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ON OPTIMALITY OF THE SHIRYAEV–ROBERTS PROCEDURE
FOR DETECTING A CHANGE IN DISTRIBUTION1

BY ALEKSEY S. POLUNCHENKO AND ALEXANDER G. TARTAKOVSKY

University of Southern California, Los Angeles

In 1985, for detecting a change in distribution, Pollak introduced a spe-
cific minimax performance metric and a randomized version of the Shiryaev–
Roberts procedure where the zero initial condition is replaced by a ran-
dom variable sampled from the quasi-stationary distribution of the Shiryaev–
Roberts statistic. Pollak proved that this procedure is third-order asymptot-
ically optimal as the mean time to false alarm becomes large. The question
of whether Pollak’s procedure is strictly minimax for any false alarm rate
has been open for more than two decades, and there were several attempts
to prove this strict optimality. In this paper, we provide a counterexample
which shows that Pollak’s procedure is not optimal and that there is a strictly
optimal procedure which is nothing but the Shiryaev–Roberts procedure that
starts with a specially designed deterministic point.

1. Introduction and preliminaries. Changepoint problems deal with detect-
ing changes in distributions of observed data that occur at unknown points in time.
Let X1,X2, . . . be the series of observations being monitored, and let ν be the ser-
ial number of the last pre-change observation, so that Xν+1 is the first post-change
observation. Let Pν and Eν denote probability and expectation when the change
occurs at ν + 1 for a fixed 0 ≤ ν < ∞, and let P∞ and E∞ denote the same when
ν = ∞ (i.e., there never is a change). A sequential change detection procedure is
a stopping time T adapted to the observations X1,X2, . . . , that is, {T ≤ n} ∈ Fn,
where Fn = σ(X1, . . . ,Xn) is the sigma-algebra generated by the first n observa-
tions.

Common operating characteristics of a sequential detection procedure are the
Average Run Length (ARL) to False Alarm, that is, the expected number of ob-
servations to an alarm assuming that there is no change, and the Average Delay to
Detection, that is, the expected delay between a change and its detection. The goal
is to find a detection procedure that minimizes the average detection delay subject
to a bound on the ARL to false alarm.

In this paper, we will be interested in the simple changepoint problem setting,
where the observations are independent, i.i.d. pre-change with density f∞ and i.i.d.
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post-change with density f0. In other words, it is assumed that Xn has density
f∞ for n ≤ ν and density f0 for n > ν, where both f∞ and f0 are known but
the changepoint ν is unknown. Therefore, the conditional density of the sample
(X1, . . . ,Xn) for the fixed changepoint is

p(X1, . . . ,Xn|ν = k) =
k∏

i=1

f∞(Xi) ×
n∏

i=k+1

f0(Xk),

where
∏m

i=j f (Xi) = 1 when j > m.
In 1961, for detecting a change in the drift of a Brownian motion, Shiryaev

introduced a change detection procedure, which is now usually referred to as the
Shiryaev–Roberts (SR) procedure [Shiryaev (1961), (1963); Roberts (1966)]. The
SR procedure calls for stopping and raising an alarm at

Tsr(A) = inf{n ≥ 1 :Rn ≥ A}, inf{∅} = ∞,(1)

where

Rn =
n−1∑
k=0

p(X1, . . . ,Xn|ν = k)

p(X1, . . . ,Xn|ν = ∞)
=

n∑
k=1

n∏
i=k

f0(Xi)

f∞(Xi)
(2)

is the SR statistic, and A > 0 is a threshold that controls the false alarm rate.
This procedure has a number of interesting optimality properties. In particular,

if A = Aγ is such that E∞[Tsr(Aγ )] = γ , then it minimizes the integral average
detection delay

I(T ) =
∑∞

ν=0 Eν(T − ν)+

E∞T

over all stopping times T that satisfy

E∞T ≥ γ,(3)

where γ > 1 is a value set before the surveillance begins [cf. Pollak and Tar-
takovsky (2009) and also Feinberg and Shiryaev (2006) for the Brownian motion
model].

Note that the SR statistic (2) can be written recursively as

Rn = (1 + Rn−1)�n, n ≥ 1, R0 = 0,(4)

where �n = f0(Xn)/f∞(Xn) is the likelihood ratio. Therefore, the classical SR
statistic starts from 0.

Pollak (1985) introduced a natural worst-case detection delay measure—
supremum average delay to detection

JP(T ) = sup
0≤ν<∞

Eν(T − ν|T > ν),
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and attempted to find an optimal procedure that would minimize JP(T ) over all
procedures subject to constraint (3). Pollak’s idea was to modify the SR statistic by
randomization of the initial condition R0 in (4) in order to make it an equalizer [i.e.,
to make the conditional average detection delay Eν(T − ν|T > ν) independent of
the changepoint ν]. Pollak’s version of the SR procedure starts from a random
point sampled from the quasi-stationary distribution of the SR statistic Rn. He
proved that this “randomized” procedure is asymptotically (as γ → ∞) optimal
within an additive term of order o(1) in the sense of minimizing the supremum
average detection delay JP(T ).

To be specific, let, for B > 0,

QB(x) = lim
n→∞ P∞

(
Rn ≤ x|Tsr(B) > n

)
denote the quasi-stationary distribution of the SR statistic, and let R

QB
n be given

recursively

RQB
n = (1 + R

QB

n−1)�n, n ≥ 1, R
QB

0 ∼ QB,(5)

where R
QB

0 ∼ QB means that R
QB

0 is a random variable distributed according to
the quasi-stationary distribution QB . The corresponding stopping time is given by

Tsrp(B) = inf{n ≥ 1 :RQB
n ≥ B}, inf{∅} = ∞.(6)

Pollak (1985) proved that if B = Bγ is selected so that E∞[Tsrp(Bγ )] = γ , then

JP(Tsrp(Bγ )) − inf{T :E∞T ≥γ } JP(T ) = o(1) as γ → ∞,(7)

where o(1) → 0 as γ → ∞. We will call this asymptotic optimality property
third-order asymptotic optimality as opposed to the second-order optimality when
the corresponding difference is bounded [i.e., O(1)] and the first-order optimality
when the ratio of the corresponding values tends to 1. Therefore, the procedure
given by (5) and (6), which we will refer to as the Shiryaev–Roberts–Pollak (SRP)
procedure, is third-order asymptotically optimal for the low false alarm rate. Note
that this result is extremely strong since the difference between the average detec-
tion delays in (7) is asymptotically small while each of them is of order O(logγ )

(i.e., both terms go to infinity). It can be also deduced from Pollak (1985, 1987)
that the conventional SR procedure is asymptotically minimax for a low false alarm
rate within an additive term of order O(1), that is, it is only second-order asymp-
totically optimal.

Since the SRP procedure is an equalizer, that is, JP(Tsrp) = E0Tsrp = Eν(Tsrp −
ν|Tsrp > ν) for all ν ≥ 0, it is tempting for one to conjecture that it may in fact be
strictly optimal for every γ > 1. However, to date there is no proof or disproof of
this conjecture [see Yakir (1997) and Mei (2006)]. Recent work of Moustakides,
Polunchenko and Tartakovsky (2011) indicates that the SRP procedure may not be
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exactly optimal and partially sheds light on this issue by considering a generaliza-
tion of the SR procedure that starts from a specially designed deterministic point r .
To emphasize the dependence on the starting point, this procedure will be referred
to as the SR-r procedure. Specifically, define the stopping time

T r
sr(A) = inf{n ≥ 1 :Rr

n ≥ A}, inf{∅} = ∞,(8)

where Rr
n obeys the recursion

Rr
n = (1 + Rr

n−1)�n, n ≥ 1, Rr
0 = r ≥ 0.(9)

Solving numerically integral equations for performance metrics for two examples
that involve Gaussian and exponential models, Moustakides, Polunchenko and Tar-
takovsky (2011) found that the SR-r procedure (with a certain r = rγ that depends
on γ ) uniformly outperforms the SRP procedure, that is, Eν(T

r
sr − ν|T r

sr > ν) <

E0Tsrp for all ν ≥ 0. We believe that these results present serious evidence against
optimality of the SRP procedure. However, this may not be completely convincing
since a small numerical error can be present in such experiments.

In the present paper, we construct a counterexample where all computations
can be performed analytically. This example proves that the SRP procedure is not
optimal while the SR-r procedure with a deterministic initialization is optimal.
This result answers a long-standing question on optimality of the SRP procedure
and opens a new direction in the quest for the unknown optimum.

2. The main theorem and integral equations for operating characteristics.
Theorem 1 below provides a lower bound for the infimum of Pollak’s worst-case
measure JP(T ) which will be used to find the optimal changepoint detection pro-
cedure in Section 3. Note that a proof sketch of this lower bound has been previ-
ously given in Moustakides, Polunchenko and Tartakovsky (2011). Here we pro-
vide a complete proof.

We first need the following lemma which establishes optimality of the SR-r
procedure with respect to the integral average detection delay.

LEMMA 1. Let

Ir (T ) = rE0T + ∑∞
ν=0 Eν(T − ν)+

r + E∞T
(10)

and let T r
sr(Aγ ) be the SR-r detection procedure with E∞[T r

sr(Aγ )] = γ . For any
r ≥ 0, the SR-r procedure minimizes Ir (T ) over all procedures with E∞T ≥ γ ,
that is,

inf{T :E∞T ≥γ } Ir (T ) = Ir (T
r
sr(Aγ )).(11)
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PROOF. The proof of (11) for r = 0 is given in Pollak and Tartakovsky (2009),
Theorem 1 and Corollary 1. We now give its extension for an arbitrary positive r .

Consider the following Bayesian problem, which will be denoted by B(π,p, c).
Suppose ν is a random variable (independent of the observations) with a zero mod-
ified geometric distribution

P(ν < 0) = π, P (ν = k) = (1 − π)p(1 − p)k, k ≥ 0,

and the losses associated with stopping at time T are 1 if T ≤ ν and c · (T − ν)

if T > ν, where 0 ≤ π < 1, 0 < p < 1 and c > 0 are fixed constants. For A ∈ F ,
define the probability

P(A) = πP0(A) + (1 − π)

∞∑
k=0

p(1 − p)kPk(A),

and let E denote the corresponding expectation.
Solving B(π,p, c) requires minimization of the expected loss

Lπ,p,c(T ) = P(T ≤ ν) + cE(T − ν)+

or, equivalently, maximization of the expected “gain” 1
p
[1 − Lπ,p,c(T )], and the

Bayes rule for this problem is given by the Shiryaev procedure [cf. Shiryaev
(1963)]

Tπ,p,c = inf
{
n ≥ 1 :R(π,p)

n ≥ Aπ,p,c

}
,

where Aπ,p,c > π/(1 − π)p is an appropriate threshold and

R(π,p)
n = π

(1 − π)p

n∏
i=1

(
�i

1 − p

)
+

n∑
k=1

n∏
i=k

(
�i

1 − p

)
.

Let π = rp. Then, obviously, R
(π,p)
n −−→

p→0
Rr

n.

Now, it follows from Pollak (1985) that there are a constant 0 < c∗ < ∞ and
a sequence {pi, ci}i≥1 with pi → 0, ci → c∗ as i → ∞, such that T r

sr(Aγ ) is the
limit of the Bayes stopping times Tπ=rpi ,pi ,ci

as i → ∞ and

lim sup
p→0,c→c∗

1 − Lπ=rp,p,c(Tπ=rp,p,c)

1 − Lπ=rp,p,c(T r
sr(Aγ ))

= 1.(12)

Next, for any stopping time T ,

E(T − ν)+

p
= π + (1 − π)p

p
E0T + 1 − π

p

∞∑
k=1

p(1 − p)kEk(T − k)+

= [r + (1 − rp)]E0T + (1 − rp)

∞∑
k=1

(1 − p)kEk(T − k)+

−−→
p→0

rE0T +
∞∑

k=0

Ek(T − k)+
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and

P(T > ν)

p
= 1

p

(
π + (1 − π)p + (1 − π)

∞∑
k=1

p(1 − p)kPk(T > k)

)

= rp + (1 − rp)p

p
+ 1 − rp

p

∞∑
k=1

p(1 − p)kP∞(T > k)

−−→
p→0

r +
∞∑

k=0

P∞(T > k) = r + E∞T ,

where we used the fact that Pk(T > k) = P∞(T > k) since by the definition of the
stopping time the event {T ≤ k} belongs to the σ -algebra Fk and at time instant k

the distribution is still f∞.
Since

1

p
[1 − Lπ,p,c(T )] = P(T > ν)

p
− c

E(T − ν)+

p
,

it follows that if π = rp, then for any stopping time T with E∞T < ∞
1

p
[1 − Lπ=rp,p,c(T )]−−→

p→0
(r + E∞T ) − c

(
rE0T +

∞∑
k=0

Ek(T − k)+
)
,

which together with (12) establishes that the SR-r procedure minimizes Ir (T )

over all stopping times that satisfy E∞T = γ . In order to prove that (11) holds in
the class {T : E∞T ≥ γ } it suffices to apply the argument identical to that used in
the proof of Corollary 1 in Pollak and Tartakovsky (2009). �

THEOREM 1. Let T r
sr(A) be defined as in (8) and let A = Aγ be selected so

that E∞[T r
sr(Aγ )] = γ . Then for every r ≥ 0

inf{T :E∞T ≥γ } JP(T ) ≥ rE0[T r
sr(Aγ )] + ∑∞

ν=0 Eν[T r
sr(Aγ ) − ν]+

r + E∞[T r
sr(Aγ )] .(13)

PROOF. Note first that for any stopping time T

∞∑
ν=0

Eν(T − ν)+ =
∞∑

ν=0

Pν(T > ν)Eν(T − ν|T > ν)

=
∞∑

ν=0

P∞(T > ν)Eν(T − ν|T > ν),

where again we used the fact that Pν(T > ν) = P∞(T > ν). Since

JP(T ) = sup
k≥0

Ek(T − k|T > k) ≥ Eν(T − ν|T > ν) for any ν ≥ 0
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and

JP(T ) = JP(T )[r + ∑∞
ν=0 P∞(T > ν)]

r + ∑∞
ν=0 P∞(T > ν)

= rJP(T ) + ∑∞
ν=0 JP(T )P∞(T > ν)

r + ∑∞
ν=0 P∞(T > ν)

,

where
∑∞

ν=0 P∞(T > ν) = E∞T , we obtain that for any stopping time T with
finite ARL to false alarm

JP(T ) ≥ rE0T + ∑∞
ν=0 Eν(T − ν|T > ν)P∞(T > ν)

r + E∞T

= rE0T + ∑∞
ν=0 Eν(T − ν)+

r + E∞T
.

Therefore,

inf{T :E∞T ≥γ } JP(T ) ≥ inf{T :E∞T ≥γ } Ir (T ),(14)

where Ir (T ) is defined in (10).
By Lemma 1, the infimum on the right-hand side in (14) is attained for the SR-r

detection procedure T r
sr(Aγ ), which completes the proof. �

Notice that if r can be chosen so that the SR-r procedure becomes an equalizer
[i.e., E0T

r
sr = Eν(T

r
sr − ν|T r

sr > ν) for ν ≥ 0], then it is optimal since the right-hand
side in (13) is equal to E0T

r
sr which in turn is equal to supν≥0 Eν(T

r
sr − ν|T r

sr >

ν) = JP(T r
sr). This observation will be used in Section 3 for proving that the SR-r

procedure with a specially designed r = rA is strictly optimal for an exponential
model.

Introduce the following notation:

δν(r) = Eν(T
r

sr − ν)+, ρν(r) = P∞(T r
sr > ν), ν ≥ 0,

φ(r) = E∞T r
sr, ψ(r) =

∞∑
ν=0

Eν(T
r
sr − ν)+,

where, obviously, ρ0(T
r
sr) = 1 and δ0(r) = E0T

r
sr.

In the rest of the paper we will assume for simplicity that �1 is continuous. For
i = 0,∞, let Fi(x) = Pi (�1 ≤ x) denote the distribution functions of the likeli-
hood ratio under the change and no-change hypotheses.

Moustakides, Polunchenko and Tartakovsky (2009, 2011) used the Markov
property of the SR-r statistic (9) to obtain the following integral equations for
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performance metrics:

φ(r) = 1 +
∫ A

0
φ(x)

∂

∂x
F∞

(
x

1 + r

)
dx,(15)

δ0(r) = 1 +
∫ A

0
δ0(x)

∂

∂x
F0

(
x

1 + r

)
dx,(16)

δν(r) =
∫ A

0
δν−1(x)

∂

∂x
F∞

(
x

1 + r

)
dx, ν = 1,2, . . . ,(17)

ρν(r) =
∫ A

0
ρν−1(x)

∂

∂x
F∞

(
x

1 + r

)
dx, ν = 1,2, . . . ,(18)

ψ(r) = δ0(r) +
∫ A

0
ψ(r)

∂

∂x
F∞

(
x

1 + r

)
dx.(19)

The conditional average delay to detection of the SR-r procedure is computed
as

Eν(T
r
sr − ν|T r

sr > ν) = δν(r)

ρν(r)
, ν ≥ 0,

and the lower bound as

Ir (T
r
sr) = rδ0(r) + ψ(r)

r + φ(r)
.

Next, we present integral equations for the operating characteristics of the ran-
domized SRP procedures (5) and (6). Here the most crucial problem is the com-
putation of the quasi-stationary distribution QB(x) of the SR statistic. By Harris
(1963), Theorem III.10.1, in the continuous case the quasi-stationary distribution
exists. Its density qB(x) = dQB(x)/dx satisfies the following integral equation:

λBqB(x) =
∫ B

0
qB(r)

∂

∂x
F∞

(
x

1 + r

)
dr(20)

[see Pollak (1985)], where λB is the leading eigenvalue of the linear operator as-
sociated with the kernel

K∞(x, r) = ∂

∂x
F∞

(
x

1 + r

)
, x, r ∈ [0,B).

Thus, qB(x) is the corresponding (left) eigenfunction. It also satisfies the constraint∫ B

0
qB(x) dx = 1.(21)

Equations (20) and (21) uniquely define λB and qB(x). The equations have unique
solutions, since λB < 1, as follows from Moustakides, Polunchenko and Tar-
takovsky (2011).
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Once qB(x) is available we can compute the ARL to false alarm and the average
detection delay of the SRP procedure Tsrp

E∞[Tsrp(B)] =
∫ B

0
φ(r)qB(r) dr,(22)

E0[Tsrp(B)] =
∫ B

0
δ0(r)qB(r) dr.(23)

We recall that the SRP procedure is an equalizer: Eν(Tsrp − ν|Tsrp > ν) = E0Tsrp.
The integral equations derived above are Fredholm equations of the second

kind. Usually, they do not allow for an analytical solution and should be solved
numerically. However, in the next section, we provide an example where analyti-
cal solutions can be obtained.

3. An example. Consider the exponential model with the pre-change mean 1
and the post-change mean θ−1, θ > 1, that is, f∞(x) = e−x1{x≥0} and f0(x) =
θe−θx1{x≥0}. We will call this model the E (1, θ)-model. In the sequel we will
assume that θ = 2 and the thresholds in both procedures SR-r and SRP do not
exceed 2.

THEOREM 2. Assume the E (1,2)-model. Let in the SR-r procedure T
rA

sr the
initializing value be chosen as rA = √

1 + A − 1 and let the threshold A = Aγ be
selected from the transcendental equation

A + (γ − 1)
√

1 + A log(1 + A) − 2(γ − 1)
√

1 + A = 0.(24)

Then, for every 1 < γ < γ0, where γ0 = (1 − 0.5 log 3)−1 ≈ 2.2188, the ARL to
false alarm E∞[T rA

sr (A)] = γ and the SR-r procedure is minimax, that is,

JP(T rA
sr ) = inf{T :E∞T ≥γ } JP(T ).(25)

Let, in the SRP procedure, the threshold B = Bγ be selected as

B = exp
{

2(γ − 1)

γ

}
− 1.(26)

Then E∞[Tsrp(B)] = γ and JP(Tsrp(B)) > JP(T
rA

sr (A)) for all 1 < γ < γ0. There-
fore, the SRP procedure is suboptimal.

PROOF. Consider first the SRP procedure. As it will become apparent later,
threshold B = Bγ in this procedure does not exceed 2 when γ < γ0. By (20),
for B < 2 the quasi-stationary density qB(x) = dQB(x)/dx satisfies the integral
equation

λBqB(x) = 1

2

∫ B

0
qB(r)

dr

1 + r
,
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which due to the constraint (21) yields λB = 1
2 log(1 + B) and qB(x) = B−1 ×

1{x∈[0,B)}. Thus, for B < 2 the quasi-stationary distribution QB(x) = x/B is uni-
form, and, moreover, it is attained already for n = 1 when the very first observation
becomes available.

Clearly, the P∞-distribution of the SRP stopping time Tsrp is geometric with the
parameter 1 − λB , so that the ARL to false alarm is

E∞[Tsrp(B)] = 1

1 − λB

= 1

1 − (1/2) log(1 + B)
.(27)

It follows that E∞[Tsrp(B)] = γ when the threshold B = Bγ is chosen as in (26)
and that B < 2 whenever γ < γ0.

By (23), the average detection delay of the SRP procedure is equal to

E0[Tsrp(B)] = 1

B

∫ B

0
δ0(r) dr,(28)

so that we need to compute the ARL to detection δ0(r) = E0T
r
sr of the SR-r pro-

cedure which also has to be computed for the evaluation of the performance of the
SR-r procedure itself.

Assume that A < 2. By (16), we have

δ0(r) = 1 + 1

2(1 + r)2

∫ A

0
δ0(x)x dx,

so that ∫ A

0
δ0(r)r dr =

∫ A

0
r dr + 1

2

[∫ A

0

x dx

(1 + x)2

][∫ A

0
δ0(r)r dr

]

= A2

2
+ 1

2

[
log(1 + A) − A

1 + A

][∫ A

0
δ0(r)r dr

]
,

which implies that∫ A

0
rδ0(r) dr = A2

[
A

1 + A
+ 2

(
1 − 1

2
log(1 + A)

)]−1

.

Consequently,

δ0(r) = 1 + A2

2(1 + r)2

[
A

1 + A
+ 2

(
1 − 1

2
log(1 + A)

)]−1

.(29)

Using (28) and (29), we find

E0[Tsrp(B)] = δ̄0(B) = 1 + B2

2(1 + B)

[
B

1 + B
+ 2

(
1 − 1

2
log(1 +B)

)]−1

.(30)

Consider now the SR-r procedure. By (15), for the ARL to false alarm φ(r) =
E∞[T r

sr(A)] we have

φ(r) = 1 + 1

2(1 + r)

∫ A

0
φ(x) dx,
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so that ∫ A

0
φ(r) dr =

∫ A

0
dr + 1

2

[∫ A

0

dr

1 + r

][∫ A

0
φ(x) dx

]
,

and therefore ∫ A

0
φ(r) dr = A

[
1 − 1

2
log(1 + A)

]−1

.

Consequently,

φ(r) = 1 + A

2(1 + r)

[
1 − 1

2
log(1 + A)

]−1

.(31)

Recall that for A < 2 the statistic Rr
n already kicks in the uniform quasi-

stationary distribution for n = 1 and any 0 ≤ r < A, so that T r
sr is an equalizer

for ν ≥ 1 and any r ∈ [0,A), that is, δν(r) = δ̄0(A) for all ν ≥ 1 and r < A with
δ̄0(A) given by (30). This implies that

JP(T r
sr) = sup

ν≥0
Eν(T

r
sr − ν|T r

sr > ν) = max{δ̄0(A), δ0(r)}.(32)

Let r = rA = √
1 + A−1, in which case δ̄0(A) = δ0(rA), that is, for this value of

the head start the SR-r procedure is an equalizer for all ν ≥ 0. Therefore, by Theo-
rem 1 the procedure T

rA
sr that starts from the deterministic point rA = √

1 + A − 1
is optimal, and (25) holds if threshold A = Aγ is selected so that E∞T

rA
sr = γ .

Substituting r = √
1 + A−1 in (31) and equalizing the result to γ , yields transcen-

dental equation (24). It is easily verified that Aγ < 2 for γ < γ0. This completes
the proof of optimality of the SR-r procedure for all 1 < γ < γ0.

In order to show that for every given γ ∈ (1, γ0) the SRP procedure is inferior it
suffices to show that E∞[T rA

sr (A)] > E∞[Tsrp(A)]. By (31), the ARL to false alarm
of the SR-r procedure is equal to

E∞[T rA
sr (A)] = φ(rA) = 1 + A

2
√

A + 1

[
1 − 1

2
log(1 + A)

]−1

.(33)

Comparing (33) with (27), we obtain that we have only to show that

1 + A

2
√

A + 1

[
1 − 1

2
log(1 + A)

]−1

>

[
1 − 1

2
log(1 + A)

]−1

,

that is, that A/
√

A + 1 > log(A + 1), which holds for any A > 0. Thus, we con-
clude that the SRP procedure is suboptimal and the proof is complete. �

Let, for example, γ = 2. Then, by (26) and (30), the threshold in the SRP
procedure is equal to B = e − 1 ≈ 1.71828 and the average detection delay
E0[Tsrp(B)] = JP(Tsrp(B)) ≈ 1.33275.
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FIG. 1. Supremum average detection delay versus the ALR to false alarm for A ∈ (0,2).

For γ = 2, solving the transcendental equation (24) yields A ≈ 1.66485 and the
initialization point rA ≈ 0.63244. By (32), the average detection delay of the SR-r
procedure E0[T rA

sr (A)] = JP(T
rA
sr (A)) ≈ 1.31622.

Figure 1 depicts the supremum average detection delays versus the ARL to false
alarm for the two changepoint detection procedures for the entire range of A ∈
(0,2).

REMARK. At an additional effort, the same conclusion can be reached in the
more general case where the parameter of the post-change distribution θ > 1 and
A,B < θ .
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