias bound. In Section 6 we
study the relation between maxbias curves and bias bounds for location and
regression estimates.

The bias bound is a new theoretical concept which highlights the practi-
cal potential of maxbias curves. In the case of regression estimates we face
challenging problems because maxbias curves for regression estimates are de-
rived using a normalized distance (quadratic form) between the asymptotic
and the true values of the regression coefficients. The normalization is based
on a certain unknown scatter matrix of the regressors. Moreover, the maxi-
mum bias curve depends on the joint distribution of the regressors and the
available formulas relied on unrealistic assumptions (elliptical regressors and
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regression-through-the-origin model). Using the results of Theorem 1 we are
able to derive satisfactory (but possibly not optimal) bias bounds for robust
regression estimates satisfying (3) below. Similar results for other classes of
robust estimates, for example, one-step Newton-Raphson estimates [Simpson,
Ruppert and Carroll (1992)], projection estimates [Maronna and Yohai (1993)]
and maximum depth estimates [Rousseeuw and Hubert (1999)] would be de-
sirable.

The rest of the paper is organized as follows. In Section 2 we present some
notation and technical background. In Section 3 we lay down the theoretical
ground for our method. In Section 4 we illustrate our method with elliptical re-
gressors. In Section 5 we consider several cases of non-elliptical regressors. In
Section 6 we show how bias bounds can be obtained. In Section 7 we compare
the robustness properties of some robust estimates for the intercept parame-
ter. In Section 8 we give some concluding remarks. Finally, we collect all the
proofs in the Appendix.

2. Notation and technical background. Consider the linear regression
model with p-dimensional regressors and intercept parameter

yi = α0 + �′0xi + σ0ui� 1 ≤ i ≤ n
where the independent errors, ui, have distribution F0 and are independent of
the xi. We assume that the regressors xi are independent random vectors with
common distribution G0. The joint distribution of �yi�xi� under this model is
denoted H0. To allow for a fraction ε of contamination in the data we assume
that the actual true distribution H of �yi�xi� belongs to the contamination
neighborhood

Vε�H0� =
{
H 
 H = �1− ε�H0 + εH̃� H̃ arbitrary distribution

}
	

Let T be an �p valued regression affine equivariant functional for the esti-
mation of �0, defined on a subset of distribution functions H on �p+1, which
includes all H in Vε�H0� and all the empirical distributions Hn. A natural
invariant measure of the robustness of T is given by the maximum bias func-
tion (maxbias function) which gives the maximum bias caused by a fraction ε
of contamination,

BT�ε� = sup
H∈Vε�H0�


�T�H� − �0�′�0�T�H� − �0��1/2 /σ0	(2)

The matrix �0 is an affine equivariant scatter matrix of the regressors under
G0. In view of the equivariance of T and the invariance of BT�ε�, we can
assume without loss of generality that �0 = 0, σ0 = 1 and �0 = I, and so
BT�ε� = supH∈Vε �T�H��. We will also assume without loss of generality that
α0 = 0.

So far, derivations of BT�ε� for regression estimates were done assuming (i)
that the regression is through the origin and/or (ii) that G0 is elliptical. More-
over, the methods and formulas used were rather specific for each particular
type of estimates.
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We present a method to compute the maxbias curve of regression estimates
which is general in several senses. First, it does not assume that the intercept
term is known. Second, it does not require the assumption of ellipticity of
G0. Finally, it applies to a broad class of robust regression estimates, namely,
those defined as

�T0�H��T�H�� = argmin
α��
J�FH�α����(3)

where J�·� is a robust loss functional and FH�α�� is the distribution of the
absolute residuals, ri�α��� = �yi−α−�′xi�, underH. This definition includes,
among others, S-estimates [Rousseeuw and Yohai (1984)], τ-estimates [Yohai
and Zamar (1988)] and R-estimates [Hössjer (1994)]. Some examples of esti-
mates which are not residual admissible are GM-estimates [see, e.g., Hampel
et al. (1986)], GS-estimates [Croux, Rousseeuw and Hössjer (1994)] and P-
estimates [Maronna and Yohai (1993)].

3. The main result. We will assume that the robust loss functional sat-
isfies:

A1. (a) If F and G are two distribution functions on �0�∞� such that
F�u� ≤ G�u� for every u ≥ 0, then J�F� ≥ J�G�.

(b) �ε-monotonicity�. Given two sequences of distribution functions on
�0�∞�, Fn and Gn, which are continuous on �0�∞� and such that Fn�u� →
F�u� and Gn�u� → G�u�, where F and G are possibly sub-stochastic and
continuous on �0�∞�, with G�∞� ≥ 1− ε and

G�u� ≥ F�u� for every u > 0�(4)

then

lim
n→∞J�Fn� ≥ lim

n→∞J�Gn�	(5)

Moreover, if �4� holds strictly, then �5� also holds strictly.
(c) If F and G are two distribution functions on �0�∞�, with F continuous,

then

J��1− ε�F+ εδ∞� 	= lim
n→∞J��1− ε�F+ εUn� ≥ J��1− ε�F+ εG��

whereUn stands for the uniform distribution function on �n−�1/n�� n+�1/n��.

A1(a) is a monotonicity condition that can be easily checked in all the ex-
amples of Sections 4 and 5. A1(b) was introduced by Yohai and Zamar (1993)
who show that when J is ε-monotone, the corresponding estimate belongs to
the general class of residual admissible regression estimates [He (1990)]. The
definition of residual admissible estimate is rather involved but, loosely speak-
ing, one can say that the distribution of the absolute residuals produced by
a residual admissible estimate cannot be improved (in the sense of stochastic
dominance) by using any other set of parameters. Finally, A1(c) is a condition
that specifies the form of the contaminations that cause the greatest loss.
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We will assume that the errors and regressors satisfy:

A2. F0 has an even and strictly unimodal density f0 with f0�u� > 0 for
every u ∈ �, and PG0

��′x = c� < 1, for each � �= 0, c ∈ �.

Assumption A2 allows for great generality. In particular, it does not require
ellipticity nor continuity of the regressors distribution.

The following is our main result.

Theorem 1. Let T be a regression estimate defined by �3�	 Let c = J��1−
ε�FH0�0�0 + εδ∞� and

m�t� = inf
���=t

inf
α∈�
J
[�1− ε�FH0�α��

+ εδ0��(6)

where δ0 and δ∞ are point mass distributions at zero and infinity, respectively.
Then, under A1 and A2, the maxbias curve for T is given by

BT�ε� =m−1�c�	(7)

Some general properties of the contamination sensitivity and BP of residual
admissible estimates with unknown intercept can now be obtained. These
properties are stated in the following corollary.

Corollary 1. Let T be a regression estimate defined by (3). With the same
notation and assumptions of Theorem 1:

(a) The slope of BT�ε� at zero is infinity: limε→0BT�ε�/ε = ∞
(b) The BP of T, ε∗, is given by ε∗ = inf
ε > 0 
 m�t� < c� for all t > 0�.

Notice that part (a) extends the results by He (1990) and Yohai and Zamar
(1993, 1997) to the unknown intercept case. Moreover, part (b) shows how
the BP of residual admissible estimates can be characterized through the loss
function J.

In the next section we illustrate the application of Theorem 1 in the Gaus-
sian case. Non-elliptical distributions are considered in Section 5.

4. Gaussian and elliptical regressors. The following theorem shows
that under strong symmetry assumptions on the regressors distribution the
function m�t�, defined in (6), can be substantially simplified.

Theorem 2. Assume A1 and A2, and that the distribution of �′x is sym-
metric, unimodal and only depends on ��� for all � �= 0. Then, it holds that

inf
α∈�
J
[�1− ε�FH0�α��

+ εδ0
] = J [�1− ε�FH0�0�� + εδ0

] =m�����	
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As a consequence the infima in (6) are no longer needed and the maxbias
function BT�ε� satisfies

m �BT�ε�� = J
[
�1− ε�FH0�0�0 + εδ∞

]
	(8)

The symmetry assumption of Theorem 2 is clearly satisfied by Gaussian
regressors, and more generally, by elliptically symmetric and unimodal re-
gressors. Moreover, in the Gaussian case the distribution of y− �′x is normal
with mean 0 and variance 1 + ���2 and the function m�t� then becomes par-
ticularly simple.

4.1. Maxbias curves for S-estimates. Regression S-estimates were defined
by Rousseeuw and Yohai (1984) by the property of minimizing a scale M-
estimate [see Huber (1964, 1981)]. It can be easily verified that in this case
the functional J in (3) is given by J�FH�α��� = S�FH�α���, where

S�F� = inf
{
s > 0 
 EFχ �u/s� ≤ b

}
	(9)

We assume that the score function χ satisfies:

A3. The function χ is even, bounded, monotone on �0�∞�, continuous at 0
with 0 = χ�0� < χ�∞� = 1 and with at most a finite number of discontinuities.

It can be easily checked that A1(a) and A1(c) hold under A3. Moreover,
Yohai and Zamar (1993) showed that S�F� is ε-monotone for all ε > 0.

The method given by Theorems 1 and 2 can now be used to strengthen the
results in Martin Yohai and Zamar (1989). First, it is easy to see that the
formula (3.18) in that paper derived for S-estimators of regression through
the origin is also valid for the general regression model. Second, Martin Yohai
and Zamar (1989) and Yohai and Zamar (1993) established a minimax bias
theory for the regression model. According to this theory, the least median
of squares (LMS) estimate [Rousseeuw (1984)] minimizes the maximum bias
among residual admissible estimates of regression through the origin. It is
now immediate from Theorem 2 that the minimaxity of LMS extends to models
including the intercept.

4.2. Maxbias curves for τ-estimates. The loss functional J in (3) for the
case of τ-estimates is given by J�FH�α��� = τ2�FH�α��� with

τ2�F� = S2�F�EFχ2
(

u

S�F�
)
�

and S�F� is defined as in (9) with χ = χ1. If χ1 and χ2 satisfy A3 and χ2 is
differentiable with 2χ2�u�−χ′

2�u�u ≥ 0, then A1(a) and A1(c) hold. Moreover,
Yohai and Zamar (1993) showed that τ�F� is ε -monotone for all ε > 0.

As shown by Hössjer (1992), efficient S-estimates have a very low BP. Yohai
and Zamar (1988) showed that τ-estimates inherit the BP of the initial S-
estimate defined by χ1 whereas its efficiency is mainly determined by χ2.
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Therefore they can have high efficiency and BP simultaneously. A natural
question then is to what extent the τ-estimate inherits the good bias behavior
of the initial S-estimate. We can answer this question using Theorem 3 below.
Notice that (10) establishes a nice relationship between the maxbias curves
of the τ-estimates and their initial S-estimates.

Theorem 3. Under the assumptions of Theorem 1 and assuming that the
errors and the regressors are Gaussian, the maxbias curves for τ-estimates,
Bτ�ε�, are given by

Bτ�ε� =
{�1+B2

S�ε��H�ε� − 1
}1/2

�(10)

where BS�ε� is the maxbias curve of the initial S-estimate based on χ1 and
H�ε� is defined as

H�ε� =
[
g

(
b− ε
1− ε

)
+ ε

1− ε
]/

g

(
b

1− ε
)
�

with g�s� = g2�g−1
1 �s�� and gi�s� = E,χi�u/s�, for i = 1�2. Here, , is the

standard normal distribution function.

A similar theorem can be stated for elliptical regressors.
The maxbias curves for 95% efficient τ-estimates (solid line) and their ini-

tial S-estimates (dashed line) are given for the Huber loss functions χ�y� =
min
�y/c�2�1� in Figure 1(a) and for the Tukey loss functions χ�y� =
min
3�y/c�2 − 3�y/c�4 + �y/c�6�1� in Figure 1(b). The maxbias curves for
the corresponding 95% efficient S-estimates are also displayed (dotted-dashed
line). The breakdown points are 0.13 (Huber) and 0.12 (Tukey). The question
posed above is answered then by these figures. The maxbias curves of the
efficient τ-estimates are closer to those of the initial S-estimates than those
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Fig. 1. Maxbias curves for tau-estimates �solid line�� initial S-estimates �dashed line� and effi-
cient S-estimates �dotted-dashed line�
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of the efficient S-estimates. Clearly, the gain in efficiency is less costly in the
Huber case.

Remark. Our method can also be applied to R-estimates [see Hössjer
(1994)]. In this case J�FH�α��� = R�FH�α���, where

R�F� =
∫ ∞

0
a�F�u��ukdF�u�	

Berrendero and Zamar (1995) and Croux, Rousseeuw and Hössjer (1996) inde-
pendently gave formulas for the maxbias curve of R-estimators of regression
through the origin. The method given by Theorems 1 and 2 shows that these
formulas extend to the general regression model.

5. Non-elliptical regressors. We wish to investigate the effect of non-
elliptical regressors on the bias of robust estimates. To that effect, we consider
a regression through the origin model and compute the maxbias curve for
three different regression S-estimates (�̂LMS, �̂H and �̂L) for several bivariate
x-configurations. The corresponding score functions are

χLMS�y� =
{
0� y ≤ c1�
1� y > c1�

for �̂LMS,

χH�y� = min
�y/c2�2�1��
for �̂H and

χL�y� = min
�y/c3��1��
for �̂L. The constants c1 = 0	674, c2 = 1	041 and c3 = 1	470 are chosen so that
these estimates have BP equal to 1/2.

The multiple integration needed to evaluate J��1 − ε�FH0�0�� + εδ0� has
been carried out using Monte-Carlo methods with 100,000 replicates. For each
t > 0, the infimum over ��� = t has been approximated by evaluating J��1−
ε�FH0�0�� + εδ0� at ��γ� = �t cos�γ�� t sin�γ��′ with γ ranging over the grid

0o�1o� 	 	 	 �180o�. Finally, the equation m�t� = c has been solved by bisection.

5.1. Kurtosis of the marginal x-distributions. To investigate the effect of
the tails of the marginal x-distributions, we compute the maxbias curves for
several Student-t bivariate distributions.

We found that, when the regressors x1 and x2 are independent Student-t
random variables with n1 ≤ n2 degrees of freedom, the maxbias curve is solely
determined by the minimum of the two numbers, namely n1.

Figure 2(a), (b) and (c) correspond to n1 = 3, n1 = 6 and n1 = 12 respectively.
Figure 2 (d) displays the Gaussian limiting case (n1 → ∞). As n1 decreases,
the maxbias curves of the three estimates increase, more dramatically when
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Fig. 2. Maxbias curves of �̂LMS �solid line�� �̂H �dashed line� and �̂L �dotted-dashed line� for
independent Student-t and Gaussian regressors.

n1 = 3. The maxbias curves are already very close to the limiting Gaussian
case when n1 = 12.

Although the maxbias curves behave differently for each x-configuration,
the relative maxbias behaviors are remarkably preserved across the consid-
ered cases: the maxbias curves of �̂LMS and θ̂H are quite similar and the
maxbias curve of �̂L is somewhat larger than the other two, in all the consid-
ered cases.

5.2. Skewness of the marginal x-distributions. To investigate the effect of
unbalanced x-configurations (asymmetric marginal) we compute the maxbias
curves for several Chi-square bivariate distributions.

In Figure 3(a), (b) and (c) the maxbias curves for two independent Chi-
square regressors �x1� x2� with several pairs of degrees of freedom �n1� n2�
are displayed. As the regressors become more asymmetric the maxbias curves
of the three estimates increase. However, when one of the two regressors is
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Fig. 3. Maxbias curves of �̂LMS �solid line�� �̂H �dashed line� and �̂L �dotted-dashed line� for
independent Chi-square and Gaussian regressors.

nearly Gaussian [see Figure 3(d)] the maxbias curves approach a Gaussian
behavior.

As in the previous case, the relative maxbias behaviors are preserved across
the considered cases.

5.3. Dependent regressors. To investigate the effect of dependent regres-
sors we compute the maxbias curves for two closely related x-configurations.
In the two cases x1 is standard normal and x2 is Chi-square with one degree
of freedom. In the first case x2 = x21 which corresponds to a second degree
polynomial regression [see Figure 4(a)]. In the second case [Figure 4(b)] x1
and x2 are independent. Surprisingly, the maxbias curves are larger in the
independent case although the results for the two cases are strikingly close.

6. Bias bound. To introduce the main ideas we will consider first the
simple location model.
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Fig. 4. Maxbias curves of �̂LMS �solid line�� �̂H �dashed line� and �̂L �dotted-dashed line� for (a)
x1 standard normal and x2 = x21 and (b) x1 standard normal and x2 Chi-square with one degree
of freedom and independent of x1.

6.1. Location model. Let yi = θ0 + σ0ui, i = 1� 	 	 	 � n, where the errors,
ui, follow a nominal distribution F0 satisfying A2. We assume that the actual
distribution of the observations y1� 	 	 	 � yn is F ∈ Vε�F0�, that is, F�y� =
�1− ε�F0��y− θ0�/σ0� + εF̃� for some arbitrary contamination distribution F̃.
Let M�F� be a location M-functional to estimate θ0 and let S�F� be a scale
M-functional to estimate σ0. Martin and Zamar (1993) give formulas for the
maxbias of the location functional

BM�ε� = sup
F∈Vε�F0�

∣∣∣∣M�F� − θ0
σ0

∣∣∣∣
and for the implosion and explosion maxbiases of the scale functional

S+
S�ε� = sup

F∈Vε�F0�

S�F�
σ0

and S−
S�ε� = inf

F∈Vε�F0�
S�F�
σ0

As argued earlier on (in the Introduction) the quantity S�F�BM�ε� is not a
bound for D�F� = ∣∣M�F� − θ0

∣∣. On the other hand,

D�F� ≤ σ0BM�ε� = S�F�BM�ε� σ0
S�F� ≤ S�F�BM�ε�/S−

S�ε�

and so K̃�ε� = BM�ε�/S−
S�ε� is a bias bound. A refinement (of practical value

when ε > 0	2) is provided by the following lemma.

Lemma 1. Let M�F� be an equivariant location functional with maxbias
function BM�ε� and BP 0.5. Let S�F� be a scaleM-functional with score func-
tion χ satisfying A3 and such that EF0

χ�X� = 1/2. Let γ�t� be defined as the
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unique solution to �1− ε�EF0
χ��X− t�/γ�t�� = 1/2. Then

K�ε� = sup
�t�≤BM�ε�

�t�
γ�t� �

is a bias bound forM�F�.

Table 1 gives the values of BM�ε�, K�ε� and K̃�ε� for the median when
S = MAD, for several values of ε and for F0 = ,, the standard normal
distribution. Notice that K�ε� and K̃�ε� are larger than BM�ε� because they
take into account the possible underestimation of σ0.

6.2. Regression model. In the regression case one would normally be inter-
ested in bounding the difference between the estimated regression coefficients
and their true values. Notice that BT�ε� gives an upper bound for the invari-
ant quantity 
�T�H� −T�H0��′�0�T�H� −T�H0���1/2/σ0 [see (2)] whereas the
straight difference �T�H�−T�H0�� depends on the units used to measure the
response and the regressors. Moreover, as in the location model, to obtain a
usable bound we must take into account the possible bias in the estimation of
σ0 and �0.

To fix ideas, we will assume that �0 = CovG0
�x�. Let a1�G0�� 	 	 	 �ap�G0� be

the unit eigenvectors of �0 and λ1�G0� ≤ · · · ≤ λp�G0� be the corresponding
eigenvalues. We have the following result:

Lemma 2. For all H ∈ Vε�H0�, �T�H� − T�H0�� ≤ σ0BT�ε�/
√
λ1�G0�	

In applications, the nuisance parameters σ0 and
√
λ1�G0� must be robustly es-

timated. The residual scale, σ0� can be estimated by a robust residual scale es-
timate S0�F� applied to the distribution of the regression residuals
FH�T0�H��T�H�� that is,

σ̂0�H� 	= S0�FH�T0�H��T�H��	(11)

Estimation of λ1�G0�. Suppose that the core x-configuration is known ex-
cept for an affine transformation. More precisely, suppose that G0 is the distri-
bution function of x = A−1x∗+�� whereA is an unknown invertible matrix, �

Table 1

Maxbias and bias bound for the median �S = MAD� when
F0 is the standard normal distribution

� BM��� K(�) K̃���
0.05 0.066 0.070 0.070
0.10 0.140 0.159 0.160
0.15 0.223 0.271 0.278
0.20 0.319 0.417 0.440
0.25 0.431 0.614 0.675
0.30 0.566 0.889 1.043
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is an unknown vector and x∗ has some specified canonical distribution function
G∗

0 with EG∗
0
�x∗� = 0 and CovG∗

0
�x∗� = I. Some examples are (i) the core distri-

bution of x is multivariate normal or Student-t and (ii) the non-contaminated
entries of x are linear combinations of some independent random variables
(e.g., Student-t random variables with n1� n2� 	 	 	 � np degrees of freedom).

We will see that in order to be useful for the construction of the bias bound,
the functional λ̂1�G� must have the following two properties: (a) it must have
a known upper bound for its over-estimation bias; and (b) it must satisfy
the inequality λ̂1�G0� ≤ λ1�G0�. We have found a functional which satisfies
these requirements. The definition of this functional resembles the projection
pursuit robust principal component methods proposed by Li and Chen (1985).

Let ρ be a continuous loss function satisfying A3 and such that

max
�a�=1

inf
t
E
G∗
0
ρ�a′x − t� = 1/2	(12)

For each distribution G� each (unitary) vector a� and each real number t� let
S�G�a� t� be the solution to

EGρ��a′x − t�/s� = 1/2(13)

and let

S�G�a� = inf
t
S�G�a� t�	(14)

Define, √
λ̂1�G� 	= min

�a�=1
S�G�a�	(15)

The following lemma shows that λ̂1�G� satisfies the conditions (a) and (b)
above. Statement (c) of the lemma gives a condition under which the estimate
is Fisher consistent. Note that this condition holds when G0 is spherically
symmetric. In general, ρ should be chosen so that min�a�=1 inf t EG∗

0
ρ�a′x − t�

is close to 1/2.

Lemma 3. Let x ∼G and z =A−1x + v ∼ G∗� b = A′a/�A′a� and t∗ =
�t + a′Av�/�A′a�. Suppose that ρ satisfies A3 and is continuous and strictly
monotone at any u such that ρ�u� < 1	 Then:

(a) �A′a�S�G∗�b� t∗� = S�G�a� t�� for all �a� = 1 and for all t	
(b) �A′a�S�G∗� b� = S�G�a� for all �a� = 1	
(c) λ̂1�G0� ≤ λ1�G0�� with equality if min�a�=1 inf t EG∗

0
ρ�a′x − t� = 1/2	

As in the location case, we wish to find a bias bound for T�H��that is a
quantity K�ε� such that

�T�H�−T�H0��≤
σ̂0�H�√
λ̂1�G�

K�ε� 	= â�H�K�ε� for all H∈Vε�H0�(16)
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where K�ε� only depends on H0 and ε, and â�H� can be consistently esti-
mated.

We have the following result:

Theorem 4. Let σ̂0�H� and λ̂1�G� be defined by �11� and �15�	 Suppose
that ρ satisfies A3 and is continuous and strictly monotone at any u such that
ρ�u� < 1	 Then �16� holds with

K�ε� = max
�a�=1

S+�a� ε�
σ̂−
0 �ε�

BT�ε��(17)

where σ̂−
0 �ε� is the implosion bias of the scale functional used in �11� �see

Martin and Zamar �1993�� and

S+�a� ε� = N�a� ε�
S�G∗

0�a�
�

where N�a� ε� = inf t N�a� ε� t� and N�a� ε� t� satisfies

�1− ε�EG∗
0
ρ

(
a′x − t
N�a� ε� t�

)
+ ε = 1

2
	

If the core distribution of the regressors, G0, is multivariate normal, then �16�
holds with

K�ε� = S+�ε�
σ̂−
0 �ε�

BT�ε��(18)

where S+�ε� is the explosion bias of the S-scale functional S�F� and σ̂−
0 �ε� is

as before.

Table 2 gives the values of BT�ε� and K�ε� when T is the least median
of squares, G0 is Gaussian, and ρ is a jump function. As in Table 1, K�ε� is
larger than BT�ε� because it takes into account the asymptotic bias in the
estimation of σ0�H� and λ1�G�. Notice that, because the estimation problems
are now more involved, the differences observed in this table are larger than
those observed in Table 1. However, it should also be noted that the bias bound
given in Theorem 4 is probably not optimal. It is maybe an interesting open
problem to devise bias bounds which are optimal so that the differences in
Table 2 are minimized.

Often one is interested in linear combinations of the regression coefficients
φ�H0� = c′�0 (e.g., contrasts or predictions) which can be estimated by the
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Table 2

Maxbias and bias bound for the least median of
squares when G0 is a Gaussian distribution

� BT��� K���
0.05 0.528 0.597
0.10 0.827 1.073
0.15 1.134 1.728
0.20 1.515 2.751
0.25 2.012 4.522
0.30 2.714 7.999

functional φ�H� = c′T�H�. Applying the results above we have

�φ�H� −φ�H0�� ≤ �c�K�ε�â�H��
and therefore, the bias bound for φ�Hn� is �c�K�ε�â�Hn�	

To use in practice the bias bound given by Theorem 4 we should specify (up
to an affine transformation) the core distribution G0 and the amount of con-

tamination ε and then compute the quantity K�ε�. The ratio σ̂0�H�/
√
λ̂1�G�

depends on the sampling distributionsH and G. Although these distributions
are unknown, we have observations drawn from them and, therefore, we can
replaceH andG by the empirical distributionsHn andGn. For the bias bound
to be asymptotically valid, it is necessary that

â�Hn� = σ̂0�Hn�
/√

λ̂1�Gn� → σ̂0�H�
/√

λ̂1�G� = â�H�	
Since most robust scale estimates are consistent, the main concern is to show
λ̂1�Gn� → λ̂1�G�. This is accomplished in the following result:

Theorem 5. Let Gn be the empirical distribution corresponding to a sam-
ple x1� 	 	 	 �xn drawn from G. Assume that the loss function ρ is continuous
and satisfies A3. Furthermore, assume that the loss function ρ and the distri-
bution G are such that the functions EGρ�a′x−t

s
� and EGnρ�a′x−t

s
� are strictly

decreasing in s > 0 a.s. for each a ∈ A = 
a: �a� = 1�, x ∈ �p and t ∈ �. Then,

λ̂1�Gn� → λ̂1�G� a.s.

7. Intercept maxbias. Let �T0�H��T�H�� be the regression functional
defined by (3). Due to invariance considerations we define the intercept bias
and maxbias as

b�H� = ∣∣T0�H�−α0+�T�H�− �0�′�0

∣∣/σ0 and BT0
�ε� = sup

H∈Vε�H0�
b�H��

respectively. Compare with Adrover, Salibian and Zamar (1999). Here, �0 is a
multivariate location parameter for x under G0. We can then assume without
loss of generality that �0 = �0 = 0, α0 = 0 and σ0 = 1 and therefore BT0

�ε� =
supH∈Vε�H0� �T0�H��.
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Table 3

Upper bounds for the maxbias of α̂M and lower bounds for the maxbias of several

residual admissible intercept estimates: TLMS0 �least median of squares�� TH0 �0	5
BP Huber S-estimate�� TT0 �0	5 BP Tukey S-estimate�� Tτ�H0 �95% efficient and

0	5 BP τ-estimate with Huber score function� and Tτ�T0 �95% efficient and 0	5 BP
τ-estimate with Tukey score functions�

� �̂M TLMS
0 TH

0 TT
0 T��H

0 T��T
0

0.05 0.07 0.49 0.30 0.15 0.15 0.10
0.10 0.18 0.67 1.21 0.31 0.33 0.21
0.15 0.35 0.91 1.62 0.50 0.54 0.35
0.20 0.60 1.13 1.96 0.70 0.72 0.50
0.25 1.02 1.35 2.24 0.92 0.91 0.75

Although we cannot compute the maxbias for T0, we are able to obtain (see
Theorem 6 below) an upper bound for the maxbias of the intercept estimate
α̂M defined as

α̂M�H� 	= med
(
F∗
H�T�H�

)
�

where F∗
H�T�H� stands for the distribution function of y − T�H�′x under H.

We will provide some evidence suggesting that for small ε (ε ≤ 0	15 in our
calculations) the intercept maxbias of T0 is larger than that of α̂M.

Theorem 6. For every u ∈ �, define

F∗
1�u� 	= inf

0≤t≤BT�ε�
inf
���=t

�1− ε�FH0��
∗�u��(19)

F∗
2�u� 	= sup

0≤t≤BT�ε�
sup
���=t

�1− ε�F∗
H0��

�u� + ε	(20)

Let B∗
1�ε� 	= inf
u 
 F∗

1�u� > 1/2�, B∗
2�ε� 	= inf
u 
 F∗

2�u� > 1/2� (and
B∗

1�ε� 	= ∞ and B∗
2�ε� 	= ∞, respectively, if the conditions are never satisfied�.

Define

B∗
α̂M

�ε� 	= max
{�B∗

1�ε��� �B∗
2�ε��

}
	

Then, Bα̂M�ε� ≤ B∗
α̂M

�ε�	 Moreover, if the core distribution of the data, H0, is

multivariate normal, then B∗
α̂M

�ε� = �1+B2
T�ε��1/2,−1�1/�2�1− ε���.

The second column of Table 3 gives the values of the maxbias upper bound,
B∗
α̂M

�ε�, for the Gaussian case. The estimate T�H� used to compute α̂M is
the Huber S-estimate with BP equal to 1/2. The remaining columns of Table 3
give some maxbias lower bounds for several residual admissible estimates, for
Gaussian H0. More precisely, these are the values of T0��1− ε�H0 + εδ�y0�0��
where for each case the value of y0 has been chosen so that T0��1 − ε�H0 +
εδ�y0�0�� is maximized over the grid 
0�0	1� 	 	 	 �2	5�. From Table 3 we conclude
that, for ε ≤ 0	15, Bα̂M�ε� ≤ BT0

�ε� for all the considered cases.
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8. Concluding remarks. As mentioned in the Introduction, the maxi-
mum bias theory has two main possible applications: (i) the comparison of
competing robust regression estimates in terms of their bias behavior and (ii)
the computation of bias bounds for robust estimates in practical situations.

Regarding the first application, our results confirm the relevance of the ex-
isting global robustness theory in two ways. First, they show that, under ellip-
tical configurations, taking the intercept parameter equal to zero corresponds
to the least favorable situation and so the maxbias curves for regression-
through-the-origin models formally agree with those for the general model.
Therefore, the minimaxity of the LMS-estimator established by Martin Yohai
and Zamar (1989) and Yohai and Zamar (1993) is proved to be valid for models
including the intercept parameter. Second, our calculation of maxbias curves
for several robust regression estimates under various x-configurations indi-
cates that the “maxbias ranking” obtained using the Gaussian regressors also
hold for other x-configurations. In summary, the comparison of competing ro-
bust estimates done using the Gaussian theory have implications beyond this
restrictive setting.

Regarding the second application we have defined bias bounds and dis-
cussed their relation and difference with the maxbias curves. Our results
show that in this regard the x-configuration matters since the maxbias curves
changed substantially across the several cases considered.

It would be desirable to obtain bias bounds which are locally of order ε [that
is,K�ε� = o�ε�] In order to do that one should look outside the class of residual
admissible estimates. However, it is not yet clear how to do this with the
needed generality (unknown nuisance parameters, non-elliptical regressors,
model including the intercept, etc.). Natural candidates are GM-estimates.
However, recent work by Adrover, Salibian and Zamar (1999) show that there
are enormous technical difficulties and that the BP of GM-estimates may take
a big drop when the intercept is in the model. For the p = 1 case considered
in the given reference one has:

1. BP=1/2 when the intercept is known.
2. BP=1/3 when the intercept is unknown and the location of the regressor

is known.
3. BP=1/4 when the intercept and the location of the regressor are unknown.

Another possibility are one-step Newton-Raphson estimates [see Simpson,
Ruppert and Carroll (1992)]. The technical difficulties in this case are also
considerable, specially when p > 1. To achieve high BP and local maxbias of
order o�ε�, the initial estimate must have high BP and local maxbias of order
o�√ε� [see Simpson and Yohai (1998)]. We believe that knowledge about the
maxbias behavior of the initial estimate (a residual admissible estimate in all
the given proposals) will be useful, if not essential, for the derivation of bias
bounds for these estimates.

Bias bounds take into account both the core distribution G0 (which is spec-
ified by the user) and the data [through the estimation of â�H�]. Perhaps it
may be desirable to obtain completely empirical bias bounds, that is, solely
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based on data. This could be achieved by replacing G0, in our bias bounds, by
an estimate Ĝ0 computed from the sample. This approach poses interesting
new theoretical and practical problems.

APPENDIX

Lemma 4. LetM��� = inf α∈�J��1−ε�FH0�α��
+εδ0�. Under A1(b) and A2,

there exists α��� ∈ � such that

M��� = J [�1− ε�FH0�α����� + εδ0
]
	

Moreover, for every t > 0 there exists Kt > 0 such that �α���� ≤ Kt for each
� ∈ 
�: ��� = t�.

Proof. From A1(b) and A2, it follows that J��1 − ε�FH0�α��
+ εδ0� is a

continuous function of α and �. Since, for each u > 0, lim�α�→∞FH0�α��
�u� <

FH0�0���u�� it also follows from A1(b) that

lim
�α�→∞

J
[�1− ε�FH0�α��

+ εδ0
]
> J
[�1− ε�FH0�0�� + εδ0

]
	

Therefore, for each � ∈ �p� there existsK� > 0 such that the infimum must be
attained in the compact set �−K��K�� and, therefore, the infimum is actually
a minimum. Assume that the last assertion of this lemma is not true, it is
then possible for some t > 0 to find a sequence 
�n� ⊂ 
�: ��� = t� such that
limn→∞ �α��n�� = ∞. Suppose w.l.o.g. that �n → �̄. For each α ∈ � and u ≥ 0
we have that

lim
n→∞

[�1− ε�FH0�α��n���n�u� + εδ0�u�
] = ε ≤ �1− ε�FH0�α��̄

�u� + εδ0�u�	
Hence,

lim
n→∞J

[�1− ε�FH0�α��n���n + εδ0
] ≥ J [�1− ε�FH0�α��̄

+ εδ0
]
	(21)

On the other hand, the definition of α��� implies that, for each α ∈ �,

lim
n→∞J

[�1− ε�FH0�α��n���n + εδ0
] ≤ J [�1− ε�FH0�α��̄

+ εδ0
]
	(22)

It follows from (21) and (22), that the value of J��1−ε�FH0�α��̄
+εδ0� does not

depend on α, but this is a contradiction since lim�α�→∞J��1−ε�FH0�α��̄
+εδ0� <

J��1− ε�FH0�0��̄ + εδ0�	 ✷

Lemma 5. Under A2, for all ��� = 1, λ > 0 and u > 0, FH0�λα�λ�
�u� is

strictly decreasing in λ.

Proof. The reader can check this result by following the lines of the proof
of Lemma A.1 in Yohai and Zamar (1993) rewriting the details when necessary.

✷

The following lemma shows that the function m−1�·� is well defined.
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Lemma 6. Let m�t� be as in equation �6�	 Under A1(b) and A2:

(a) There exists �t ∈ �p and α��t� ∈ � such that ��t� = t and
m�t� = J [�1− ε�FH0�α��t���t + εδ0

]
	

(b) m�t� is strictly increasing.

Proof. With the notation of Lemma 4, notice that

m�t� = inf
���=t

M��� = inf
���=t

inf
�−Kt�Kt�

J
[�1− ε�FH0�α��

+ εδ0
]
�

where J��1 − ε�FH0�α��
+ εδ0� is uniformly continuous on the compact set


�: ��� = t� × �−Kt�Kt�. Therefore, M��� is continuous on the compact set
�: ��� = t�, as it is the infimum of an equicontinuous family of functions
evaluated at �. Part (a) follows from this fact.

Let t1 and t2 be such that t1 > t2. Define λ = t2/t1 < 1. Applying part (a),
there exists �1 and �2 such that m�t1� = M ��1� and m�t2� = M��2�. Since,
by Lemma 5, FH0�α��1���1�u� < FH0�λα��1��λ�1�u�, it follows from A1(b) and the
definition of α��� that

m�t1� > J
[
�1− ε�FH0�λα��1��λ�1 + εδ0

]
≥ J [�1− ε�FH0�α�λ�1��λ�1 + εδ0

]
	

But, by the definition of m�t� and given that �λ�1� = t2,
m�t2� ≤M�λ�1� = J

[�1− ε�FH0�α�λ�1��λ�1 + εδ0
]
	

The last two inequalities prove part (b). ✷

Proof of Theorem 1. Let t∗ be such that c = m�t∗�	 First, we prove that
BT�ε� ≤ t∗. Let �̃ ∈ �p be such that ��̃� = t > t∗. It is enough to show that for
every H ∈ Vε�H0� and every α ∈ �, J�FH�α��� > J�FH�0�0�.

It is clear that for each H ∈ Vε�H0�, α ∈ � and u > 0,

FH�α��̃�u� ≤ �1− ε�FH0�α��
�u� + εδ0�u�	(23)

Inequality (23), A1(a), the definition of the function m�t� and Lemma 6(b)
imply that, for each H ∈ Vε�H0�,

J
(
FH�α��̃

) ≥ J [�1− ε�FH0�α��̃
+ εδ0

]
≥m�t� > m�t∗�	(24)

The condition c =m�t∗� and A1(c) imply

m�t∗� = lim
n→∞J

[�1− ε�FH0�0�0 + εUn
] ≥ J�FH�0�0�	(25)

Finally, inequalities (24) and (25) yield the first part of the result.

Now, we show the inequality BT�ε� ≥ t∗. Let t ∈ � be such that t < t∗. The
idea of the proof is to find a distribution H ∈ Vε�H0� such that �T�H�� > t.
The inequality must hold if we can exhibit such a distribution for every t < t∗.
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By Lemma 6(a), there exist �t and αt such that m�t� = J��1− ε�FH0�αt��t
+

εδ0�. Define the following sequence of contaminated distributions: H̃n =
δ�yn�xn� where xn = n�t and yn is uniformly distributed on the interval �αt +
nt2 − �1/n�� αt + nt2 + �1/n��. If Fn is the uniform distribution function on
�−1/n�1/n�, then for each � ∈ �p, u > 0 and α ∈ �,

FH̃n�α��
�u� = Fn

[
u+ α− αt − n

(
t2 − �′�t

)]
−Fn

[−u+ α− αt − n
(
t2 − �′�t

)]
	

(26)

Let Hn = �1− ε�H0 + εH̃n. Suppose that supn �T�Hn�� < t in order to find a
contradiction. Under this assumption, there exists a convergent subsequence,
denoted by 
T�Hn��, such that

lim
n→∞T�Hn� 	= lim

n→∞�n = �̃ where ��̃� = t̃ < t	

Since t2 − ��′t�t� = 0, it follows from (26) that

lim
n→∞FH̃n�αt��t�u� = 1 for u > 0	(27)

Next, we show that we can also assume w.l.o.g that the subsequence of inter-
cepts corresponding to �n, denoted by T0�Hn� 	= αn, converges to a limit α̃.
Assume for a moment that limn→∞ �αn� = ∞. Then, for each u > 0,

lim
n→∞FHn�αn��n

�u�
= ε lim

n→∞FH̃n�αn��n�u� < �1− ε�FH0�αt��t
�u� + εδ0�u�

= lim
n→∞FHn�αt��t

�u�	
(28)

For the last equality, we apply (27). The strict inequality follows from A2 since

FH0�αt��t�u� =
∫
PF0

{�y− αt − �′tx� ≤ u�x
}
dG0�x� > 0 for u > 0	

From (28) and assumption A1(b) we have that J�FHn�αn��n
� > J�FHn�αt��t

� for
large enough n,and this fact contradicts the definition of �αn��n�. Notice that
0 ≤ ��′t�̃� ≤ ��t� ��̃� = tt̃ < t2. Hence, t2 − ��′�̃� > 0. It follows from (26) that

lim
n→∞FH̃n�αn�Tn�u� = 0 for u > 0	(29)

From (29) and Lemma 5, we have that for each u > 0,

lim
n→∞FHn�αn�Tn�u� = �1− ε�FH0�α̃��̃

�u�
≤ �1− ε�FH0�0�0�u�(30)

= lim
n→∞

[�1− ε�FH0�0�0�u� + εUn�u�
]
	

Applying A1(b), A1(c) and inequality (30),

lim
n→∞J

(
FHn�αn��n

) ≥ lim
n→∞J

[�1− ε�FH0�0�0 + εUn
] = c =m�t∗�	(31)
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From (27), we have that for each u > 0,

lim
n→∞FHn�αt��t

�u� = �1− ε�FH0�αt��t
�u� + εδ0�u�	(32)

From A1(b), equation (32) and Lemma 6(b),

lim
n→∞J

[
FHn�αt��t

] = J [�1− ε�FH0�αt��t
+ εδ0

] =m�t� < m�t∗�	(33)

Applying (31) and (33), we have that for large enough n,

J
(
FHn�αn��n

)
> J
(
FHn�αt��t

)
	

This last inequality is a contradiction since �αn� �n� = argminα��J�FHn�α��
�.

For every t < t∗ we have found a sequence of distributions 
Hn� in the neigh-
borhood Vε�H0� such that supn �T�Hn�� ≥ t. ✷

Proof of Corollary 1. From Theorem 1 and Lemma 6, there exist �t ∈
�p and αt such that J��1 − ε�FH0�αt��t

+ εδ0� = c, and BT�ε� = ��t� = t.
Moreover, since αt = α��t�,

J
[�1− ε�FH0�0��t + εδ0

] ≥ J [�1− ε�FH0�αt��t
+ εδ0

]
= c = J [�1− ε�FH0�0�0 + εδ∞

]
	

Therefore, by A1(b), there exists u∗ ≥ 0 such that �1 − ε�FH0�0��t�u∗� + ε ≤
�1 − ε�FH0�0�0�u∗�	 This implies that �FH0�0��t�u∗� − FH0�0�0�u∗�� ≥ ε/�1 − ε�.
At this point, we obtain the conclusion of part (a) by reproducing the proof of
Theorem 2.1 in Yohai and Zamar (1997).

To prove part (b), notice that, from Theorem 1, ε < ε∗ implies that BT�ε� <
∞. On the other hand, ε > ε∗ implies that m�t� < c for all t > 0. Therefore,
following exactly the same lines of the second part of the proof of Theorem 1,
we deduce that BT�ε� > t for all t > 0 and, hence, BT�ε� = ∞. ✷

Proof of Theorem 2. It is easy to check that, for all u > 0,

FH0�α��
�u� = P

{−u+ α ≤ y− �′x ≤ u+ α}	
By the symmetry and unimodality assumptions on F0 and G0, we have that,
for all α ∈ �,

FH0�α��
�u� ≤ P

{−u ≤ y− �′x ≤ u} = FH0�0���u��
and therefore, using A1(a),

J
[�1− ε�FH0�α�� + εδ0

] ≥ J[�1− ε�FH0�0�� + εδ0
]
�

for all α ∈ �. Finally, notice that, under the assumptions of the theorem,
FH0�0�� only depends on � through the value of ���. ✷
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Proof of Theorem 3. We will apply (7) and (8) to obtain (10). First, notice
that

c = τ2[�1− ε�FH0�0�0 + εδ∞
]

=
[
g−1
1

(
b− ε
1− ε

)]2[
�1− ε�g

(
b− ε
1− ε

)
+ ε
]
	

(34)

Define mS����� = S��1− ε�FH0�0�� + εδ∞�, then
mτ����� = τ2

[�1− ε�FH0�0�� + εδ∞
]

= m2
S������1− ε�EH0

χ2

(
y− �′x
mS�����

)

= (1+ ���2)[g−1
1

(
b

1− ε
)]2

�1− ε�g
(

b

1− ε
)(35)

and, therefore, from (7), (34) and (35), the condition c = mτ����� implies [see
also formula (3.18) in Martin, Yohai and Zamar (1989)]

1+B2
τ�ε� = 1+ ���2 =



g−1
1

(
b−ε
1−ε

)
g−1
1

(
b

1−ε
)


2

H�ε� = B2
S�ε�H�ε�	 ✷

Proof of Lemma 1. Since M is location equivariant, we can assume
w.l.o.g. that θ0 = 0 and σ0 = 1. Let Vε�t�F0� = 
F ∈ Vε�F0�: M�F� = t�.
Notice that �M�F�� ≤ BM�ε� for all F ∈ Vε�F0� and therefore Vε�F0� =⋃

�t�≤B�ε�Vε�t�F0�. We have that

sup
F∈Vε�F0�

�M�F�/S�F�� = sup
�t�≤BM�ε�

sup
F∈Vε�t

�t�/S�F�(36)

Now, for each F ∈ Vε�t�F0�, F = �1− ε�F0 + εF̃, it holds that

S�F� = inf
{
s > 0: �1− ε�EF0

χ

(
X− t
S�F�

)
+ εEF̃χ

(
X− t
S�F�

)
≤ 1/2

}
�

and therefore, S�F� ≥ γ�t�. This fact, together with (36), proves the result. ✷

Proof of Lemma 2. There exist coefficients βi, i = 1� 	 	 	 � p, such that
T�H� − T�H0� =

∑p
i=1 βiai�G0�	 Moreover, for all H ∈ Vε�H0�,

B2
T�ε� ≥ �T�H� − T�H0��′�0�T�H� − T�H0��/σ2

0

=
p∑
i=1
β2
i λi�G0�/σ2

0 ≥ [λ1�G0�/σ2
0

] p∑
i=1
β2
i

= [λ1�G0�/σ2
0

]�T�H� − T�H0��2	
Therefore, supH∈Vε�H0� �T�H� − T�H0�� ≤ �σ0/

√
λ1�G0��BT�ε�. ✷
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Proof of Lemma 3. Part (a) follows directly from the fact that

EGρ��a′x−t�/s� = EG∗ρ
[�b′z−t∗�/�s/�A′a��]	

Part (b) follows because S�G�a� = inf t S�G�a�t� =�A′a� inf t∗ S�G∗�b�t∗� =
�A′a�S�G∗�b�	 To prove (c) first notice that

1/2 ≤ inf
t

EG∗
0
ρ
[�a′x − t�/S�G∗

0�a�
]

(37)

because otherwise there exists t1 such that EG∗
0
ρ��a′x−t1�/S�G∗

0�a�� < 1/2
and S�G∗

0�a� t1� < S�G∗
0�a�	 Also, since lim�t�→∞EG∗

0
ρ�a′x−t� = 1� there exists

0 < K <∞ and −K ≤ t0 ≤K such that

inf
t
EG∗

0
ρ�a′x−t� = min

−K≤t≤K
EG∗

0
ρ�a′x−t� = EG∗

0
ρ�a′x−t0�	(38)

Suppose now that S�G∗
0�a� > 1	 Then,

inf
t
EG∗

0
ρ
[�a′x−t�/S�G∗

0�a�
]
< EG∗

0
ρ�a′x−t0�	(39)

If (39) doesn’t hold we arrive at a contradiction:

inf
t
EG∗

0
ρ
[�a′x−t�/S�G∗

0�a�
] ≥ EG∗

0
ρ�a′x−t0� > EG∗

0
ρ
[�a′x−t0�/S�G∗

0�a�
]
�

where the strict inequality holds because EG∗
0
ρ�a′x−t0� ≤ 1/2 < 1 together

with the monotonicity assumption on ρ imply that the function (in s)
EG∗

0
ρ��a′x−t0�/s� is strictly decreasing at s = 1	 By (12), (37), (38) and (39),

1/2 ≤ inf
t

EG∗
0
ρ
[�a′x−t�/S�G∗

0�a�
]
< EG∗

0
ρ�a′x−t0�

= inf
t
EG∗

0
ρ�a′x−t� ≤ max

�a�=1
inf
t
EG∗

0
ρ�a′x−t� = 1/2	

(40)

Therefore, S�G∗
0�a� ≤ 1	 Finally, if CovG0

�x� = AA
′
� by (b),

√
λ̂1�G0� =

min�a�=1S�G0�a� = min�a�=1S�G∗
0�b��A′a� ≤ min�a�=1 �A′a� = √a′

1AA
′a1 =√

λ1�G0�	 Finally, if min�a�=1 inf t EG∗
0
ρ�a′x−t� = 1/2� then S�G∗

0�b� = 1 for all
�b� = 1 and the equality holds. ✷

Proof of Theorem 4. Let Vε�G∗
0� be the ε-contamination neighborhood

for G∗
0 and let Vε�G0 � be the corresponding ε-contamination neighborhood for

G0	 First of all notice that, given x ∼ G and z =A−1x+v ∼ G∗, by Lemma 3(b),

S�G�a� = �A′a�S�G∗�b��(41)

and so

sup
G∈Vε�G0�

S�G�a�
S�G0�a�

= sup
G∗∈Vε�G∗

0�

S�G∗�b��A′a�
S�G∗

0�b��A′a� = sup
G∗∈Vε�G∗

0�

S�G∗�b�
S�G∗

0�b�
	(42)

Moreover, by Lemma 3(c),

σ0√
λ1�G0�

= σ0√
λ̂1�G0�

√
λ̂1�G0�√
λ1�G0�

≤ σ0√
λ̂1�G0�

(43)
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and

σ0√
λ̂1�G0�

= σ̂0�H�√
λ̂1�G�

σ0
σ̂0�H�

√
λ̂1�G�√
λ̂1�G0�

≤ σ̂0�H�√
λ̂1�G�

1
σ̂−
0 �ε�

√
λ̂1�G�√
λ̂1�G0�

	

(44)

By (43) and (44)

σ0√
λ1�G0�

≤ σ̂0�H�√
λ̂1�G�

1
σ−
0 �ε�

sup
G∈Vε�G0�

min�a�=1S�G�a�
min�a�=1S�G0�a�

	

In addition, by (42),

sup
G∈Vε�G0�

min�a�=1S�G�a�
min�a�=1S�G0�a�

= supG∈Vε�G0�
min�a�=1�S�G�a�/S�G0�a��S�G0�a�

min�a�=1 S�G0�a�

≤ min
�a�=1

supG∈Vε�G0�
[
S�G�a�/S�G0�a�

]
S�G0�a�

min�a�=1S�G0�a�
= min�a�=1

supG∗∈Vε�G∗
0�
�S�G∗�a�/S�G∗

0�a��S�G0�a�
min�a�=1 S�G0�a�

≤ min�a�=1
S+�a�ε�S�G0�a�
min�a�=1 S�G0�a� ≤ max�a�=1S+�a� ε�	

(45)

To obtain the next to the last inequality notice that, for each �a� = 1 and t�
S�G∗�a�t� ≤N�a� ε� t�	

In the Gaussian case, we have that S�G0�a� = σa
	=
√

a′�0a. Moreover,
S�G�a� ≤ s̄, where s̄ satisfies

�1− ε�EG0
ρ

(
a′x
s̄

)
+ ε = 1/2	

From Theorem 4 in Martin and Zamar (1993) we have that s̄ = σaS+�ε�, and
therefore,

sup
G∈V

ε
�G0�

√
λ̂1�G� = sup

G∈Vε�G0�
min
�a�=1

S�G�a� ≤ min
�a�=1

sup
G∈Vε�G0�

S�G�a�

≤ min
�a�=1

σaS
+�ε� =

√
λ1�G0�S+�ε�	

The final assertion of the theorem follows from this inequality. ✷
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The following lemma is needed to prove Theorem 5:

Lemma 7. Under the assumptions of Theorem 5� for each c > 0 

(a) S�G�a� t� and S�Gn�a� t� are uniformly continuous a.s. on �a� t� ∈ A×

�−c� c�.
(b) ρ � a′x−t

S�G�a�t� � is uniformly continuous on �a� t� ∈ A× �−c� c�.
(c) There exists C > 0 such that S�Gn�a� = min�t�≤C S�Gn�a� t� and

S�G�a� = min�t�≤C S�G�a� t�	
(d) S�Gn�a� and S�G�a� are uniformly continuous on a ∈ A.

Proof. From Lemma 3(a) in Martin and Zamar (1993) we know that for
c > 0 and 0 < s0 < s∞ <∞, the function ρ��x−t�/s� is uniformly continuous on
�x� t� s� ∈ �×�−c� c�×�s0� s∞�. Let �a1� t1� s1�, �a2� t2� s2� ∈ A×�−c� c�×�s0� s∞�.
Since∣∣∣∣EGρ

(
a′
1x − t1
s1

)
−EGρ

(
a′
2x − t2
s2

)∣∣∣∣ ≤ EG
∣∣∣∣ρ
(

a′
1x − t1
s1

)
− ρ
(

a′
2x − t2
s2

)∣∣∣∣�
then EGρ �a′x−t

s
� is uniformly continuous on �a� t� s� ∈ A × �−c� c� × �s0� s∞�.

Let δ > 0 and let �a1� t1�, �a2� t2� ∈ A × �−c� c�. Define s1 = S�G�a1� t1�
and s2 = S�G�a2� t2�. Since EGρ��a′x − t�/s� is strictly decreasing in s > 0,
δ0
	= EGρ �a′

1x−t1
s1−δ � − 1

2 > 0. There exists δ1 > 0 such that if �a1 − a2� < δ1 and
�t1 − t2� < δ1, then∣∣∣∣EGρ

(
a′
1x − t1
s1 − δ

)
−EGρ

(
a′
2x − t2
s1 − δ

)∣∣∣∣ < δ0/2�
which implies that EGρ �a′

2x−t2
s1−δ � > 1/2 and, therefore, s2 > s1−δ. Analogously,

it can be shown that there exists δ2 > 0 such that if �a1 − a2� < δ2 and
�t1− t2� < δ2, then s1 > s2−δ. Considering min
δ1� δ2�, we obtain �s1− s2� < δ
and part (a) follows. (The result for Gn can be proved analogously.)

Part (b) follows straightforwardly from Lemma 3(a) in Martin and Zamar
(1993) and part (a).

To prove part (c), notice that S�G�a�0� < ∞ and lim�t�→∞S�G�a� t� = ∞	
Therefore, for all a ∈ A there exists c�a� > 0 such that S�G�a� = min�t�≤c�a�
S�G�a� t� 	= S�G�a� t�a��. Moreover, there exists C > 0 such that t�a� ≤ C
for all a ∈ A because, if this was not the case, there would exist a sequence

ak� ⊂ A (we assume ak → a∗ without loss of generality) such that �t�ak�� →
∞. Then,

lim
k→∞

S�G�ak� t�ak�� = ∞	(46)

On the other hand, from the definition of t�a� and part (a) we have that

lim
k→∞

S�G�ak� t�ak�� ≤ lim
k→∞

S�G�ak�0� = S�G�a∗�0� <∞	(47)
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Equation (47) contradicts equation (46). Therefore, S�G�a� = min�t�≤C
S�G�a� t�. Analogously, we can prove that S�Gn�a� = min�t�≤C S�Gn�a� t�. (We
can assume the same value for C without loss of generality.)

Finally, both S�G�a� and S�Gn�a� are continuous since they are defined
as the minimum on the compact set �−C�C� of a family of uniformly contin-
uous functions. Since A is compact, both S�G�a� and S�Gn�a� are uniformly
continuous on A and therefore (d) follows. ✷

Proof of Theorem 5. Notice that it is enough to prove

max
a∈A

�S�Gn�a� −S�G�a�� → 0 a.s.(48)

Since A is a compact set, this fact, together with Lemma 7 (d) implies the
conclusion of the theorem. Let δ > 0, a ∈ A and t ∈ �−C�C�. Since EGρ �a′x−t

s
�

is strictly decreasing, there exists δ0 such that EGρ � a′x−t
S�G�a�t�−δ�−1/2 ≥ δ0 > 0.

For any γ ≥ 0, define

Bn�a� t� γ� =
{
1
n

n∑
i=1
ρ

(
a′xi − t

S�G�a� t� − δ
)
− 1

2
≥ γ
}
	

By Lemma 7 (b), there exist t1� 	 	 	 � tm with tj ∈ �−C�C� such that

m⋂
j=1
Bn

(
a� tj�

δ0
2

)
⊂ ⋂

�t�≤C
Bn�a� t�0� a.s.

Now, from Bernstein’s inequality, there exists r > 0 such that

PG
Bcn�a� tj� δ0/2��

≤ PG

{∣∣∣∣ 1n
n∑
i=1
ρ

(
a′xi − tj

S�G�a� tj� − δ
)
−EGρ

(
a′xi − tj

S�G�a� tj� − δ
)∣∣∣∣ > δ02

}

≤ 2 exp
−rnδ20�	
For all a ∈ A, we have

PG

{
min
�t�≤C

�S�Gn�a� t� −S�G�a� t�� > −δ
}

≥ PG

{ ⋂
�t�≤C

Bn�a� t�0�
}
≥ PG

{ m⋂
j=1
Bn

(
a� tj�

δ0
2

)}

= 1− PG

{ m⋃
j=1
Bcn

(
a� tj�

δ0
2

)}
≥ 1− 2m exp
−rnδ20�	

Analogously, it can be proved that, for all a ∈ A,

PG

{
max
�t�≤C

�S�Gn�a� t� −S�G�a� t�� < δ
}
≥ 1− 2m exp
−rnδ20�	
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As a consequence, for all a ∈ A,

PG

{
max
�t�≤C

�S�Gn�a� t� −S�G�a� t�� > δ
}
≤ 2m exp
−rnδ20�	

Therefore,
∞∑
n=1

PG

{
max
a∈A

�S�Gn�a� −S�G�a�� > δ
}

	=
∞∑
n=1

PG

{
�S�Gn�an� −S�G�an�� > δ

}

≤
∞∑
n=1

PG

{
max
�t�≤C

�S�Gn�an� t� −S�G�an� t�� > δ/2
}

<∞	
This inequality implies (48). ✷

Proof of Theorem 6. Let H ∈ Vε�H0� and notice that �T�H�� ≤ BT�ε�.
Since for some arbitrary distribution H̃,F∗

H�T�H�= �1−ε�F∗
H0�T

�H�+εF∗
H̃�T

�H�,
we have F∗

1�u�≤F∗
H�T�H��u�≤F∗

2�u� for all u ∈ �. Therefore, B∗
2�ε� ≤ α̂M�H�

≤ B∗
1�ε�, and the first part of the result follows. When G0 is multivariate

normal the inner infimum and supremum in (19) and (20) are not needed
because F∗

H0��
�u� only depends on the length of �. Indeed, for all ��� = t� we

have

F∗
H0��

�u� = PH0

y− �′x ≤ u� = ,

(
u√

1+ t2
)
	

As a consequence,F∗
1�u� = �1−ε�,�u/�1+B2

T�ε��� andF∗
2�u� = �1−ε�,�u�+ε.

Hence,B∗
1�ε� = �1+B2

T�ε��1/2,−1�1/�2�1−ε��� andB∗
2�ε� = −,−1�1/�2�1−ε���.

Therefore, B∗
α̂M

�ε� = �1+B2
T�ε��1/2 ,−1�1/�2�1− ε���. ✷
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