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NEARLY UNBIASED VARIABLE SELECTION UNDER
MINIMAX CONCAVE PENALTY

BY CUN-HUI ZHANG1

Rutgers University

We propose MC+, a fast, continuous, nearly unbiased and accurate
method of penalized variable selection in high-dimensional linear regres-
sion. The LASSO is fast and continuous, but biased. The bias of the LASSO
may prevent consistent variable selection. Subset selection is unbiased but
computationally costly. The MC+ has two elements: a minimax concave
penalty (MCP) and a penalized linear unbiased selection (PLUS) algorithm.
The MCP provides the convexity of the penalized loss in sparse regions to
the greatest extent given certain thresholds for variable selection and unbi-
asedness. The PLUS computes multiple exact local minimizers of a possibly
nonconvex penalized loss function in a certain main branch of the graph of
critical points of the penalized loss. Its output is a continuous piecewise lin-
ear path encompassing from the origin for infinite penalty to a least squares
solution for zero penalty. We prove that at a universal penalty level, the MC+
has high probability of matching the signs of the unknowns, and thus correct
selection, without assuming the strong irrepresentable condition required by
the LASSO. This selection consistency applies to the case of p � n, and is
proved to hold for exactly the MC+ solution among possibly many local min-
imizers. We prove that the MC+ attains certain minimax convergence rates
in probability for the estimation of regression coefficients in �r balls. We use
the SURE method to derive degrees of freedom and Cp-type risk estimates
for general penalized LSE, including the LASSO and MC+ estimators, and
prove their unbiasedness. Based on the estimated degrees of freedom, we pro-
pose an estimator of the noise level for proper choice of the penalty level. For
full rank designs and general sub-quadratic penalties, we provide necessary
and sufficient conditions for the continuity of the penalized LSE. Simulation
results overwhelmingly support our claim of superior variable selection prop-
erties and demonstrate the computational efficiency of the proposed method.

1. Introduction. Variable selection is fundamental in statistical analysis of
high-dimensional data. With a proper selection method and under suitable condi-
tions, we are able to build consistent models which are easy to interpret, to avoid
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over fitting in prediction and estimation, and to identify relevant variables for ap-
plications or further study. Consider a linear model in which a response vector
y ∈ R

n depends on p predictors xj ∈ R
n, j = 1, . . . , p, through a linear combina-

tion
∑p

j=1 βj xj . For small p, subset selection methods can be used to find a good
guess of the pattern {j :βj �= 0}. For example, one may impose a proper penalty
on the number of selected variables based on the AIC [Akaike (1973)], Cp [Mal-
lows (1973)], BIC [Schwarz (1978)], RIC [Foster and George (1994)] or a data
driven method. For large p, subset selection is not computationally feasible, so
that continuous penalized or gradient threshold methods are typically used.

Let ‖ · ‖ be the Euclidean norm. Consider a penalized squared loss

L(b;λ) ≡ (2n)−1‖y − Xb‖2 +
p∑

j=1

ρ(|bj |;λ)(1.1)

with a penalty ρ(t;λ) indexed by λ ≥ 0, in the linear regression model

y =
p∑

j=1

βj xj + ε,(1.2)

where X ≡ (x1, . . . ,xp), β ≡ (β1, . . . , βp)′ and ε ∼ N(0, σ 2In). Assume the
penalty ρ(t;λ) is nondecreasing in t and has a continuous derivative ρ̇(t;λ) =
(∂/∂t)ρ(t;λ) in (0,∞). Assume further ρ̇(0+;λ) > 0, so that minimizers of (1.1)
have variable selection features with zero components [Donoho et al. (1992)].
Changing the index λ if necessary, we assume ρ̇(0+;λ) = λ whenever ρ̇(0+;λ) <

∞, so that λ has the interpretation as the threshold level for the individual coeffi-
cients βj under the standardization ‖xj‖2 = n.

A widely used penalized lease squares estimator (LSE) is the LASSO [Tib-
shirani (1996)] or equivalently Basis Pursuit [Chen and Donoho (1994)], with
ρ(t;λ) = λ|t |. The LASSO is easy to compute [Osborne, Presnell and Turlach
(2000a, 2000b) and Efron et al. (2004)] and has the interpretation as boosting
[Schapire (1990), Freund and Schapire (1996) and Friedman, Hastie and Tibshi-
rani (2000)]. Throughout the paper, let

Ao ≡ {j :βj �= 0} and do ≡ |Ao| = #{j :βj �= 0}(1.3)

unless otherwise stated. Under a strong irrepresentable condition on the normal-
ized Gram matrix � ≡ X′X/n, Meinshausen and Buhlmann (2006), Tropp (2006),
Zhao and Yu (2006) and Wainwright (2006) proved that the LASSO is variable
selection consistent

P {Â = Ao} → 1 with Â ≡ {j : β̂j �= 0},(1.4)

provided that minβj �=0 |βj |/λ is greater than the �∞ → �∞ norm of the inverse
of a diagonal sub-matrix of � of rank do, among other regularity conditions on
{λ,n,p,ε}. However, the strong irrepresentable condition, which essentially re-
quires the �∞ → �∞ norm of a (p − do) × do matrix of � to be uniformly less
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than 1, is quite restrictive for moderately large do, and that due to the estimation
bias, the condition is nearly necessary for the LASSO to be selection consistent.
Here the bias of a penalized LSE is treated as its estimation error when ε = 0.
Under a relatively mild sparse Riesz condition on the �2 → �2 norm of sub-Gram
matrices and their inverses up to a certain rank, Zhang and Huang (2008) proved
that the dimension |Â| for the LASSO selection is of the same order as do and
that the LASSO selects all variables with |βj | above a certain quantity of the order√

doλ. These results are still unsatisfactory in view of the possibility of incorrect
selection and the extra factor

√
do with the condition on the order of |βj | for cor-

rect selection, compared with the threshold level λ. Again, due to the estimation
bias of the LASSO, the extra factor

√
do cannot be completely removed under the

sparse Riesz condition. From these points of view, the bias of the LASSO severely
interferes with variable selection when p and do are both large.

Prior to the above mentioned studies about the interference of the bias of the
LASSO with accurate variable selection or conditions to limit such interference,
Fan and Li (2001) raised the concern of the effect of the bias of more general
penalized estimators on estimation efficiency. They pointed out that the bias of
penalized estimators can be removed almost completely by choosing a constant
penalty beyond a second threshold level γ λ, and carefully developed the SCAD
method [Fan (1997)] with the penalty λ

∫ t
0 min{1, (γ − x/λ)+/(γ − 1)}dx, γ > 2.

Iterative algorithms were developed there and in Hunter and Li (2005) and Zou
and Li (2008) to approximate a local minimizer of the SCAD penalized loss for
fixed (λ, γ ). For penalized methods with unbiasedness and selection features, Fan
and Peng (2004) proved the existence, variable selection consistency (1.4) and
asymptotic estimation efficiency of some local minimizer of the penalized loss un-
der the dimensionality constraint p = o(nr) with r = 1/3,1/4 or 1/5 depending
on regularity conditions. Their results apply to general classes of loss and penalty
functions but do not address the uniqueness of the solution or provide methodolo-
gies for finding or approximating the local minimizer with the stated properties,
among potentially many local minimizers. A major cause of computational and
analytical difficulties in these studies of nearly unbiased selection methods is the
nonconvexity of the minimization problem.

A number of recent papers have considered LASSO-like or LASSO-based con-
vex minimization procedures. Candés and Tao (2007) proposed a Dantzig selector
and provided elegant probabilistic upper bounds for the �2 loss for the estimation
of β . However, while the Dantzig selector and LASSO have been found to perform
similarly in simulation studies [Efron, Hastie and Tibshirani (2007), Meinshausen,
Rocha and Yu (2007) and Candés and Tao (2007), page 2401], little is known
about the selection consistency of the Dantzig selector. Multiple-stage methods
either share certain disadvantages of the LASSO for variable selection or require
additional nontechnical side conditions, compared with our results. Current theory
on such procedures has been focused on fixed p or do, while the most interesting
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case is p � n > do → ∞. Post-LASSO selection [Meinshausen (2007)] or boot-
strapped LASSO [Bach (2008)] may not recover false nondiscovery of the LASSO
(Section 6.5). Adaptive LASSO [Zou (2006), Huang, Ma and Zhang (2008) and
Zou and Li (2008)] requires an initial estimator of β based on which small penalty
levels could be assigned to most βj �= 0 and large penalty levels to most βj = 0.
The nonnegative garrotte estimator [Yuan and Lin (2007)] requires an initial es-
timator to be within o(λ) from β . For p � n, correlation screening [Fan and
Lv (2008)] requires Ao to be a subset of the indices of the m largest values of
|x′

j y|/‖xj‖ with a certain m ≤ n.
The main purpose of this paper is to propose and study an MC+ methodol-

ogy. The MC+ provides a fast algorithm for nearly unbiased concave penalized
selection in the linear model (1.2). The selection consistency (1.4) holds for the
computed MC+ solution at the universal penalty level λuniv ≡ σ

√
(2/n) logp

[Donoho and Johnston (1994b)], without assuming the strong irrepresentable con-
dition or requiring minβj �=0|βj |/λuniv to be greater than a quantity of the order√

do or the �∞ → �∞ norm of a matrix of rank do. This selection consistency
holds up to dimension do ≤ d∗, including the case of p � n > do → ∞, and
this upper bound d∗, determined by the sparse Riesz condition on X, could be
as large as n/ log(p/n). We further prove that the �q loss of the MC+ attains
minimax convergence rates in probability for the estimation of β in �r balls with
0 < r ≤ 1 ∧ q ≤ 2. We also consider a general theory of penalized LSE, includ-
ing the continuity of estimators, unbiased estimation of risk, and the estimation of
noise level, in addition to variable selection and the estimation of β . This paper
is written based on Zhang (2007b), an April, 2007 Rutgers University Technical
Report containing all the results in Sections 3, 4 and 5 with more extensive discus-
sion of the PLUS algorithm and less explicit constants in the selection consistency
theorems. A brief description of Zhang (2007b) can be found in Zhang (2008),
which contains some additional simulation results.

2. A sketch of main results. We provide a brief description of the MC+
method and our main results, along with some crucial concepts, conditions and
necessary notation.

2.1. The MC+. The MC+ has two components: a minimax concave penalty
(MCP) and a penalized linear unbiased selection (PLUS) algorithm. The MCP is
defined as

ρ(t;λ) = λ

∫ t

0

(
1 − x/(γ λ)

)
+ dx(2.1)

with a regularization parameter γ > 0. It minimizes the maximum concavity

κ(ρ) ≡ κ(ρ;λ) ≡ sup
0<t1<t2

{ρ̇(t1;λ) − ρ̇(t2;λ)}/(t2 − t1)(2.2)
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subject to the following unbiasedness and selection features:

ρ̇(t;λ) = 0 ∀t ≥ γ λ, ρ̇(0+;λ) = λ.(2.3)

For A ⊆ {1, . . . , p}, define sub-design and sub-Gram matrices

XA ≡ (xj , j ∈ A)n×|A|, �A,B ≡ X′
AXB/n, �A ≡ �A,A.(2.4)

Let d∗ be a positive integer. The penalized loss (1.1) is sparse convex with rank
d∗ if it is convex in all models {b :bj = 0 ∀j /∈ A} with |A| ≤ d∗. This sparse
convexity condition holds if the convexity of the squared loss ‖y − Xb‖2/(2n)

overcomes the concavity of the penalty in all such sparse models with |A| ≤ d∗, or
equivalently

κ(ρ;λ) < min|A|≤d∗ cmin(�A) where cmin(�A) ≡ min‖u‖=1
‖�Au‖.(2.5)

Although the unbiasedness and selection features (2.3) preclude convex penal-
ties, the MCP provides the sparse convexity to the broadest extent by minimizing
the maximum concavity (2.2). This is a natural motivation for the MCP. The MCP
achieves κ(ρ;λ) = 1/γ . A larger value of its regularization parameter γ affords
less unbiasedness and more concavity. For each penalty level λ, the MCP provides
a continuum of penalties with the �1 penalty at γ = ∞ and the “�0 penalty” as
γ → 0+.

Given a penalty ρ(·; ·), λ ⊕ β̂ ∈ R
1+p is a critical point of the penalized loss in

(1.1) if {
x′
j (y − Xβ̂)/n = sgn(β̂j )ρ̇(|β̂j |;λ), β̂j �= 0,

|x′
j (y − Xβ̂)/n| ≤ λ, β̂j = 0,

(2.6)

where sgn(t) ≡ I {t > 0} − I {t < 0}. For convex penalized loss, (2.6) is the
Karush–Kuhn–Tucker (KKT) condition for the global minimization of (1.1). In
general, solutions of (2.6) include all local minimizers of L(·;λ) for all λ. The
graph of the solutions of (2.6) is studied in Section 3. Consider

λ(x) ⊕ β̂
(x) ≡

{
a continuous path of solutions of (2.6) in R

1+p

with β̂
(0) = 0 and limx→∞ λ(x) = 0.

(2.7)

For the MCP, we prove in Section 3.3 that almost everywhere in (X,y), a path (2.7)
uniquely exists up to continuous transformations of x from [0,∞) onto [0,∞) and

that β̂
(x)

ends at a point of global least squares fit as x → ∞. Thus, in the graph
of the solutions of (2.6), (2.7) provides a unique branch encompassing from the
origin β = 0 to an optimal fit. We call (2.7) the main branch of the solution graph.
For concave penalties, solutions of (2.6) may form additional branches as loops not
connected to the origin (Figure 3). In the PLUS algorithm, the integer part of x in
(2.7) represents the number of computational steps and the fraction part represents
the linear interpolation between steps as in (3.8).
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Given a penalty level λ, we propose as a variable selector and an estimator of β

β̂(λ) ≡ β̂
(xλ)

in (2.7) with xλ = inf
{
x ≥ 0 :λ(x) ≤ λ

}
,(2.8)

or equivalently the solution when the penalty level λ is first reached in the path.
The estimator (2.8) and the global minimum of (1.1) may not be the same for non-
convex penalized loss. Still, the uniqueness of (2.7) implies that β̂(λ) is uniquely
defined, including the case of p > n. We call (2.8) the MC+ if the MCP (2.1) is
used in (2.6) and thus (2.7).

The PLUS algorithm computes the main branch (2.7) of the solution graph of
(2.6) for quadratic spline penalty functions of the form ρ(t;λ) = λ2ρ(t/λ). The
PLUS is described in detail and studied in Section 3. For the quadratic spline
penalties, the graph of solutions of (2.6) is piecewise linear and so is its main
branch (2.7). The PLUS differs from existing nonconvex minimization algorithms
in three important aspects: (i) it computes the exact value of local minimizers in-
stead of iteratively approximating them; (ii) it computes a path of possibly multiple
solutions for the entire range of the penalty level λ ≥ 0 instead of a single solu-
tion for a fixed λ; (iii) it computes multiple local minimizers for individual λ by
tracking along its path of solutions for different values of λ instead of trying to
jump from the domain of attraction of one solution to another for a fixed λ. In each
step, the PLUS computes one line segment in its path between two turning points,
and its computational cost is the same as the LARS [Efron et al. (2004)] per step.
The MC+ with larger regularization parameter γ provides smoother estimators
and computationally less complex path, but larger bias and less accurate variable
selection. The MC+ path converges to the LASSO path as γ → ∞.

2.2. Some simulation results and heuristics. The proposed MC+ provides
fast, continuous, nearly unbiased and accurate variable selection in high-dimen-
sional linear regression, as our theoretical and numerical results support.

Table 1 presents the results of experiment 1 of our simulation study to demon-
strate the superior selection accuracy and competitive computational complexity
of the MC+, compared with the LASSO and SCAD. Since there are quite a few
different ways of (approximately) computing possibly different SCAD local min-
imizers, we denote by SCAD+ the PLUS solution of the SCAD. We measure the
selection accuracy by the proportion CS of replications with the correct selection
CS ≡ I {Â = Ao}, and the computational complexity by the average k of the num-
ber of the PLUS steps. In this experiment, (n,p) = (300,200), y is generated with
βj = ±β∗ for j ∈ Ao and ε ∼ N(0, In) in (1.2), and xj are generated by greedy
sequential sampling (Section 6.1) of groups of 10 most correlated vectors from a
pool of 600 vectors from the sphere {x :‖x‖ = √

n}. The design X, Ao, the signs of
β and ε are drawn independently for the 100 replications with do ∈ {10,20,40}.
The σ̂ 2 is the residual mean squares with 100 degrees of freedom in the full 200-
dimensional model.
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TABLE 1
Performance of LASSO, MC+ and SCAD+ in experiment 1. 100 replications, n = 300, p = 200,

β∗/σ = 1/2, γ = 2/(1 − maxj �=k |x′
j xk |/n), γ = 2.69, CS ≡ I {Â = Ao}, SEβ ≡ ‖β̂ − β‖2,

k ≡ #(steps), log(σλ/(σ̂λuniv)) = integer/20

do = 10 do = 20 do = 40

λ/σ̂ LASSO MC+ SCAD+ LASSO MC+ SCAD+ LASSO MC+ SCAD+

λ/σ̂ CS 0.45 0.77 0.71 0.09 0.87 0.62 0.00 0.81 0.27
= λuniv/σ SEβ 0.340 0.063 0.131 0.831 0.160 0.480 2.097 0.452 1.842
= 0.188 k 12 16 26 23 31 50 47 63 127

Fixed λ/σ̂ λ/σ̂ 0.266 0.248 0.248 0.257 0.231 0.195 0.231 0.195 0.169
for max CS CS 0.88 0.98 0.92 0.44 0.97 0.70 0.01 0.83 0.45

k 11 11 17 21 23 47 44 60 149

Fixed λ/σ̂ λ/σ̂ 0.076 0.153 0.138 0.060 0.138 0.124 0.042 0.138 0.120
for min SEβ SEβ 0.154 0.043 0.041 0.287 0.082 0.080 0.502 0.167 0.161

k 41 22 34 65 43 67 102 84 169

The dimensions (n,p, do) in experiment 1 are moderate, but larger than those
in some recent simulation studies of other nonconvex minimization algorithms.
This modest setting allows us to demonstrate the significance of the impact of
do = #{j :βj �= 0}, and thus the estimation bias, on the selection consistency of
the LASSO in the absence of difficulties involving ultrahigh dimensionality or the
singularity with rank(X) < p. More simulation results are presented in Section 6
with (n,p) = (300,2000), (600,3000), (100,2000) and (200,10,000) to demon-
strate the scalability of the PLUS algorithm, among other issues.

Why is the MC+ able to avoid both the interference of estimation bias with vari-
able selection and the computational difficulties with nonconvex minimization?
A short, heuristic explanation is that for standardized ‖xj‖ = √

n and a carefully
chosen γ > 1, the condition

β∗ ≡ min{|βj | : j ∈ Ao} > γλ with λ ≥ λuniv ≡ σ
√

(2/n) logp,(2.9)

and the sparsity of β are allowed to match the extent of the unbiasedness and
sparse convexity of the MC+. The lower bound for β∗ in (2.9) allows unbiased
selection of all j ∈ Ao, while the lower bound for λ prevents selection of variables
outside Ao given the selection of all variables in Ao. Thus, (2.9) guarantees with
large probability that the LSE

β̂
o ≡ arg min

b
{‖y − Xb‖2 :bj = 0 ∀j /∈ B}(2.10)

with the oracular choice B = Ao, is one of the local minimizers of the penalized
loss. Meanwhile, the sparse convexity (2.5) provides the uniqueness among sparse
solutions of (2.6) and controls the computational complexity of the MC+.
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This argument does not work with the LASSO due to the estimation bias. Let β̃
o

be the �1 oracle with β̃
o

Ao(λ) = β̂
o

Ao − λ�−1
Ao sgn(βAo) and β̃

o

j (λ) = 0 for j /∈ Ao.
By the KKT condition, sgn(β̂(λ)) = sgn(β) for the LASSO if and only if (iff)
|x′

j (y − Xβ̃
o
(λ))|/n ≤ λ and sgn(β̃

o
(λ)) = sgn(β). However, β̃

o
(λ) is biased with

Eβ̃
o

Ao(λ) − βAo = −λ�−1
Ao sgn(βAo) �= 0.

2.3. Selection consistency. We study the selection consistency of the penal-
ized LSE under the sparse Riesz condition (SRC) on X: for suitable 0 < c∗ ≤ c∗ <

∞ and rank d∗,

c∗ ≤ min|A|≤d∗ cmin(�A) ≤ max|A|≤d∗ cmax(�A) ≤ c∗,(2.11)

where �A is as in (2.4) and cmax(M) is the largest eigenvalue of M. Conditions
on X and β must be configured to accommodate each other in our theorems. In
this subsection, we study selection consistency for do ≤ d∗ = d∗/(c∗/c∗ + 1/2).
In the next subsection, we study estimation by comparing β̂ and the oracle es-
timator (2.10) with |B| ≤ d∗. Section 4 covers more general configurations. Al-
though {d∗, c∗, c∗} are all allowed to depend on n, the SRC is easier to understand
with fixed {c∗, c∗} and large d∗ ≡ d∗

n , which asserts the equivalence of the norms
‖Xb‖/√n and ‖b‖ up to #{j :bj �= 0} = d∗. Define p̃ε ≡ p̃p,do,m,ε by

2 log p̃ε − 1 − log(2 log p̃ε) = (2/m)

{
log

(
p − do

m

)
+ log(1/ε)

}
(2.12)

for nonnegative integers m ∈ [1,p−do] and reals ε ∈ (0,1]. Note that 2 log p̃ε ≥ 1.

THEOREM 1. Suppose (1.2) holds with ‖xj‖2 = n. Let Ao, do and Â be as
in (1.3) and (1.4) and β̂

o
be as in (2.10) with B = Ao. Suppose (2.11) holds and

do ≤ d∗ = d∗/(c∗/c∗ + 1/2). Let λ1,ε = σ
√

(2/n) log((p − do)/ε) and λ2,ε ≥
max{2√

c∗σ
√

(2/n) log p̃ε, λ1,ε}, where ε ∈ (0,1] is fixed and p̃ε is defined with
m = d∗ − do. Let wo be the largest diagonal element of �−1

Ao . Let β̂ = β̂ (̂λ) with
a deterministic or random λ̂, where β̂(λ) is the MC+ selector (2.8) with γ ≥
c−1∗

√
4 + c∗/c∗. Then

P {β̂ �= β̂
o

or sgn(β̂) �= sgn(β)} ≤ P {̂λ /∈ [λ1,ε, λ2,ε]} + (
3/2 + 1/

√
2
)
ε,(2.13)

provided that β∗ ≡ minj∈Ao |βj | ≥ σ
√

wo(2/n) log(do/ε) + γ λ2,ε . Moreover,
(1.4) holds and the MC+ estimator β̂ achieves the estimation efficiency of the
oracle LSE β̂

o
, provided that P {λ1,ε ≤ λ̂ ≤ λ2,ε} → 1 and ε−1 ∨ min{p − do, p̃1,√

n/wo(β∗ − γ λ2,ε)/σ } → ∞.

COROLLARY 1. Let λuniv ≡ σ
√

(2/n) logp. Suppose ‖xj‖2 = n, d∗/(c∗/c∗+
1/2) ≥ do → ∞, γ ≥ c−1∗

√
4 + c∗/c∗ and β∗ ≥ σ

√
wo(2/n) logdo + γ max{2 ×√

c∗σ
√

(2/n) log p̃1, λuniv} in (1.2), (2.11) and (2.1). Then P {β̂(λuniv) �= β̂
o

or
sgn(β̂(λuniv)) �= sgn(β)} → 0.
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A lower bound condition on β∗ can be viewed as an information requirement for
selection consistency. A variation below of Proposition 1 in Zhang (2007c) asserts
that the condition on β∗ in Theorem 1 is optimal up to a factor of 4γ

√
c∗(1+o(1))

when logdo = o(logp).

PROPOSITION 1. For β ∈ R
p let Ao and do be as in (1.3), β∗ ≡ minj∈Ao |βj |,

and y be as in (1.2) with ‖xj‖2 = n. Let p, do and σ > 0 be dependent on n with
p − do → ∞. Then

lim inf
n→∞ inf

(X,y)→Â
sup

|Ao|=do
sup

β∗=cλ1,1

P {Â �= Ao} ≥ 1 − 4c2 ∀c > 0,

where λ1,1 = σ
√

(2/n) log(p − do) and the infimum is taken over all Borel map-
pings.

REMARK 1. Since (2.13) is nonasymptotic, {p,d∗, c∗, c∗, do,β, σ, ε} are all
allowed to depend on n. The requirement do ≤ d∗ = d∗/(c∗/c∗ + 1/2) could be
viewed as a condition on the sparsity of β given {d∗, c∗, c∗}. On the other hand,
for given do ≡ do

n it is closely related to the restricted isometry constant δd ≡
max{|‖�Au‖− 1| : |A| = d,‖u‖ = 1} [Candés and Tao (2005)], although c∗ > 2 is
allowed in (2.11). For example, do ≤ d∗/(c∗/c∗ + 1/2) is a consequence of δ3do ≤
3/7 with explicit d∗ = 3do, c∗ = 4/7 and c∗ = 10/7. With larger λ2,ε/

√
σ 2 log p̃ε

and γ , Theorem 5 allows fixed d∗/d∗ > (c∗/c∗ + 1)/2, which is a consequence of
δ2do < 1/2 or δ3do < 2/3. See Remark 5 in Section 4.

REMARK 2. For p � n, random matrix theory provides the possibility of
do � n/ log(p/n). For example, if the rows of X are i.i.d. Gaussian vectors with
EX = 0 and c1 ≤ E‖Xb‖2/n ≤ c2 for all ‖b‖ = 1, then P {(2.11) holds} → 1
with fixed c∗ = (1 − δ)2c1, c∗ = (1 + δ)2c2 and d∗ = max{d :

√
d/n(1 +√

2 + 2 log(p/d)) ≤ δ}, where 0 < δ < 1 is fixed [Davidson and Szarek (2001),
Candes and Tao (2007), Wainwright (2006) and Zhang and Huang (2008)].

REMARK 3. The condition ε ∼ N(0, σ 2In) is not essential. In particular,
Corollary 1 holds if the normality assumption is replaced by the sub-Gaussian
condition Eex′ε ≤ eσ 2

1 ‖x‖2/2 ∀x, provided σ 2
1 < σ 2. See Section 7.3 and Lemma 2.

Theorem 1 compares favorably with existing results in the required regularity
of X and the information content in the data as measured in β∗ ≡ minβj �=0|βj |. For
the LASSO, a bound similar to (2.13) on selection consistency essentially requires

β∗ ≥ σ
√

wo(2/n) log(do/ε) + θ∗
1 λ and λ ≥ λ1,ε/(1 − θ∗

2 )+,(2.14)

where θ∗
1 ≡ ‖�−1

Ao sgn(βAo)‖∞ and θ∗
2 ≡ ‖�(Ao)c,Ao�−1

Ao sgn(βAo)‖∞ [Mein-
shausen and Buhlmann (2006), Tropp (2006), Zhao and Yu (2006) and Wain-
wright (2006)]. The maxima of θ∗

1 and θ∗
2 over the unknown sgn(βAo) are, respec-

tively, the norms ‖�−1
Ao ‖∞ and ‖�(Ao)c,Ao�−1

Ao ‖∞ for linear mappings between
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�∞ spaces. Consider the case of do → ∞. The strong irrepresentable condition,
which requires θ∗

2 < 1 uniformly strictly, is restrictive since ‖�(Ao)c,Ao�−1
Ao ‖∞

is not length normalized. For log(p/d∗) � logp → ∞, σ
√

(2/n) log p̃ε = (1 +
o(1))λ1,ε by (2.12), so that Theorem 1 replaces θ∗

1 /(1 − θ∗
2 )+ in (2.14) by

2γ
√

c∗ as a required lower bound for the signal-to-noise ratio (SNR) β∗/λ1,ε . For
logp = (1 +o(1)) logd∗, for example, p � n logn and d∗ � n/ log logn, log p̃1 =
o(1) logp, so that Corollary 1 simply requires β∗ ≥ σ

√
wo(2/n) logdo + γ λuniv

for (1.4) when c∗ = O(1). A commonly used bound is θ∗
1 ≤ √

do/cmin(�Ao).
Wainwright (2006) proved ‖�−1

Ao ‖∞ = OP (1) when the rows of XAo are i.i.d.
Gaussian vectors with ‖(E�Ao)−1‖∞ = O(1). The adverse effects of large do on
the LASSO selection are evident in our simulation experiments.

In addition to conditions on X and β , Theorem 1 makes significant advances by
allowing the exact universal penalty level λuniv for selection consistency (Corol-
lary 1) in the case of a known σ 2 or λ̂ = σ̂

√
(2/n) logp with any consistent upper

confidence bound σ̂ in the case of unknown σ , while the penalty level λ in (2.14)
depends on Ao via the �∞ norm θ∗

2 .
From these points of view, the thrust of Theorem 1 is to replace the strong

irrepresentable condition by the SRC with do ≤ d∗/(c∗/c∗ + 1/2), to replace the
�∞ → �∞ norm of matrices of rank do by the �2 → �2 norm of matrices of rank no
greater than do(c∗/c∗ + 1/2) in the requirement on β∗, and to completely remove
the factor 1/(1 − θ∗

2 )+ on λ, compared with (2.14).

2.4. Estimation of regression coefficients. We have shown the selection con-
sistency of the MC+ up to |Ao| ≤ d∗ = d∗/(c∗/c∗ +1/2) under (2.11). This selec-
tion consistency is proved via an upper bound on the false positive in Theorem 6
which naturally leads to performance bounds for the estimation of β . Although we
do not fully address the topic here, we present a theorem to highlight the conse-
quences of our oracle inequalities.

Let ‖b‖q = (
∑p

j=1 |bj |q)1/q be the �q norm with the usual extension to q = ∞
and 
r,R ≡ {b :‖b‖r ≤ R} be the �r ball. It was proved recently in Ye and Zhang
(2009) that for all 1 < r ∨ 1 ≤ q and 0 < ε < 1

lim inf
p→∞ inf

X
inf

(X,y)→β̂
sup

β∈
r,R

P {‖β̂ − β‖q
q ≥ (1 − ε)Rrλq−r

mm } ≥ ε

3q
(2.15)

subject to ‖xj‖2 = n in (1.2), where the second infimum is taken over all Borel
mappings of proper dimension and

λmm ≡ σ {(2/n) log(σ rp/(nr/2Rr))}1/2,

provided that Rr/λr
mm → ∞ and nλ2

mm/σ 2 → ∞. This minimax lower bound for
the �q loss is an extension of the lower bound for the minimax �q risk in Donoho
and Johnstone (1994a). The following theorem provides sufficient conditions for
the PLUS estimator (2.8) to attain this minimax rate.
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THEOREM 2. Let κ ≥ 0 and ρ(t;λ) be a penalty satisfying λ(1 − κ|t |/λ)+ ≤
ρ̇(|t |;λ) ≤ λ. Suppose (2.11) holds with certain d∗ and c∗ ≥ c∗ ≥ κ

√
4 + c∗/c∗.

Let B be a deterministic subset of {1, . . . , p} with |B| ≤ d∗ = d∗/(c∗/c∗ + 1/2).
Let β̂(λ) be as in (2.8) and β̂

o
as in (2.10). Let θB ≡ ‖X(β − Eβ̂

o
)‖/√n and p̃ε

be as in (2.12) with m = d∗ − |B| and do = |B|.
(i) Let λ ≥ 2

√
c∗(σ

√
(2/n) log p̃ε + θB/

√
m). Then, with at least probability

1 − ε/
√

4 log p̃ε ,

c∗‖β̂(λ) − β̂
o‖ ≤

{∑
j∈B

ρ̇2(|β̂j |;λ)

}1/2

+ (λ/2)
√|B| ≤ (3/2)λ

√|B|.(2.16)

(ii) Suppose Rr/λr
mm = |B|. Let λ = 2

√
c∗{λmm(1 + √

2c∗) + ε1σ/
√

n}
with the λmm in (2.15) and a fixed ε1 > 0. Let 0 < r ≤ 1 ∧ q ≤ 2 and
Mq = (M

q∧1
1,q +M

q∧1
2,q )(1/q)∨1, where M1,q = (c∗/c∗ +1/2)1/q−1/23(

√
c∗/c∗)(1+√

2c∗ +ε2) and M2,q = {(c∗/c∗ +ε2/c∗)q/2 +1}1/q with a fixed ε2 > 0. Then, with
{p,R,σ, d∗, c∗, c∗,M} all allowed to depend on n,

sup
β∈
̃r,R

P {‖β̂(λ) − β‖q
q ≥ Mq

q Rrλq−r
mm } → 0(2.17)

as nλ2
mm/σ 2 → ∞, where 
̃r,R ≡ {β :

∑p
j=1 |βj |r ∧ λr

mm ≤ Rr} ⊇ 
r,R .

REMARK 4. We may choose the set B in Theorem 2(i) to minimize θB or∑
j /∈B |βj | given a size |B|, but we are not confined to these examples. The con-

dition Rr/λr
mm = |B| in Theorem 2(ii) is not restrictive, since X and σ could be

scaled by a bounded factor to meet it. Remarks 1, 2 and 3 are applicable to Theo-
rem 2 with γ = 1/κ .

The oracle inequality (2.16) exhibits the advantage of the MC+ when a fraction
of |βj | are of the order λ, since the MCP with γ = 1/κ has the smallest possible
ρ̇(t;λ) = (1 − κt/λ)+ under the assumption on the penalty.

For fixed 0 < c∗ ≤ c∗ < ∞, (2.17) provides the convergence of β̂(λ) based
on (X,y) at the minimax rate (2.15), up to #{significant βj } � Rr/λr

mm ≤ d∗ =
d∗/(c∗/c∗ + 1/2), including the case of p � n ≥ do → ∞. Such uniform conver-
gence rates in �r balls cannot be obtained from existing results requiring penalty
levels λ ≥ λuniv ≡ σ

√
(2/n) logp in the case of λmm/λuniv → 0. Theorem 2 closes

this gap by allowing λ � λmm. We observe that λmm < λuniv in (2.15) whenever
R > σ/

√
n. The relevance of smaller λmm is evident in our simulation experiments

where the best penalty levels for estimation are all less than or equal to λuniv. See
Section 6.1 in addition to Table 1. For recent advances in the LASSO or LASSO-
like estimations of Xβ and β , we refer to Greenshtein and Ritov (2004), Can-
dés and Tao (2007), Bunea, Tsybakov and Wegkamp (2007), van de Geer (2008),
Zhang and Huang (2008) and Meinshausen and Yu (2009).



MINIMAX CONCAVE PENALTY 905

2.5. Organization of the rest of the paper. Section 3 provides an explicit de-
scription of the PLUS algorithm and studies the geometry of the solutions of the
estimating equation (2.6). Section 4 studies the selection consistency of both the
global minimizer of (1.1) and the local solution (2.8) for general penalties. Sec-
tion 5 develops methods for the estimations of the mean squared error (MSE) of
the penalized LSE and the noise level in the linear model (1.2). Section 6 reports
simulation results. Section 7 contains some discussion.

3. The PLUS algorithm and quadratic spline penalties. We divide this sec-
tion into three subsections to cover quadratic spline penalties, the PLUS algorithm
and the existence and uniqueness of the MC+ path. An R package “plus” has been
released.

3.1. Quadratic spline penalties and the MCP. The PLUS algorithm assumes
that the penalty function is of the form ρ(t;λ) = λ2ρ(t/λ), where ρ(t) is a nonde-
creasing quadratic spline in [0,∞). Such ρ(t) must have a piecewise linear non-
negative continuous derivative ρ̇(t) for t ≥ 0, so that the solution graph of (2.6) is
piecewise linear. The maximum concavity κ(ρ) ≡ κ(ρ;λ) does not depend on λ.
We index ρ(t) by the number of threshold levels m, or equivalently the number of
knots in [0,∞), including zero as a knot. Thus,

ρ(t;λ) = λ2ρm(t/λ), ρ̇m(t) ≡ (dρm/dt)(t)
(3.1)

=
m∑

i=1

(ui − vit)I {ti ≤ t < ti+1}

with u1 = 1, vm = 0, tm+1 = ∞ and knots t1 = 0 < t2 < · · · < tm = γ , satisfying
ui − viti+1 = ui+1 − vi+1ti+1 ≥ 0, 1 ≤ i < m.

We set ρ̇m(0+) = u1 = 1 to match the standardization ρ̇(0+;λ) = λ in (2.3),
and vm = 0 for the uniform boundedness of ρ̇(t;λ). The unbiasedness feature
limt→∞ ρ̇(t;λ) = 0 demands tm = γ > 0 = um = vm and thus m > 1, but the
PLUS includes the LASSO with m = 1. For ‖xj‖2 = n, cmin(�A) ≤ 1, so that
(2.5) becomes κ(ρm) = maxi≤m vi < c∗ ≤ 1 under (2.11).

The penalty class (3.1) includes the �1 penalty with m = 1 and κ(ρ1) = 0, the
MCP with m = 2 and κ(ρ2) = v1 = 1/γ , and the SCAD penalty with m = 3,
v1 = 0, t2 = 1 and κ(ρ3) = v2 = 1/(γ − 1). We plot these three penalty functions
ρm, m = 1,2,3 and their derivatives in Figure 1, with γ = 5/2 for the MCP and
SCAD penalty.

As mentioned in the Introduction, we propose the MCP (2.1) as the default
penalty for the PLUS, and thus the acronym MC+. The MCP corresponds to (3.1)
with

ρ2(t) = min{t − t2/(2γ ), γ /2}, ρ̇2(t) = (1 − t/γ )+, t ≥ 0.(3.2)
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FIG. 1. The �1 penalty ρ1(t) = t for the LASSO along with the MCP ρ2(t) and the SCAD penalty
ρ3(t), t > 0, γ = 5/2. Left: penalties ρm(t). Right: their derivatives ρ̇m(t).

Among spline penalties satisfying (2.3), the MCP has the smallest number of
threshold levels m = 2. It follows from (2.6) and (3.1) that the piecewise-linear
PLUS path makes a turn whenever |β̂j (λ)/λ| hits one of the m thresholds for any
j ≤ p. From this point of view, MC+ is the simplest for the PLUS to compute
except for the LASSO with m = 1.

3.2. Explicit description of the PLUS algorithm. Let z̃ ≡ X′y/n. For penalty
functions of the form ρ(t;λ) = λ2ρm(t/λ) with the ρm in (3.1), the estimating
equation (2.6) is equivalent to the following rescaled version:{

zj − χ ′
j b = sgn(bj )ρ̇m(|bj |), bj �= 0,

|z′
j − χ ′

j b| ≤ 1 = ρ̇m(0+), bj = 0,
(3.3)

through the scale change z̃/λ → z and β/λ → b, where χj ≡ X′xj /n are the
columns of � ≡ X′X/n. The solution b(z) of (3.3) along the ray {̃z/λ,λ > 0}
provides the solution of (2.6) with the inverse transformation β̂(λ) = λb(̃z/λ).

We shall “plot” the solution b(z) of (3.3) against z to allow multiple solutions,
instead of directly solving it for a given z = z̃/λ = X′y/(nλ). In the univariate case
p = 1, we plot functions in R

2. For p > 1, we need to consider b versus z in R
2p .

Let H = R
p , H ∗ be its dual, and z ⊕ b be members of H ⊕ H ∗ = R

2p . Define

u(i) ≡ u|i|, v(i) ≡ v|i|, t (i) ≡
{

ti , 0 < i ≤ m + 1,
−t|i|+1, −m ≤ i ≤ 0,(3.4)

where ui, vi and ti specify ρm as in (3.1). For indicators η ∈ {−m, . . . ,m}p , let

S(η) ≡ the set of all z ⊕ b
(3.5)

satisfying

⎧⎪⎪⎨⎪⎪⎩
zj − χ ′

j b = sgn(ηj )u(ηj ) − bjv(ηj ), ηj �= 0,
−1 ≤ zj − χ ′

j b ≤ 1, ηj = 0,
t (ηj ) ≤ bj ≤ t (ηj + 1), ηj �= 0,
bj = 0, ηj = 0.
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Since sgn(bj )ρ̇m(|bj |) = sgn(ηj )u(ηj ) − bjv(ηj ) for t (ηj ) ≤ bj ≤ t (ηj + 1),
(3.3) holds iff (3.5) holds for a certain η. For each η, the linear system in (3.5) is
of rank 2p, since one can always uniquely solve for b and then z if the inequalities
are replaced by equations. Thus, since (3.5) has p equations and p pairs of paral-
lel inequalities, S(η) are p-dimensional parallelepipeds living in H ⊕ H ∗ = R

2p .
Due to the continuity of ρ̇m(t) = (d/dt)ρm(t) in t by (3.1) and that of zj − χ ′

j b
in both z and b, the solutions of (3.5) are identical in the intersection of any
given pair of S(η) with adjacent η. Furthermore, the p-dimensional interiors of
different S(η) are disjoint in view of the constraints of (3.5) on b. Thus, the
union of all the p-parallelepipeds S(η) forms a continuous p-dimensional sur-
face S ≡ ∪{S(η) :η ∈ {−m, . . . ,m}p} in H ⊕ H ∗ = R

2p . This continuous surface
S is the solution set (or the “plot”) of all z ⊕ b ∈ H ⊕ H ∗ satisfying the rescaled
estimating equation (3.3).

Given z̃ = X′y/n, the solution set of (3.3) for all z = τ z̃ and τ > 0, or equiv-
alently that of (2.6) for all λ, is identical to the intersection of the surface S and
the (p + 1)-dimensional open half subspace {(τ z̃) ⊕ b : τ > 0,b ∈ H ∗} in R

2p .
Figure 2 depicts the MC+ and LASSO solution sets and the projections of S(η)

to H in the nonoverlapping scenario [under the convexity condition (2.5) with full
rank d∗ = p = 2]. Figure 3 depicts an overlapping scenario in which the complete
solution set of (2.6) contains the main branch covered by the MC+ path and a loop
not covered.

The rescaled PLUS path in H ⊕ H ∗ is a union of connected line segments

k∗⋃
k=0

�
(
η(k) |̃z)

, �(η|z) ≡ S(η) ∩ {(τz) ⊕ b : τ > 0,b ∈ H ∗},(3.6)

beginning with �(η(0) |̃z) = {(τ z̃) ⊕ 0 : 0 < τ ≤ τ (0)}, η(0) = 0 and connected at{(
τ (k−1)z̃

) ⊕ b(k−1)} = �
(
η(k−1) |̃z) ∩ �

(
η(k) |̃z)

, z̃ ≡ X′y/n.(3.7)

FIG. 2. Left: the solid ray as τ z̃ and the projections of the 52 = 25 parallelograms S(η) for the
MCP to the z-space H with dashed-edges, labeled by η1 and η2 along the margins inside the box.
Right: the MC+ path (solid) as the entire solution set of (2.6) in the β-space, along with the LASSO
path (dashed). Data: ‖xj‖2/2 = 1, x′

1x2/2 = 1/4, (̃z1, z̃2) = (1,−0.883) and p = γ = 2.
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FIG. 3. Plots for the same data as in Figure 2 with γ = 1/2 for the MCP. Clockwise from
the top left: the z-space plot with overlapping areas marked by multiple values of ηj ; the
main branch and one loop as the entire MCP solution set of (2.6) in the β-space, along with
the LASSO; the segments of the main branch with τ (k)̃z, k = 0,1,2,3, representing transitions
η = (0

0
) → (1

0
) → (2

0
) → ( 2

−1
) → ( 2

−2
)
; the loop with τ (k)̃z, k = 4,5,6,7, representing transitions

η = ( 0
−2

) → ( 0
−1

) → ( 1
−1

) → ( 1
−2

) → ( 0
−2

)
. For η ∈ {−2,0,2}p , z-segments turn into β-points in the

MC+ path. A topologically equivalent way of creating the main branch and loop is to fold a piece
of paper twice parallel to the horizontal axis and then twice parallel to the vertical axis, cut through
the fold and then unfold.

Given (τ (k−1)̃z) ⊕ b(k−1), we find a new line segment �(η(k) |̃z) and compute the
other end of it as (τ (k)̃z) ⊕ b(k), k ≥ 1. Given z̃, we write the turning points in
the simpler form τ (k) ⊕ b(k) ∈ R

1+p . The PLUS path (2.7) is defined through the
linear interpolation of τ (k) ⊕ b(k) and reverse scale change from τ ⊕ b to λ ⊕ β:⎧⎪⎨⎪⎩

τ (x) ⊕ b(x) ≡ (k − x)
(
τ (k−1) ⊕ b(k−1)

) + (x − k + 1)
(
τ (k) ⊕ b(k)

)
,

k − 1 < x ≤ k,

λ(x) ⊕ β̂
(x) ≡ (

1 ⊕ b(x)
)
/τ (x), 0 ≤ x ≤ k∗,

(3.8)

with the initialization η(0) = b(0) = 0 and τ (0) = 1/maxj≤p |̃zj |. The PLUS path

ends at step k∗ if β̂
(k∗)

provides a global least squares fit with X′(y − Xβ̂
(k∗)

) = 0.

We define β̂
(x) ≡ β̂

(k∗)
and λ(x) ≡ (k∗/x)λ(k∗) for x > k∗. Clearly, x interpolates

the number of steps in [0, k∗].
We compute the turning points τ (k) ⊕ b(k) in (3.8) by finding the “state” η(k),

the slope s(k) ≡ (db(x)/dτ (x)), k − 1 < x < k, the sign ξ (k) ≡ sgn(τ (k) − τ (k−1))
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and the “length” �(k) ≡ |τ (k) − τ (k−1)| for the new segment. We now provide
algebraic formulas for the computation of these quantities in a certain “one-at-a-
time” scenario. We prove that the PLUS path is one-at-a-time almost everywhere
in (X,y) in the next subsection.

At τ (k−1) ⊕ b(k−1), (3.8) must hit one of the inequalities in (3.5) for a certain
index

j (k−1) ∈ {
j :

∣∣b(k−1)
j

∣∣ ∈ {t1, . . . , tm}
(3.9)

with η
(k−1)
j �= 0, or

∣∣τ (k−1)z̃j − χ ′
j b(k−1)

∣∣ = 1
}
,

where t1, . . . , tm are the knots of (3.1). If j (k−1) is unique, η
(k)
j = η

(k−1)
j for j �=

j (k−1) and

η
(k)
j =

⎧⎨⎩ sgn
(
τ (k−1)̃zj − χ ′

j b(k−1)
)
, η

(k−1)
j = 0,

η
(k−1)
j + sgn

(
b

(k−1)
j − b

(k−2)
j

)
, η

(k−1)
j �= 0,

(3.10)

for j = j (k−1). Let �A be as in (2.4) and A(η) ≡ {j :ηj �= 0}. Define

�(η) ≡ �A(η), Q(η) ≡ �(η) − diag
(
v(ηj ), ηj �= 0

)
,

(3.11)
d(η) ≡ |A(η)|.

Since the χ j in (3.3) are the columns of �, for k − 1 < x < k the first equation
of (3.5) can be written as Q(η(k))P(η(k))b(x) = P(η(k))(τ (x)̃z − sgn(η(k))u(η(k))),
where P(η) is the projection b → (bj , ηj �= 0)′ and u(·) is as in (3.4). Differenti-
ating this identity, we find

Q
(
η(k))P(

η(k))s(k) = P
(
η(k))̃z, η

(k)
j = 0 ⇒ s

(k)
j = 0,(3.12)

so that s(k) is solved by inverting Q(η(k)). If the segment �(η(k) |̃z) does not live in
the boundary of S(η(k)), the path has to move into its interior from side j (k−1), so
that

ξ (k) =
⎧⎨⎩

(
η

(k)
j − η

(k−1)
j

)
sgn

(
s
(k)
j

)
, η

(k)
j �= 0, j = j (k−1),

η
(k−1)
j sgn

(
χ ′

j s(k) − z̃j

)
, η

(k)
j = 0, j = j (k−1).

(3.13)

Given the slope s(k) and the sign ξ (k) of dτ for the segment, there are at most
p possible ways for (τ z̃) ⊕ b(τ z̃) to hit a new side of the boundary of the p-
parallelepiped S(η(k)) in (3.5). If it first hits the boundary indexed by η

(k)
j , by (3.5)
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and (3.8) �(k) would be

�
(k)
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ
(k)
j

{
t
(
η

(k)
j + 1

) − b
(k−1)
j

}
/s

(k)
j ,

ξ
(k)
j s

(k)
j > 0 �= η

(k)
j ,

ξ
(k)
j

{
t
(
η

(k)
j

) − b
(k−1)
j

}
/s

(k)
j ,

ξ
(k)
j s

(k)
j < 0 �= η

(k)
j ,

ξ
(k)
j

{
1 − g

(k−1)
j

}
/
{̃
zj − χ ′

j s(k)
}
,

ξ
(k)
j

(̃
zj − χ ′

j s(k)
)
> 0 = η

(k)
j ,

ξ
(k)
j

{−1 − g
(k−1)
j

}
/
{̃
zj − χ ′

j s(k)
}
,

ξ
(k)
j

(̃
zj − χ ′

j s(k)
)
< 0 = η

(k)
j ,

(3.14)

where t (·) is as in (3.4) and g
(k−1)
j ≡ τ (k−1)̃zj − χ ′

j b(k−1). It follows that

τ (k) = τ (k−1) + ξ (k)�(k), �(k) = min
1≤j≤p

�
(k)
j ,(3.15)

with the minimum attained at j = j (k) as in (3.9). We formally write the PLUS as
follows.

THE PLUS ALGORITHM.
Initialization: η(0) ← 0, b(0) ← 0, τ (0) ← 1/maxj≤p |̃zj |, k ← 1.
Iteration:

Find η(k) by (3.9) and (3.10),(3.16)

Find s(k) by (3.12),(3.17)

Find τ (k) by (3.13), (3.14) and (3.15),(3.18)

b(k) ← b(k−1) + (
τ (k) − τ (k−1))s(k),(3.19)

k ← k + 1.

Termination: (3.16) has no solution for k = k∗ + 1 or τ (k∗) = ∞.
Output: τ (0), b(0), η(k), s(k), τ (k), b(k), k = 1,2, . . . , k∗.

3.3. The existence and uniqueness of the PLUS path. We prove in this subsec-
tion that for the MCP the PLUS algorithm computes the main branch (2.7) of the
solution graph of (2.6) and that the main branch is unique almost everywhere in
(X,y).

Nondegenerate designs. The design matrix X in (1.2) is nondegenerate if for
all A ⊂ {1, . . . , p} of size |A| = n ∧ p − 1 and ηj ∈ {−1,0,1}, j ≤ p, the n ∧ p

vectors {
xj , j ∈ A,

∑
k /∈A

ηkxk

}
are linearly independent.(3.20)
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For p ≤ n, X is nondegenerate iff rank(X) = p.

THEOREM 3. Suppose the MCP is used in the PLUS algorithm. Let Q(η(k))

be as in (3.12).

(i) Suppose the design matrix X is nondegenerate in the sense of (3.20).
Given X, there exists a finite set �0(X) such that for all γ /∈ �0(X), a path of the

form (3.8) exists with det(Q(η(k))) �= 0 for k ≤ k∗ and perfect fit X′(y − Xβ̂
(k∗)

) =
0 at a finite final step k∗.

(ii) For fixed γ > 0, the design matrix X is nondegenerate and γ /∈ �0(X)

almost everywhere in R
n×p under the Lebesgue measure.

(iii) For fixed positive γ �= 1, the design matrix X is nondegenerate and γ /∈
�0(X) almost everywhere under the product of p Haar measures in the (n − 1)-
sphere {x :‖x‖2 = n}.

(iv) Suppose γ /∈ �0(X). Then, almost everywhere in z̃ = X′y/n ∈ R
p , the

graph of (2.7) is unique and the PLUS algorithm computes (2.7) within a finite

step k∗ and ends with an optimal fit satisfying X′(y − Xβ̂
(k∗)

) = 0. Consequently,
for all 0 ≤ k ≤ k∗ the path (3.8) is one-at-a-time in the sense of (a) the uniqueness
and validity of (3.9), (3.10), (3.12), (3.13) and (3.15) and (b) the positiveness of
�(k) and τ (k) in (3.15).

(v) If Q(η(k)) is positive-definite and �(η(k) |̃z) in (3.6) does not live in the

boundary of S(ηk)) in (3.5), then β̂
(x)

is a local minimizer of L(b;λ) in (1.1) at
λ = λ(x), k − 1 < x < k.

Theorem 3(ii) and (iii) ensure that γ /∈ �0(X) almost everywhere in X for all
fixed {n,p, γ }. The condition of γ /∈ �0(X) is not necessary for the MC+ path
to end with an optimal fit. For example, if xj0 = ±xk0 , the PLUS path uses at
most one design vector xj0 or xk0 in any step, so that it behaves as if one of them
never exists. Theorem 3(iv) guarantees that the PLUS algorithm yields an entire
path of solutions (2.7) covering all 0 ≤ λ < ∞. Theorem 3(v) implies that the
estimator β̂(λ) is a local minimizer under (2.5) whenever #{j : β̂j (λ) �= 0} ≤ d∗,
as guaranteed by the conditions of Theorems 1, 2, 5 and 6. For simplicity, we omit
an extension of Theorem 3 to the PLUS with general quadratic penalty (3.1).

We note that the map λ(x) → β̂
(x)

is potentially many-to-one in the PLUS path
due to the possible concavity of the penalized loss, since τ (k) < τ (k−1) is allowed
as (3.8) traverses through the solution graph. Theorem 3 does not guarantee that the
PLUS path contains all solutions of (2.6) due to loops outside its path, as Figure 3
demonstrates. However, such multiplicity of branches is less severe for sparse data.
In the example in Figure 4, the convex penalized loss with γ = 2 yields identical
MC+ path as the nonconvex one with γ = 1/2 for sparse data outside regions
where the the projections of the parallelograms S(η) fold severely in the z-space
for γ = 1/2. This should be compared with the dramatic difference between γ = 2
and γ = 1/2 in Figures 2 and 3 for dense data.
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FIG. 4. The same type of plots as in Figures 2 and 3 for the same X and more sparse
(̃z1, z̃2) = (1,−1/2). From the left: the z-space plot for MC+ with γ = 2; MC+ with γ = 1/2;
the MC+ (same for both γ = 2 and γ = 1/2) and LASSO paths in the β-space. The loop disappears
since the solid line τ z̃ does not pass through the places where the projection of S folds in two different
directions.

4. Selection consistency for general penalty. We provide in Section 4.1 two
sets of lower bounds for the probability of correct selection for general penalized
LSE: one for the global minimizer of (1.1) in the regular case of rank(X) = p

(p ≤ n necessarily) and one for the local solution (2.8) in the case of rank(X) < p

(including p � n). These lower bounds imply the sign consistency P {sgn(β̂) =
sgn(β)} → 1 and thus the selection consistency (1.4) as max(n,p) → ∞. As a
crucial element of our proof and a matter of independent interest, we also provide
in Section 4.2 upper bounds of the false positive for any given oracular set B of
interest and a general class of penalties.

4.1. Probability bounds for selection consistency. Our selection consistency
results are proved by showing that the global minimizer of (1.1) or the local solu-
tion (2.8) are identical to the oracle LSE (2.10) with high probability. Let

(wo
j , j ∈ Ao)′ = the diagonal elements of �−1

Ao ,(4.1)

so that Var(β̂o
j ) = wo

jσ
2/n∀j ∈ Ao for the oracle LSE β̂

o
with B = Ao. We first

present nonasymptotic bounds for selection consistency under the following global
convexity condition:

cmin(�) + {ρ̇(t2;λ) − ρ̇(t1;λ)}/(t2 − t1) > 0 ∀0 < t1 < t2,(4.2)

where � ≡ X′X/n. Under (4.2), (2.6) is the KKT condition and its solution is
unique, so that the estimator (2.8) is the global minimizer of (1.1). Let �(·) be the
N(0,1) distribution.

THEOREM 4. Suppose (2.3) and (4.2) hold for λ1 ≤ λ ≤ λ2. Let β̂(λ) be as in
(2.8) for each λ > 0 and β̂ = β̂ (̂λ) for a deterministic or random penalty level λ̂.
Let Ao, do, Â and β∗ ≡ minβj �=0|βj | be as in (1.3), (1.4) and (2.9) and β̂

o
be as in

(2.10) with B = Ao. Suppose β∗ ≥ γ λ2 and P {λ1 ≤ λ̂ ≤ λ2} = 1. Then

P {Â �= Ao} ≤ P {β̂ �= β̂
o

or sgn(β̂) �= sgn(β)} ≤ πn,1(λ1) + πn,2(λ2),(4.3)
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where πn,1(λ) ≡ 2
∑

j /∈Ao �(−nλ/(σ‖xj‖)) and πn,2(λ) ≡ ∑
j∈Ao �((γ λ −

|βj |)/(σ (wo
j /n)1/2)).

COROLLARY 2. Suppose (2.3), (4.2), ‖xj‖2 = n and |βj | ≥ γ λ + σ ×√
wo

j (2/n) logan for all j ∈ Ao with an ≥ do and λ ≥ λ1,1 ≡ σ ×√
(2/n) log(p − do). Then, for large

√
nλ/σ and an,

P {β̂(λ) �= β̂
o

or sgn(β̂(λ)) �= sgn(β)} → 0.(4.4)

For the MC+, (4.2) is equivalent to cmin(�) > 1/γ , and β∗ ≥ (γ + √
wo)λuniv

with p → ∞ suffices for (4.4), where wo ≡ maxj∈Ao wo
j is as in Theorem 1. For

the SCAD, we need the larger γ > 1 + 1/cmin(�) for (4.2). For do � p and
‖xj‖2 = n, (4.4) provides theoretical support to the heuristic condition (2.9) for
the selection consistency at λ = λuniv.

We now consider selection consistency for general p, including p � n. For
c∗ ≥ c∗ ≥ κ ≥ 0 and 0 < α < 1, define w ≡ wc∗,c∗,κ,α ≡ (2 − α)/(c∗c∗/κ2 − 1)

and

K∗ ≡ Kc∗,c∗,κ,α
(4.5)

≡ inf
0<t<(2/w+1+α)/α

(1 + w{1 + (α/t)/(1 − α)})c∗/c∗ − 1

{2 + w(1 + α − tα)}(1 − α)
.

THEOREM 5. Let ρ(t;λ) be a penalty satisfying ρ̇(0+;λ) = λ, ρ̇(t;λ) ≤
λI {t ≤ γ λ} and ρ̈(t;λ) ≥ −κ for all t > 0 and λ ≥ λ1. Let Ao, do, β̂ = β̂ (̂λ),
Â, β∗, β̂

o
, wo

j , πn,1(λ) and πn,2(λ) be as in Theorem 4. Suppose (2.11) holds
with certain rank d∗ and c∗ ≥ c∗ > κ . For these {c∗, c∗, κ} and 0 < α < 1,
let K∗ be as in (4.5). Suppose (1.2) holds with do ≤ d∗ = d∗/(1 + K∗). Let
πn,3(λ) ≡ (p−do

m

)
P {σ 2χ2

m > mλ} with m = d∗ − do.

(i) Let λ2 ≥ max{λ1, (
√

c∗/α)λ3}. Suppose β∗ ≥ γ λ2 and P {λ1 ≤ λ̂ ≤ λ2} =
1. Then

P {Â �= Ao} ≤ P {β̂ �= β̂
o

or sgn(β̂) �= sgn(β)} ≤
3∑

k=1

πn,k(λk).(4.6)

(ii) Let λ1,ε ≡ σ
√

(2/n) log((p − do)/ε), λ3,ε = σ
√

(2/n) log p̃ε with p̃ε in
(2.12), λ2,ε ≥ max{λ1,ε, (

√
c∗/α)λ3,ε} and an ≥ do. Suppose |βj | ≥ γ λ2,ε +

σ
√

wo
j (2/n) log(an/ε) for j ∈ Ao and ‖xj‖2 = n. If P {λ1,ε ≤ λ̂ ≤ λ2,ε} = 1, then

P {Â �= Ao} ≤ P {β̂ �= β̂
o

or sgn(β̂) �= sgn(β)}

≤ ε

{
1

1 ∨ J1
+ do/(2an)

1 ∨ J2
+ (4 log p̃ε)

−1/2

1 ∨ J3

}
(4.7)

≤
(

3

2
+ 1√

2

)
ε
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TABLE 2
Example configurations of {c∗, c∗, κ,α} for fixed K∗ c∗ = 1 + δ, c∗ = 1 − δ, optimal

t = √
(c∗/c∗)/K∗/(1 − α) in (4.5)

K∗ = 1/2 K∗ = 1 K∗ = 2 K∗ = 3

δ α 1/κ≥ δ α 1/κ≥ δ α 1/κ≥ δ α 1/κ≥
1/4 1/5 4.84 2/5 1/5 4.14 1/2 1/3 3.30 1/2 1/2 2.98
1/5 2/7 3.73 1/3 1/3 3.57 1/3 1/2 2.32 1/3 1/2 1.73
1/6 1/3 3.28 1/4 2/5 2.65 1/4 1/2 1.86 1/4 1/2 1.49

with J1 = √
π log((p − do)/ε), J3 = {2 log p̃ε − 1 + 1/m}√mπ/

√
4 log p̃ε and

J2 = √
π log(an/ε). Consequently, (1.4) holds as ε−1 ∨ min(J1, J2, J3) → ∞ and

P {λ1 ≤ λ̂ ≤ λ2} → 1.

REMARK 5. A convenient choice is α = 1/2 and t = 3 in (4.5) which leads
to K∗ ≤ {1 + 2/(c∗c∗/κ2 − 1)}c∗/c∗ − 1. In Theorems 1 and 2, 1/κ = γ ≥
c−1∗

√
4 + c∗/c∗, so that K∗ ≤ c∗/c∗ − 1/2. For the LASSO, κ = 0 = w and

K∗ = (c∗/c∗ − 1)/(2 − 2α). Some other configurations of {c∗, c∗, κ,α} are given
in Table 2.

REMARK 6. Theorem 5(i) is applicable to the problem of finding a sparse
solution β of y = Xβ with p > n, i.e., ε = 0 in (1.2). With λ2 = λ(k∗) (nearly

zero) and σ = λ1 = λ3 = α = 0, it asserts β̂
(k∗) = β at the last step of the PLUS

algorithm whenever β∗ > γλ(k∗) and do < d∗/(K∗ +1), where K∗ +1 = (c∗/c∗ +
1)/{2 − κ2/(c∗c∗)}. See Section 6.5.

REMARK 7. Consider the MC+ and LASSO. For β∗ > γλuniv, the oracle
τ (̃z ⊕ β̂

o
) has a high probability of solving (3.5) for the parallelepiped S(η) with

η = 2 sgn(β). Such parallelepipeds are unbiased, since they involve regions with
u(±2) = v(±2) = 0 = ρ̇2(|bj |) in (3.5). An extension of Theorem 5 to biased S(η)

requires sgn(βj )(1 + I {|βj | > γλ}) = ηj with a larger λ. Such an extension with
maxj |βj | < γλ and η = sgn(β) would match the theory of selection consistency
for the LASSO with uniformity in a neighborhood of γ = ∞.

Compared with Theorem 4, an obvious advantage of Theorem 5 is its applica-
bility to p > n. In the case of p ≤ n, Theorem 5 still allows c∗ > cmin(�) and thus
smaller γ = 1/κ and β∗ for the MC+ than Theorem 4 does. With κ = 1/γ , the
MCP allows the smallest γ and thus the smallest possible β∗ in Theorem 5.

4.2. An upper bound for the false positive. Given a target set B ⊂ {1, . . . , p},
we provide upper bounds for the false positive #{j /∈ B : |β̂j (λ)| > 0} for the selec-
tor (2.8) with a general class of penalties. See Remark 4 for examples of B .
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THEOREM 6. Suppose (2.11) holds with certain d∗ and c∗ ≥ c∗ ≥ κ ≥ 0.
For these {c∗, c∗, κ} and an α ∈ (0,1), let K∗ be as in (4.5). Let B be a de-
terministic subset of {1, . . . , p} with |B| = do ≤ d∗ = d∗/(K∗ + 1). Let λ1 > 0.
Suppose ρ(t;λ) satisfy λ(1 − κt/λ)+ ≤ ρ̇(t;λ) ≤ λ for t > 0 and λ ≥ λ1. Let
λ̂ ≥ λ1 ∨ {(√c∗/α)(σ

√
(2/n) log p̃ε + θB/

√
m)} with the θB in Theorem 2, m =

d∗ − do and p̃ε in (2.12). Let β̂ = β̂ (̂λ) with the β̂(λ) in (2.8). Then

P {#(j /∈ B : β̂j �= 0) ≥ 1 ∨ (K∗|B|)}
(4.8)

≤ ε(log p̃ε)
−1/2eμ2/2�(−μ) ≤ ε/

√
2,

where μ = {2 log p̃ε − 1 + 1/m}√m/
√

2 log p̃ε and �(x) is the N(0,1) distribu-
tion function.

This theorem is an extension of the upper bound on |Â| in Zhang and Huang
(2008) from the LASSO to a general continues path of penalized LSE. Since it
is relatively easy to find sharp conditions for the oracle LSE (2.10) to be a solu-
tion of (2.6), the upper bounds in Theorem 6 is a crucial element in our proof of
selection consistency. Remark 5 applies to Theorem 6.

5. The MSE, degrees of freedom and noise level. In this section, we con-
sider the estimation of the estimation and prediction risks for general penalized
LSE and the noise level in (1.2). Formulas for the degrees of freedom and unbiased
risk estimators are derived and justified via Stein’s (1981) unbiased risk estimation
(SURE). Necessary and sufficient conditions are provided for the continuity of the
penalized LSE.

5.1. The estimation of MSE and degrees of freedom. The formulas derived
here are based on Stein’s (1981) theorem for the unbiased estimation of the MSE
of almost differentiable estimators of a mean vector. A map h : Rp → R

p is almost
differentiable if

h(z + v) = h(z) +
{∫ 1

0
H(z + xv) dx

}
v ∀v ∈ R

p,(5.1)

for a certain map H : Rp → R
p×p . Suppose in this subsection that ρ(t;λ) is almost

twice differentiable in t > 0, or equivalently

ρ̇(t;λ) ≡ ∂

∂t
ρ(t;λ) = ρ̇(1;λ) +

∫ t

1
ρ̈(x;λ)dx ∀t > 0,(5.2)

for a certain function ρ̈(x;λ). Under this condition, ρ̈(t;λ) = (∂/∂t)ρ̇(t;λ) al-
most everywhere in (0,∞) and the maximum concavity (2.2) can be written as
κ(ρ;λ) = ‖(ρ̈(t;λ))−‖∞.

For multivariate normal vectors z ∼ N(μ,V), Stein’s theorem can be stated as

Eh(z)(z − μ)′ = EH(z)V,(5.3)
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provided (5.1) and the integrability of all the elements of H(z). This applies to the
penalized LSE. Let �A be as in (2.4). We extend (3.11) to general penalties ρ(t;λ)

as follows:

Q(β;λ) ≡ �{j : βj �=0} + diag
(
ρ̈(|βj |;λ),βj �= 0

)
,

(5.4)
d(β) ≡ #{j :βj �= 0}.

THEOREM 7. Let λ > 0 be fixed and β̂ ≡ β̂(λ) ≡ arg minb L(b;λ) with the
data (X,y) in (1.2) and L(b;λ) in (1.1). Suppose (2.5) holds with d∗ = p. Let
� ≡ X′X/n and P̂ be the d(β̂)×p matrix giving the projection P̂b = (bj : β̂j �= 0)′
as in (3.12). Then

E(β̂ − β)(β̂ − β)′
(5.5)

= E

{
(β̂ − β̃)(β̂ − β̃)′ + 2σ 2

n
P̂′Q−1(β̂;λ)P̂

}
− σ 2

n
�−1,

where β̃ ≡ �−1X′y/n is the ordinary LSE of β . In particular, for all a ∈ R
p ,

|a′(β̂ − β̃)|2 + 2σ̂ 2

n
(P̂a)′Q−1(β̂;λ)(P̂a) − σ̂ 2

n
a′�−1a(5.6)

is an unbiased estimator of the MSE E|a′(β̂ − β)|2, provided σ̂ 2 = σ 2 in the case
of known σ 2 or σ̂ 2 = ‖y − Xβ̃‖2/(n − p) in the case of p < n. Consequently,

E

{
‖β̂ − β̃‖2 + 2σ̂ 2

n
trace(Q−1(β̂;λ))− σ̂ 2

n
trace(�−1)

}
= E‖β̂ −β‖2.(5.7)

REMARK 8. Condition (2.5) with d∗ = p asserts cmin(�) > κ(ρ;λ), which is
slightly stronger than the global convexity condition (4.2). We prove in the next
subsection that (4.2) is a necessary and sufficient condition for the continuity of β̂ ,
which is weaker than the almost differentiability of β̂ . Thus, the conditions of
Theorem 7 are nearly sharp for the application of the SURE. In the kth segment of
the PLUS path, Q(β̂(λ);λ) = Q(η(k)) as in (3.11).

Let μ ≡ Ey = Xβ and μ̂ = Xβ̂ with the penalized LSE in Theorem 7. Let μ̃
and μ̂o be the orthogonal projections of y to the linear spans of {xj , j ≤ p} and
{xj , βj �= 0}, respectively. For uncorrelated errors with common variance σ 2, the
degrees of freedom for μ̂o is

∑p
j=1 Cov(μ̃j , μ̂

o
j )/σ

2 = rank(xj :βj �= 0). Thus,

since E‖μ̃ − μ‖2 = σ 2 rank(X) and ‖μ̂ − μ‖2 + ‖μ̃ − μ‖2 − ‖μ̃ − μ̂‖2 = 2(μ̃ −
μ)′(μ̂ − μ),

df(μ̂) ≡
p∑

j=1

Cov(μ̃j , μ̂j )

σ 2 = 1

2
E

(
rank(X) − ‖μ̃ − μ̂‖2

σ 2 + ‖μ̂ − μ‖2

σ 2

)
(5.8)
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extends the notion of degrees of freedom. This also provides the Cp-type risk
estimate

Ĉp ≡ Ĉp(λ) ≡ ‖μ̃ − μ̂‖2 + σ̂ 2{2d̂f − rank(X)} ≈ ‖μ̂ − μ‖2.(5.9)

Theorem 7 suggests the unbiased estimator for the degrees of freedom (5.8) as

d̂f ≡ d̂f(λ) ≡ trace(Q−1(β̂;λ)P̂�P̂′)(5.10)

and the related Cp-type estimator of the MSE E‖μ̂ − μ‖2 via (5.9). We refer
to Efron (1986) and Meyer and Woodroofe (2000) for more discussions about
(5.8) and (5.9). We will present in Section 6 simulation results to demonstrate
that (5.9) provides a reasonable risk estimator. The following theorem asserts the
unbiasedness of (5.8) and (5.9).

THEOREM 8. Suppose (2.5) holds with d∗ = p. Then, the SURE method pro-
vides unbiased estimators for the degrees of freedom and the �2 risk for the esti-
mation of the mean vector,

E(d̂f) = df(μ̂), EĈp = E‖μ̂ − μ‖2,(5.11)

in the linear model (1.2), where df(μ̂), d̂f and Ĉp are, respectively, given by (5.8),
(5.10) and (5.9), the σ̂ 2 in (5.9) is as in (5.6), and μ̂ = Xβ̂ is as in Theorem 7 with
a fixed λ. Furthermore, if ρ(t;λ) = λt for the LASSO or |β̂j | > γλ for all β̂j �= 0
under (2.3), then

d̂f = #{j : β̂j �= 0}.(5.12)

Under a positive cone condition on X, Efron et al. (2004) proved the unbiased-
ness of #{j : β̂j �= 0} as an estimator for the degrees of freedom for the LARS
estimator (not the LASSO) at a fixed step k. Our definition of the degrees of
freedom and Cp is slightly different, since we use ‖μ̃ − μ̂‖2 and rank(X) in
(5.8) and (5.9) for variance reduction, instead of ‖y − μ̂‖2 and n. We prove
E#{j : β̂j �= 0} = df(μ̂) for the LASSO for fixed λ without requiring the positive
cone condition, but not for fixed k with a stochastic λ. The performances of Ĉp for
the LASSO and MC+ are similar in our simulation experiments.

5.2. Estimation of noise level. Consider throughout this subsection standard-
ized designs with ‖xj‖2 = n for all j ≤ p in (1.2). We have shown in Theorem 1
and Table 1 that the MC+ at λuniv ≡ σ

√
(2/n) logp works well for variable selec-

tion. In practice, this requires a reasonable estimate of the noise level σ . For p < n,
the mean residual squares ‖y − μ̃‖2/{n − rank(X)} for the full model provides an
unbiased estimator of σ 2 as in Table 1, where μ̃ is the orthogonal projection of y
to the linear span of {xj , j ≤ p}. However, the estimation of σ 2 is a more delicate
problem for p > n or small n − p > 0. Here, we present a simple estimator of σ 2

in such cases based on Theorem 8.
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Since (2.8) provides estimates μ̂(λ) ≡ Xβ̂(λ) of the mean μ ≡ Xβ , we may use

σ̂ 2(λ) ≡ ‖y − μ̂(λ)‖2/{n − d̂f(λ)}(5.13)

to estimate σ 2, with the d̂f(λ) in (5.10) as an adjustment for the degrees of free-
dom. Still, good σ̂ 2(λ) requires a consistent μ̂(λ), which depends on the choice
of a suitable λ of the order σ

√
(logp)/n. This circular estimation problem can be

solved with

σ̂ ≡ σ̂ (̂λ), λ̂ ≡ min{λ ≥ λ∗ : σ̂ 2(λ) ≤ nλ2/(r0 logp)},(5.14)

for suitable r0 ≤ 2 and λ∗ > 0. Here, λ∗ could be preassigned or determined by up-
per bounds on d̂f(λ) or the dimension #{j : β̂j (λ) �= 0}. In principle, we may also
use in (5.14) estimates σ̂ 2(λ) based on cross-validation or bootstrap, but the com-
putationally much simpler (5.13) turns out to have the best overall performance in
our simulation experiments.

5.3. Convexity, continuity and almost differentiability. Here, we consider the
continuity and almost differentiability of a penalized LSE β̂ , which the proof of
Theorems 7 and 8 require.

The continuity of β̂ , demanded by Stein (1981), is a property of independent
interest on its own right for robust estimation [Fan and Li (2001)]. For full rank
designs, we provide here the equivalence of the continuity of the penalized LSE
and the global convexity condition (4.2). We have considered (2.3) for unbiased
selection. For the continuity of β̂ , we only need

lim
t→∞ρ(t;λ)/t2 = 0, 0 ≤ ρ̇(0+;λ) < ∞.(5.15)

THEOREM 9. Let λ be fixed. Suppose ρ(t;λ) is continuously differentiable
in t > 0, (5.15) holds, and rank(X) = p. Then the following three statements are
equivalent to each other:

(i) The global minimizer β̂ of (1.1) is unique and continuous in y ∈ R
n.

(ii) The global convexity condition (4.2) holds.
(iii) The penalized loss L(b;λ) in (1.1) is strictly convex in b ∈ R

p .

For p > n, an implication of Theorem 9 is the continuity of solution β̂ of
the estimating equation (2.6) subject to {j : β̂j �= 0} ⊂ A for all fixed λ and A

with |A| ≤ d∗, provided the sparse convexity (2.5). Thus, minimizing the maxi-
mum concavity allows the broadest extent for such sparse continuity of solutions
of (2.6). The most difficult part of the proof of Theorem 9 is (i) ⇒ (ii), which is
done by showing (x, x, . . . , x)′ = x1 is in the range of β̂ for all x > 0. Since the pe-
nalized loss attains minimum at β̂ , Q(β̂;λ) in (5.4) is positive definite for smooth
penalties, and the positive-definiteness of Q(t1;λ) gives cmin(�) > ρ̈(t;λ).

The application of SURE in Theorems 7 and 8 also requires the almost differ-
entiability of β̂ . In the following proposition, we establish the stronger Liptchitz
condition for β̂ under the conditions of Theorem 7.
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PROPOSITION 2. Let λ and X be fixed and treat β̂ in (2.8) as a function of y.
Suppose (2.5) holds with d∗ = p. Then β̂ = h(̃z) for z̃ = X′y/n ∈ R

p and a certain
almost differentiable function h : Rp → R

p , such that for all z and v in R
p

h(z + v) = h(z) +
{∫ 1

0
(P′Q−1P)

(
h(z + xv);λ)

dx

}
v,(5.16)

where Q is as in (5.4) and P(β;λ) : b → (bj :βj �= 0)′ is as in (3.12). Conse-
quently, h(z) satisfies the Lipschitz condition ‖h(z+v)−h(z)‖ ≤ ‖v‖/{cmin(�)−
κ(ρ;λ)}.

6. More simulation results. In this section, we present simulation results
along with some discussion on the performance of the LASSO, MC+ and SCAD+
in selection consistency and estimation of β and μ ≡ Xβ , sparse recovery, the
computational complexity and the scalability of the PLUS algorithm, the choice
of the tuning parameter γ , the estimation of the noise level σ and the risk, and the
sparse Riesz condition.

6.1. Selection consistency. For the MC+, the tuning parameter γ regulates
its computational complexity and bias level. We study its effects through three
experiments, say experiments 1, 2 and 3, including cases where γ is smaller than
the “smallest” theoretical value 1/(1 − maxj �=k|x′

j xk|/n) with d∗ = 2 in (2.5) and
λ < λuniv.

Experiment 1, summarized in Table 1 in Section 2, illustrates the superior selec-
tion accuracy of the MC+ for sparse β , compared with the LASSO and SCAD+.
Experiment 2, summarized in Table 3, shows the effects of the regularization para-
meter γ on selection accuracy and computational complexity of the MC+. Experi-
ment 3, summarized in Table 4, demonstrates the scalability of the PLUS algorithm
for large p. The design matrix X has the same distribution in experiments 1 and 2.
For each replication, we generate a 300 × 600 random matrix as the difference
of two independent random matrices, the first with i.i.d. unit exponential entries
and the second i.i.d. χ2

1 entries. We normalize the 600 columns of this difference
matrix to summation zero and Euclidean length

√
n. We then sequentially sample

groups of 10 vectors from this pool of normalized columns. For the mth group, we
sample from the remaining 610−10m columns one member as x10m−9 and 9 more
to maximize the absolute correlation |x′

j x10m−9|/n, j = 10m − 8, . . . ,10m. In ex-
periment 3, X are generated in the same way for each replication with groups of
size 50 from a pool of 6000 i.i.d. columns. In all the three experiments, βj = ±β∗
for j ∈ Ao and ε ∼ N(0, In).

Strong effects of bias on selection accuracy is observed in all three tables. In
Table 1 where β∗ ≈ √

10λuniv, the selection accuracy of the LASSO clearly deteri-
orates as do increases. In Tables 3 and 4, the unbiasedness criterion β∗ > γλuniv in
(2.9) matches the best selection results well, with 1.7λuniv < β∗ < 2λuniv in Table
3 and 2λuniv < β∗ < 2.4λuniv in Table 4. In Table 1, γ λuniv/σ ≈ 1/2 = β∗/σ , but
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TABLE 3
Performance of MC+ with different γ in experiment 2 100 replications, n = 300, p = 200, do = 30,

β∗ = 3/8, LASSO for γ = ∞ CS ≡ I {Â = Ao}, SEβ ≡ ‖β̂ − β‖2, SEμ ≡ ‖X(β̂ − β)‖,
K ≡ #(steps)

γ 1.01 1.4 1.7 2.0 2.4 2.7 3.0 5.0 ∞

λuniv CS 0.81 0.82 0.66 0.53 0.34 0.35 0.27 0.11 0.00
= 0.188 SEβ 0.136 0.128 0.265 0.495 0.729 0.801 0.817 1.007 1.420

SEμ 0.117 0.112 0.205 0.358 0.510 0.564 0.583 0.761 1.123
k 561 98 62 47 36 33 32 32 34

λ λ 0.195 0.182 0.175 0.164 0.164 0.158 0.169 0.188 0.201
for max CS CS 0.83 0.82 0.75 0.63 0.46 0.36 0.27 0.11 0.02

k 561 98 65 57 45 40 34 32 33

λ λ 0.182 0.175 0.153 0.138 0.120 0.108 0.101 0.094 0.050
for min SEβ SEβ 0.132 0.117 0.119 0.124 0.133 0.140 0.149 0.255 0.394

k 562 98 68 64 65 67 68 47 84

λ λ 0.182 0.175 0.153 0.138 0.120 0.108 0.101 0.094 0.050
for min SEμ SEμ 0.115 0.104 0.106 0.110 0.117 0.124 0.130 0.201 0.278

k 562 98 68 64 65 67 68 47 84

slightly larger λ yields the largest CS. Comparison between the results for λuniv

and arg maxλ CS in all three tables demonstrates that λuniv is a reasonable choice

TABLE 4
Performance of MC+ and SCAD with p > n in experiment 3 100 replications, n = 300, p = 2000,

do = 30, β∗ = 1/2, SCAD+ for γ ∗, LASSO with γ = ∞

γ 1.4 1.7 2.0 2.4 2.7 2.4* 2.7* ∞

λuniv CS 0.99 0.99 0.96 0.80 0.56 0.00 0.00 0.00
= 0.225 SEβ 0.109 0.116 0.205 0.534 0.712 2.703 2.764 2.640

SEμ 0.098 0.103 0.170 0.395 0.515 1.602 1.661 1.785
k 119 76 62 46 41 130 84 56

λ λ 0.241 0.225 0.225 0.225 0.210 0.177 0.171
for max CS CS 1.00 0.99 0.96 0.80 0.60 0.08 0.02 0.00

k 118 76 62 46 44 255 169

λ λ 0.225 0.203 0.183 0.165 0.149 0.134 0.129 0.069
for min SEβ SEβ 0.109 0.112 0.117 0.127 0.138 0.124 0.130 1.292

k 119 77 69 71 76 279 200 181

λ λ 0.225 0.203 0.183 0.165 0.149 0.143 0.134 0.069
for min SEμ SEμ 0.098 0.100 0.104 0.112 0.122 0.112 0.118 0.563

k 119 77 69 71 76 273 197 181
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for variable selection with ‖xj‖2 = n, especially when β∗ is near the minimum for
accurate selection as in Tables 3 and 4.

An interesting phenomenon exhibited in experiments 2 and 3 is that the ob-
served selection accuracy CS is always decreasing in γ . Despite the computational
complexity for small γ , the MC+ still recovers the true Ao among so many paral-
lelepipeds it traverses through. This suggests that the interference of the bias, not
the complexity of the path or the lack of the convexity of the penalized loss, is a
dominant factor in variable selection. Of course, bias reduction does not always
provide accurate variable selection. When the signal is reduced to β∗ = 1/4 from
β∗ = 3/8 in experiment 2, the selection accuracy suddenly drops to CS ≤ 0.11 for
all values of (λ, γ ).

6.2. Estimation of regression coefficients and the mean responses. Tables 1,
3 and 4 also report results for the estimation of regression coefficients β with the
square error SEβ ≡ ‖β̂ − β‖2. The MC+ and SCAD+ clearly outperform the
LASSO in these settings. In Table 4, the minimum SEβ for the SCAD+ are 2.5%
and 6.2% smaller than the MC+ with matching γ = 2.4 and 2.7, respectively,
while those of the MC+ are 14% and 16% smaller than the SCAD+ with matching
maximum concavity κ(ρ) (γ = 1.4 and 1.7 for the MC+ versus γ = 2.4 and 2.7
for the SCAD+, respectively). The SCAD penalty requires γ > 2. The results for
the SCAD+ in experiment 2 are not reported since they show a similar pattern
as experiment 3. Results for the estimation of the mean μ ≡ Xβ with the average
squared error SEμ ≡ ‖Xβ̂ − Xβ‖2/n are similar to those for the estimation of β
in Tables 3 and 4.

6.3. Computational complexity and choice of γ . As expected, we observe in
Tables 3 and 4 that the MC+ with smaller γ is computationally more costly.
Dramatic rise in the number of needed PLUS steps is observed when γ de-
creases to 1/2 in experiment 2. We avoid γ = 1, since it produces the singularity
det(Q(η)) = 0 for (3.12) whenever

∑p
j=1 |ηj | = 1 for the MC+ with the standard-

ization ‖xj‖2 = n.
Table 4 shows that the PLUS algorithm scales well for p > n. Comparisons

between Tables 3 and 4 demonstrate that for similar do and SNR β∗/λuniv, the
computational complexity of the MC+ is insensitive to p as measured by the av-
erage number of steps k.

In practice, full implementation of the MC+ requires a specification of γ and
possibly a stopping rule for large (n,p), say k = kmax ∧ k∗, to allow the algo-
rithm to end before it reaches the perfect fit at k = k∗. As we have discussed in the
Introduction, large γ provides computational simplicity but may harm selection
consistency with larger bias. Our simulation results in Tables 3 and 4 demonstrate
robust selection accuracy for smaller-than-necessary γ > 0 at the universal penalty
level. Thus, the choice of γ should largely be determined by the available compu-
tational resources as long as the MC+ path reaches a sufficiently small λ. In our
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FIG. 5. The median of σ̂ 2(λ)/(nλ2/ logp) as a function of λ/
√

(logp)/n ∈ [2−3/2,4] based on
100 replications. Left: experiment 4 with n = 300, p = 2000 and do = 30. Middle and right: ex-
periment 5 with high and low correlations, respectively, n = 600, p = 3000 and do = 35. For
1/1.5 ≤ r0 ≤ 2 in (5.14), σ̂ 2(λ)/(nλ2/ logp) ≈ 1/r0 matches λ/

√
(logp)/n = √

r0 reasonably well

to provide σ̂ 2(λ) ≈ σ 2 = 1. This is especially the case for r0 = 1 as indicated by the dotted lines.

simulations, kmax = 5000, and all replications failing to reach λ < λ∗/1.2 occur
only for unreasonably small γ = 1/2, where λ∗ is (much) smaller than the small-
est reported penalty level in each experiment. Since σ̂ in (5.13) is based on the
beginning segments of the PLUS path, we “know” whether the desired penalty
level is reached.

6.4. Estimation of noise. In Figures 5 and 6, we present simulation results for
the estimation of σ in experiments 4 and 5 with the MC+ estimator μ̂(λ) = Xβ̂(λ).
In experiment 4, (n,p) = (300,2000), γ = 1.7, β∗ = 1/2, β is generated every 10
replications and X is fixed. Its configurations are otherwise identical to that of ex-
periment 3 reported in Table 4. In experiment 5, (n,p) = (600,3000), xj are nor-
malized columns from a Gaussian random matrix with i.i.d. rows and the correla-
tion σj,k = σ

|k−j |
1,2 among entries within each row, γ = 2/(1−maxj>k |x′

kxj |/n) as
in experiment 1, the nonzero βj are composed of 5 blocks of β∗(1,2,3,4,3,2,1)′

FIG. 6. Histograms of σ̂ at r0 = 1 for the same simulations as in Figure 5 with respective means
and standard deviations 0.971 ± 0.057, 1.033 ± 0.032 and 1.060 ± 0.039 from the left to the right.
It turns out that the MSE for σ̂ is of the same order as n−1/2 in these simulations.
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centered at random multiples j1, . . . , j5 of 25, β∗ sets ‖Xβ‖2/n = 3, ε ∼ N(0, In),
and {X,β} are generated every 10 replications. It has two settings: σ1,2 = 0.9 for
high correlation and σ1,2 = 0.1 for low correlation. We set λ∗ = {2−3(logp)/n}1/2

in both experiments 4 and 5.
Figure 5 plots the median of σ̂ 2(λ)/(nλ2/ logp) versus λ/

√
(logp)/n in the

simulations described above. Since all three curves cross the level σ̂ 2(λ)/(nλ2/

logp) = 1 at approximately λ/
√

(logp)/n = 1, the estimation equation (5.14)
provides approximately the right answer σ̂ 2 ≈ 1 for r0 = 1. We solve (5.14) for
individual replications and plot the histograms of σ̂ in Figure 6. These simulation
results suggest that the MSE for σ̂ is of the same order as n−1/2 for sparse β .

6.5. Sparse recovery. Our variable selection theorems are applicable to sparse
recovery in the noiseless case of σ = 0 as we mentioned in Remark 6. Table 5
reports simulation results to show that the LASSO (y = ∞) may miss up to about
45% of nonzero βj , while the MC+ (γ = 3) still manages to recover the true β . For
(n,p, do) = (100,2000,28) and (200,10,000,40), the LASSO does not capture
most of the nonzero βj before falsely selected variables manage to perfectly fit y =
Xβ at the last step of the LARS, at the expense of substantially many additional
computation steps.

6.6. Estimation of risk. We summarize in Figure 7 the performance of Ĉp in
(5.9) for the MC+ in experiments 4 and 5, with the d̂f in (5.10) and the σ̂ in
(5.14). For each of the three settings, E‖μ̂(λ) − μ‖2 and EĈp(λ) are approxi-
mated by the averages in 100 replications and the expected conditional variance
E Var(Ĉp(λ)|X,β) is approximated by the within-group variance, since (X,β) is
unchanged in every 10 replications in each of the three settings. From Figure 7,
we observe that the MSE E‖μ̂(λ)−μ‖2 is reasonably approximated by Ĉp(λ) for
p > n, at least before the MC+ starts to over fit with small λ.

TABLE 5
Sparse recovery with MC+ at the last PLUS step k∗. Entries of X and nonzero βj are i.i.d. N(0,1),

ε = 0; FN ≡ #{j : β̂(k∗)
j = 0 �= βj }

(n,p,do) (100,2000,15) (100,2000,28) (200,10,000,40)

γ 3 ∞ 3 ∞ 3 ∞

%{β̂(k∗) = β} 100 51 73 0 100 0

mean(FN |β̂(k∗) �= β) 2 19 13 18

mean(k∗|β̂(k∗) = β) 32 65 87 102

mean(k∗|β̂(k∗) �= β) 144 513 153 311
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FIG. 7. Approximations of E‖μ̂(λ)−μ‖2/n (solid) and EĈp(λ)/n±2{E Var(Ĉp(λ)/n|X,β)}1/2

(dashed) as functions of λ/
√

(logp)/n for the MC+ based on the same simulations as in Figure 5.
The MSE E‖μ̂(λ) − μ‖2 is reasonably approximated by Ĉp(λ) in these experiments with p > n, at
least before the MC+ starts to over fit with small λ.

6.7. The sparse Riesz condition. The SRC (2.11) and constant factors in The-
orems 1, 2, 4 and 5 are quite conservative compared with our simulation results.
Technically, this is probably due to the following two reasons: (i) the sparse min-
imum and maximum eigenvalues, or c∗ and c∗, respectively, in (2.11), are used
to bound the effects of matrix operations in the worst case scenario given the di-
mension/rank of the matrix; (ii) we use the conservative bound cmin(�j : ηj �=0 −
diag(1/γ, |ηj | = 1)) ≥ cmin(�j : ηj �=0) − 1/γ to ensure sparse convexity in the kth

segment η(k) of the MC+ path, but #{j : |η(k)
j | = 1} could be much smaller than

#{j :η(k)
j �= 0}. These considerations suggest that the penalized loss (1.1) with the

MCP (2.1) possesses sufficient convexity if

P ∗{cmin(�A) ≥ κ(ρ2) = 1/γ ||A| = d,X} ≈ 1(6.1)

at a reasonable dimension d , where P ∗ is the probability under which A is a ran-
dom subset of {1, . . . , p}. In practice, we may substitute the SRC (2.11) with (6.1)
and a similar probabilistic upper bound on cmax(�A) under P ∗, which are weaker
and much easier to check. Figure 8 plots the mean and a lower confidence bound of
cmin(�A) under P ∗ as functions of given d = |A|. We observe that (6.1) holds for
quite a few possible combinations of (d, γ ) in our experiments, in view of Tables
1, 3 and 4.

7. Discussion. We have introduced and studied the MC+ methodology for
unbiased penalized selection. Our theoretical and simulation results have shown
the superior selection accuracy of this method and the computational efficiency



MINIMAX CONCAVE PENALTY 925

FIG. 8. The mean (solid) of the minimum eigenvalue cmin(X′
AXA/n) for a random set A of

design vectors and the mean minus two standard deviations (dashed) as functions of the dimen-
sion |A|, each point based on 100 replications, with horizontal dotted lines at κ(ρ2) = 1/γ for
γ ∈ {1.4,1.7,2.652}. Left: the design X in experiments 1 and 2. Right: the design X in experiments
3 and 4.

of the PLUS algorithm. We have provided an oracle inequality to demonstrate the
advantage of the MC+ for the estimation of regression coefficients and proved its
convergence at certain minimax rates in �r balls. We have also discussed unbiased
estimation of the risk, estimation of the noise level in the linear model in the case of
p > n, and the necessary and sufficient conditions for the continuity of the penal-
ized LSE. In this section, we briefly discuss the choice among multiple solutions
in the PLUS path, the one-at-a-time condition with the PLUS algorithm, the penal-
ized LSE for orthogonal designs, adaptive penalty, general loss and sub-Gaussian
errors.

7.1. Choice among multiple solutions in the path. In (2.8), β̂(λ) is taken as the

β̂
(x)

when λ(x) first reaches a level no greater than λ. An alternative choice [Zhang

(2007b)] is to pick β̂(λ) as the sparsest β̂
(x)

in (2.7) with λ(x) = λ. Theorems 1,
4 and 5 holds verbatim for the sparsest solution, while Theorem 2 holds with a
smaller d∗ = d∗/(c∗/c∗ + 3/2). Our simulation experiments yield nearly identical
results among the two choices. A significant reason for using (2.8) is its simplicity
in implementation since it does not require the entire path to compute β̂(λ) for
given penalty levels λ.

7.2. The one-at-a-time condition with the PLUS algorithm. The formulas
(3.16)–(3.19) provide a simplified version of the PLUS algorithm dealing with the
one-at-a-time scenario in which every intermediate turning point in the PLUS path
is the intersection of exactly two line segments of positive length. Although the
one-at-a-time condition holds almost everywhere, numerical ties do occur in ap-
plications. When the one-at-a-time condition fails, the main branch (2.7) is a limit
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path of one-at-a-time paths, so that it is a graph with no dead end. The difference
here is that when the PLUS path reaches a more-than-two-way intersection, say at
step k, it must checked the indicators η(�),0 ≤ � < k, to avoid infinite looping with
the covered segments . The computational cost for checking the indicators is O(k)

if η are efficiently coded, which is small compared with the cost O(np) for finding
the exit time (3.15). See Zhang (2007b) for details.

7.3. Orthonormal designs and more discussion on penalties. For orthonormal
designs x′

j xk/n = I {j = k}, the penalized estimation problem is reduced to the

case of p = 1. For ρ(t;λ) = λ2ρm(t/λ) with the quadratic spline penalties (3.1),

β̂j = λb
(
x′
j y/(nλ)

)
where b(z) ≡ arg min

b

{(z − b)2/2 + ρm(|b|)}.(7.1)

For p = 1 and the MCP with κ(ρ2) = 1/γ < 1, the solution of (7.1) is

bf (z) = sgn(z)min{|z|, γ (|z| − λ)+/(γ − 1)},
which turns out to be the firm threshold estimator of Gao and Bruce (1997). The
firm threshold estimator is always between the soft threshold estimator bs(z) ≡
sgn(z)(|z| − λ)+ and the hard threshold estimator bh(z) ≡ zI {|z| > λ}. Actually,
bs(z) ≤ b(z) ≤ bf (z) ≤ bh(z) for z > 0 and the opposite inequalities hold for z < 0
for all solutions of (7.1), given a fixed γ λ in (2.3) or a fixed maximum concavity
κ(ρm) = 1/γ with γ > 1. We plot these univariate estimators in Figure 9 along
with the univariate SCAD estimator. For p = 1 and κ(ρ2) = 1/γ ≥ 1, the MC+
path (2.7) has three segments and (2.8), identical to the hard threshold estimator,
globally minimizes the penalized loss. See Figure 9 on the left. Antoniadis and
Fan (2001) observed that in the orthonormal case, the global minimizer (7.1) for
the penalty (2.1) with γ = 1/2 yields the hard threshold estimator. In fact, in the

FIG. 9. Left: the univariate hard, soft and MC+ paths in z ⊕ b ∈ H ⊕ H∗ = R
2 with a vertical

dotted line at z = γ = 1/2. Right: the hard, MC+/firm and SCAD paths for p = 1 with γ = 5/2.
Hard and soft path in solid, and additional segments of MC+ and SCAD in dashed lines.
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univariate case, any penalty function with concave derivative ρ̇(t;λ) and γ ≤ 1 in
(2.3) yields the hard threshold estimator as the global minimizer in (7.1).

The analytical and computational properties of penalized estimation and selec-
tion for general correlated X and concave penalty is much more complicated than
the case of p = 1, since they are determined in many ways by the interplay be-
tween the penalty and the design. To a large extent, the effects of the penalty can
be summarized by the threshold factor γ for the unbiasedness in (2.3), the max-
imum concavity κ(ρ;λ) in (2.2) and their relationships to the correlations of the
design vectors. This naturally leads to our choice of the MCP as the minimizer of
κ(ρ;λ) given the threshold factor γ and the role of γ = 1/κ(ρ1) as the regulariza-
tion parameter for the bias and computational complexity of the MC+.

7.4. Adaptive penalty. The PLUS algorithm applies to the penalized loss

(2n)−1‖y − Xβ‖2 +
p∑

j=1

λ2ρm(|βj |rj /λ), rj > 0 ∀j,(7.2)

through the scale change {xj , βj } → {xj rj , βj/rj }. It can be easily modified to ac-
commodate different quadratic ρm of the form (3.1) for different j . For example,
different γ = γj can be used with the MC+, so that the j th path β̂j (λ) reaches the
unbiased region when |β̂j (λ)|rj /λ ≥ γj . This allows rj and γj to be data depen-
dent. For rj = 1, the unbiasedness condition γjλ ≤ |βj | allows a higher level of
convexity than (2.9) does.

Zou (2006) proposed an adaptive LASSO with λ2ρ1(|βj |rj /λ) = λrj |βj |,
where rj is a decreasing function of an initial estimate of βj . The idea is to reduce
the penalty level or the bias for large/nonzero |βj |, but its effectiveness for selec-
tion consistency essentially requires the initial estimator to be larger than a (pos-
sibly unspecified and random) threshold for most large/nonzero |βj | and smaller
than the same threshold for most small/zero |βj |. This approach was proven for
bounded p = rank(X) to provide selection consistency (1.4) in Zou (2006) and
Zou and Li (2008). Marginal regression xj y/‖xj‖2 can be used as an initial es-
timate of βj and is proved to result in the selection consistency of the adaptive
LASSO under a certain partial orthogonality condition on the pairwise correla-
tions among vectors {y,x1, . . . ,xp} [Huang, Ma and Zhang (2008)].

7.5. General loss functions. Consider the general penalized loss L(β;λ) ≡
ψ(β) + ∑p

j=1 ρ(|βj |;λ), where ψ(β) ≡ ψn(β;X,y) is a convex function of β ∈
R

p given data (X,y). In generalized linear models, nψn(β;X,y) is the negative
log-likelihood. With (ψ̇j )p×1 and (ψ̈j�)p×p being the gradient and Hessian of ψ ,
(2.7) must satisfy⎧⎨⎩ ψ̇j

(
β̂

(x)) + sgn
(
β̂

(x)
j

)
ρ̇

(∣∣β̂(x)
j

∣∣;λ(x)
) = 0, β̂

(x)
j �= 0,∣∣ψ̇j

(
β̂

(x))∣∣ ≤ λ(x), β̂
(x)
j = 0.

(7.3)
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Let s(x) ≡ dβ̂
(x)

/dλ(x) and Â(x) ≡ {j : β̂(x)
j �= 0}. Differentiation of (7.3) yields{ ∑

�∈Â(x)

ψ̈j�

(
β̂

(x))
s
(x)
�

}
+ ρ̈

(∣∣β̂(x)
j

∣∣;λ(x))s(x)
j = a

(
β̂

(x)
j ;λ(x))(7.4)

for j ∈ Â(x) and s
(x)
j = 0 for j /∈ Â(x), where a(t;λ) = − sgn(t)(∂/∂λ)ρ̇(|t |;λ).

This provides the local direction of the next move and thus allows an extension of
the PLUS algorithm. The main difference of such an extension from (3.8) is that the
step size has to be small when ψ(·) is not a quadratic spline. The main difference of
such an extension from the computation of the LASSO for the generalized linear
models [Genkin, Lewis and Madigan (2004), Zhao and Yu (2007) and Park and
Hastie (2007)] is the possibility of the sign change dλ(x)/dx to allow the path to
traverse from one local minimum to another. Extensions of the LARS with large
step size �(k) have been considered by Rosset and Zhu (2007) for support vector
machine and by Zhang (2007a) for continuous generalized gradient descent.

7.6. Sub-Gaussian errors. Remark 3 in Section 2 mentions the validity of our
theorems when the normality condition ε ∼ N(0, σ 2In) in (1.2) is replaced by a
sub-Gaussian condition on the error vector. Here, we provide some details.

PROPOSITION 3. Let ε ∈ R
n be a random vector satisfying the sub-Gaussian

condition E exp(x′ε) ≤ e‖x‖2σ 2
1 /2 for all x ∈ R

n. Then for projections P of rank m

P

{‖Pε‖2

mσ 2
1

≥ 1 + x

{1 − 2/(ex/2
√

1 + x − 1)}2+

}
≤ e−mx/2(1 + x)m/2 ∀x > 0.

The normality condition is used in our proofs only to provide upper bounds
for the tail probabilities of u′ε and ‖Pε‖2/m. The sub-Gaussian condition implies
P {u′ε/σ1 > t} ≤ e−t2/2 ≤ (t + 1/t)�(−t) for t > 0 and ‖u‖ = 1, comparable to
the normal tail probability. Proposition 3 is comparable to the χ2

m/m tail probabil-
ity bound needed in our proofs.

APPENDIX

In this appendix, we provide all the proofs. Theorem 1 is a special case of The-
orem 5 and Theorem 2 concerns estimation in the same special case. The proof of
Theorem 5 requires Theorem 6 and the proof of Theorem 7 requires Theorem 9
and Proposition 2. Thus, the proofs are given in the following order: Theorems 3,
4, 6, 5, 1, 2 and 9, Proposition 2, Theorems 7 and 8 and then Proposition 3. Two
lemmas, needed in the proof of Theorems 6, 5 and 2, are stated before the proof of
Theorem 6 and proved at the end of the Appendix.

PROOF OF THEOREM 3. Let X be fixed. Define dk(η) ≡ #{j : |ηj | = k}, k =
1,2. We consider three types of indicators η ∈ {−2,−1,0,1,2}p with η = 0 as
type-1.
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Type-2: d2(η) ≥ n ∧ p. Let (τ z̃) ⊕ b ∈ S(η) as in (3.5), so that (3.3) holds with
zj = τ z̃j = τx′

j y/n. Since ρ̇2(|bj |) = 0 for |ηj | = 2, (3.3) implies x′
j (τy − Xb) =

0 for all |ηj | = 2. Since τy − Xb ∈ R
n and {xj , |ηj | = 2} contains at least n ∧ p

linearly independent vectors, by (3.6){
d2(η) ≥ n ∧ p

(τ z̃) ⊕ b ∈ �(η|̃z) ⇒ X′(τy − Xb) = 0.(A.1)

Type-3: d2(η) < n ∧ p and η �= 0. If (3.3) holds for z = 0, then bj x′
j Xb/n =

bjχ
′
j b = −|bj |ρ̇2(|bj |) for all bj �= 0, so that ‖Xb‖2/n = −∑

j |bj |ρ̇2(|bj |) = 0
due to ρ̇2(|bj |) ≥ 0. Since ρ̇2(|bj |) = (1 − |bj |/γ )+ > 0 for |bj | < γ and |bj | ≤ γ

for |ηj | = 1, bj equals either 0 or γ ηj for |ηj | = 1 in such cases. Therefore, Xb =∑
|ηj |=2 bj xj + γ

∑
bk �=0,|ηk |<2 ηkxk = 0. This is impossible for nondegenerate X

since γ > 0 and d2(η) < n ∧ p. Thus, 0 ⊕ b /∈ S(η) for indicators η of type-3.
We now consider the choice of γ for the MCP. It follows from (3.2) and (3.11)

that the determinant det(Q(η)) is a polynomial of v1 = 1/γ with det(�j : |ηj |=2)×
(−v1)

d1(η) as the leading term and det(�j : |ηj |=2) �= 0 for type-3 η by (3.20). Let
�0(X) be the finite set of all reciprocals of the real roots of such polynomials with
type-3 η. We choose γ /∈ �0(X) hereafter, so that det(Q(η)) �= 0 for all η of type-3.
Since det(Q(η)) �= 0, in S(η) the vector (bj , ηj �= 0)′ is a linear function of z by
(3.12), so that by (3.6) and the discussion in the previous paragraph{

d2(η) < n ∧ p,

η �= 0,
⇒

⎧⎨⎩
det(Q(η)) �= 0,

�(η|z) is a generalized line segment,
0 ⊕ b /∈ �(η|z) ∀b.

(A.2)

Here, a generalized line segment includes the empty set, single points in H ⊕H ∗ =
R

2p , and line segments of finite or infinite length.
For each nonzero z ∈ H ≡ R

p , we define a graph G(z) with �(η|z) of posi-
tive length and type-3 η as edges and the end points of edges as vertices. The
graph G(z) is not necessarily connected. A vertex in G(z) is terminal if it is also a
boundary point of S(η) for some η of type-2. If the PLUS path reaches a terminal
vertex (τ z̃) ⊕ b, then b/τ provides an optimal fit by (A.1). The degree of a vertex
in G(z) is the number of edges connected to it.

Suppose z̃ �= 0. At step k = 0, the MC+ path reaches (τ (0)̃z) ⊕ b(0) as a bound-
ary point of S(0). Since the p-parallelepipeds (3.5) are contiguous, (τ (0)̃z) ⊕ b(0)

is also a boundary point of S(η(1)) for some η(1) satisfying either (A.1) or (A.2)
with z = z̃. If η(1) is of type-2, then b(0)/τ (0) gives an optimal fit and the MC+
path ends with k∗ = 0. Otherwise, the MC+ path enters the graph G(̃z) at the ini-
tial vertex (τ (0)̃z)⊕b(0). If the degree of the initial vertex is odd and the degrees of
all other nonterminal vertices are even, then the MC+ path traverses through G(̃z)
and eventually reaches a terminal vertex in one pass. This is simply an Euler’s
Konigsberg problem.

Let S0 be the union of all intersections of three or more distinct p-parallelepi-
peds S(η), η ∈ {−2,−1,0,1,2}p , and H0 ≡ {z : (τz) ⊕ b ∈ S0 for some τ and b}.
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Since the interiors of the p-parallelepipeds S(η) do not intersect, the intersections
of three distinct S(η) are (p − 2)-parallelepipeds, so that the projection of S0 to
the (p − 1)-sphere {z :‖z‖ = 1} along the rays {τz, τ > 0} has Haar measure zero.
Consequently, H0 has Lebesgue measure zero in H ≡ R

p .
For z /∈ H0, each vertex in G(z) is a boundary point of exactly two p-par-

allelepipeds S(η), so that the initial vertex has degree 1 and other nonterminal
vertices have degree 2 in G(z). Thus, the initial vertex is connected to a terminal
vertex in G(̃z) in a unique way for z̃ /∈ H0, and the conclusions of part (i) holds
by (A.2).

For z̃ ∈ H0, the initial vertex is still connected to at lease one terminal vertex in
G(̃z) since Hc

0 is dense in H ≡ R
p , and the limits of G(z) as z → z̃ are subgraphs

of G(̃z). Hence, the conclusion of part (i) hold in either cases.
Parts (ii) and (iii) hold since det(Q(η)) �= 0 almost everywhere for fixed γ and

type-3 η. For part (iv), we consider z̃ /∈ H0. We have already proved the uniqueness
of the graph and that the path ends with perfect fit at a type-2 η. Since the vertex
(τ (k−1)̃z) ⊕ b(k−1) is a boundary point of exactly two p-parallelepipeds S(η(k−1))

and S(η(k)), j (k−1) in (3.9) uniquely indicates the side of the intersection. Since
the edges must pass through the interior of the p-parallelepipeds, η(k) and ξ (k) are
given by (3.10) and (3.13). The slope s(k) is uniquely determined by (3.12) due
to det(Q(η(k))) �= 0. The hitting time �j in (3.14) is computed from the current
position (τ (k−1)̃z) ⊕ b(k−1), the slope s(k) and the inequalities for the boundary
of the p-parallelepiped S(η(k)) in (3.5). Since the length of the edge is positive,
�(k) > 0 in (3.15). Since the path does not return to 0, τ (k) > 0 in (3.15).

For part (v), (̃z⊕ β̂
(x)

)/λ is in the interior of S(η(k)) at λ = λ(x) for k −1 < x <

k, so that (3.3) and thus (2.6) hold with strict inequality. By (3.11),

(∂/∂t)L
(
β̂

(x) + tb;λ)
= tb′

1Q
(
η(k))b1 + ∑

η
(k)
j =0

|bj |{λ − sgn(bj )x′
j

(
y − Xβ̂

(x))
/n + O(t)

}

is positive for small t > 0, where b1 = (bj , η
(k)
j �= 0)′. Thus, β̂

(x)
is a local mini-

mizer. �

PROOF OF THEOREM 4. Since β̂
o

is the oracle LSE, x′
j (y − Xβ̂

o
) = 0 for

j ∈ Ao. If |β̂o
j | ≥ λγ , then ρ̇(|β̂o

j |;λ) = 0 by (2.3). Thus, β̂
o

is a solution of (2.6)

and sgn(β̂
o
) = sgn(β) for all λ1 ≤ λ ≤ λ2 in the intersection of

�o
1(λ1) ≡

{
max
j /∈Ao

|xj (y − Xβ̂
o
)/n| < λ1

}
,

(A.3)
�o

2(λ2) ≡
{

min
j∈Ao

sgn(βj )β̂
o
j > γλ2

}
.
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Moreover, since the solution of (2.6) is unique, β̂
o = β̂(λ) for all λ1 ≤ λ ≤ λ2 in

this case.
Let Po

1 be the orthogonal projection from R
n to the linear span of {xj , j ∈ Ao}.

Since y − Xβ̂
o = (In − Po

1)ε, x′
j (y − Xβ̂

o
)/n are normal variables with zero mean

and variance bounded by σ 2‖xj‖2/n2, so that 1 − P {�o
1(λ1)} ≤ πn,1(λ1). By

(2.10) and (4.1), β̂o
j ∼ N(βj , σ

2wo
j/n) for all j ∈ Ao. Since |βj | ≥ β∗ ≥ γ λ2, we

have 1 − P {�o
2(λ)} ≤ πn,2(λ2). Inequality (4.3) follows by combining the above

two probability bounds. �

Let us state the two lemmas. For m ≥ 1 and B ⊂ {1, . . . , p}, define seminorms

ζ(v;m,B) ≡ max
{‖(PA − PB)v‖

(mn)1/2 :B ⊆ A ⊆ {1, . . . , p}, |A| = m + |B|
}

(A.4)

for v ∈ R
n, where PA is the orthogonal projection from R

n to the span of {xj : j ∈
A}.

LEMMA 1. Suppose (2.11) holds for X with certain d∗ and c∗ ≥ c∗ ≥ κ ≥ 0.
Let K∗ be as in (4.5) with an α ∈ (0,1), and B ⊂ {1, . . . , p} with |B| ≤ d∗/(K∗ +
1). Let λ > 0 be fixed and ρ(t;λ) be a penalty satisfying λ(1−κt/λ)+ ≤ ρ̇(t;λ) ≤
λ for all t > 0. Let 1 ≤ m ≤ m∗ ≡ d∗ − |B| and y ∈ R

n with (
√

c∗/α)ζ(y;m,B) ≤
λ, where ζ(·;m,B) is as in (A.4). Let λ ⊕ β̂ be a solution of (2.6), B ∪ {j : β̂j �=
0} ⊆ A1 ⊆ B ∪ {j : |x′

j (y − Xβ̂)/n| = ρ̇(|β̂j |;λ)} and β̂
o

be as in (2.10). If |A1| =
|B| + m, then

|A1| − |B| < K∗
∑
j∈B

ρ̇2(|β̂j |;λ)/λ2 ≤ K∗|B|.(A.5)

If λ ≥ (
√

c∗/α)ζ(y;m∗,B), then #{j /∈ B : |x′
j (y − Xβ̂)/n| = ρ̇(|β̂j |;λ)} < 1 ∨

(K∗|B|) and

c∗‖β̂ − β̂
o‖ ≤ √

c∗/n‖X(β̂ − β̂
o
)‖

(A.6)

≤
{∑

j∈B

ρ̇2(|β̂j |;λ)

}1/2

+ αλ
√

K∗|B|c∗/c∗.

LEMMA 2. Let ζ(v;m,B) be as in (A.4) with deterministic m and B . Let
p̃ε ≥ √

e be the solution of (2.12) with do = |B|. Suppose ε ∼ N(0, σ 2In). Then

P
{
ζ(ε;m,B) ≥ σ

√
(2/n) log p̃ε

} ≤ εeμ2/2�(−μ)√
log p̃ε

≤ ε/2√
log p̃ε

≤ ε√
2
,(A.7)

where μ = {2 log p̃ε − 1 + 1/m}√m/
√

2 log p̃ε .
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PROOF OF THEOREM 6. Let d
(x)
1 ≡ #{j : j ∈ B or |x′

j (y − Xβ̂
(x)

)/n| =
ρ̇(|β̂(x)

j |;λ(x))} and x1 = inf{x ≥ 0 :λ(x) < λ1 or λ(x) < (
√

c∗/α)ζ(y;m,B))} with

the λ(x) ⊕ β̂
(x)

in (2.7) and m = d∗ − |B|. We first prove d
(x)
1 < d∗ for 0 ≤ x ≤ x1.

Let A
(x)
1 be any set satisfying

B ∪ {
j : β̂(x)

j �= 0
}

(A.8)
⊆ A

(x)
1 ⊆ B ∪ {

j :
∣∣x′

j

(
y − Xβ̂

(x))
/n

∣∣ = ρ̇
(∣∣β̂(x)

j

∣∣;λ(x))}.
By (2.6), the left-hand side is always a subset of the right-hand side in (A.8).

Moreover, since β̂
(x)

is continuous in x, sgn(β̂
(x−)
j ) = sgn(β̂

(x)
j ) = sgn(β̂

(x+)
j )

fails to hold only if β̂
(x)
j = 0 and |x′

j (y − Xβ̂
(x)

)/n| = ρ̇(0;λ(x)) = λ(x), so that

we are allowed to add variables to |A(x)
1 | one-at-a-time. Thus, since β̂

(0) = 0, if

d
(x2)
1 ≥ d∗ for some 0 ≤ x2 ≤ x1, there must be a choice of A

(x)
1 with |A(x)

1 | = d∗
and 0 ≤ x ≤ x2. On the other hand, it follows from Lemma 1 that λ(x) ≥ λ1 ∨
{(√c∗/α)ζ(y;m∗,B)} and |B| < |A(x)

1 | = d∗ imply |A(x)
1 | < (K∗ + 1)|B| ≤ d∗,

where m∗ = m. Thus, |B| < |A(x)
1 | = d∗ can never be attained for 0 ≤ x ≤ x1. It

follows that #{j /∈ B : β̂(x)
j �= 0} ≤ |A(x)

1 | − |B| < 1 ∨ (K∗|B|) for all 0 ≤ x ≤ x1
by Lemma 1.

Let λ4 = σ
√

(2/n) log p̃ε + θB/
√

m. By (2.8), λ̂ ⊕ β̂ = λ(x) ⊕ β̂
(x)

with a cer-
tain λ(x) ≥ λ1 ∨ (λ4

√
c∗/α), so that the left-hand side of (4.8) is no greater than

P {�c
4} with �4 = {ζ(y;m,B) ≤ λ4}. Since ζ(Xβ;m,B) ≤ ‖(In − PB)Xβ‖/√nm

by (A.4) and θB ≡ ‖Xβ − XEβ̂
o‖ = ‖(In − PB)Xβ‖ by (2.10), ζ(y;m,B) ≤

ζ(ε;m,B)+θB/
√

m. Thus, P {�c
4} ≤ P {ζ(ε;m,B) > σ

√
(2/n) log p̃ε}. The con-

clusion follows from Lemma 2. �

PROOF OF THEOREM 5. Consider the event � = ⋂3
j=1 �j(λj ), where

�j(λj ), j = 1,2, are as in (A.3) and �3(λ3) ≡ {ζ(ε;m,Ao) ≤ λ3}. It follows
from the proof of Theorem 4 that λ ⊕ β̂

o
is a solution of (2.6) for all λ1 ≤ λ ≤ λ2.

Since κ(ρ;λ2) ≤ κ < c∗, the sparse convex condition (2.5) holds with rank d∗,
so that λ ⊕ β̂

o
is the unique solution of (2.6) subject to λ1 ≤ λ ≤ λ2 and

#{j : |βj | + |β̂j | > 0} ≤ d∗. Since ζ(y;m,B) = ζ(ε;m,Ao) with B = Ao in (A.4),
we also have λ2 ≥ (

√
c∗/α)λ3 ≥ (

√
c∗/α)ζ(y;m,B) in �.

In the event �, consider the path λ(x) ⊕ β̂
(x)

with 0 ≤ x ≤ x1 ≡ inf{x :λ(x) <

λ1}. Let A
(x)
1 be as in (A.8). If |A(x)

1 | = d∗ and λ(x) ≥ λ2, then Lemma 1 provide

|A(x)
1 | < d∗. If |A(x)

1 | = d∗ and λ1 ≤ λ(x) ≤ λ2, then the uniqueness of λ ⊕ β̂
o

implies β̂
(x) = β̂

o
. Since |x′

j (y − Xβ̂
o
)/n| < λ1 ≤ ρ̇(0;λ(x)) for j /∈ Ao, we have

A
(x)
1 = Ao. Thus, |A(x)

1 | = d∗ can never be attained with 0 ≤ x ≤ x1, and β̂(λ) =
β̂

o
for all λ1 ≤ λ ≤ λ2 in the event �.
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We still need to bound 1 − P {�}. The proof of Theorem 4 provides 1 −
P {�j(λj )} ≤ πn,j (λj ) for j = 1,2. By (A.4), ζ(ε;m∗,Ao) is the maximum of(p−do

m

)
χ2

m variables, so that 1 − P {�3(λ3)} ≤ πn,3(λ3). Thus, (4.6) holds. Fi-

nally, (4.7) follows from (4.6) with applications of the inequality et2/2�(−t) ≤
min{1/2,1/(t

√
2π)} and Lemma 2. �

PROOF OF THEOREM 1. Theorem 1 follows from Theorem 5 with α = 1/2,
since γ = 1/κ ≥ c−1∗

√
4 + c∗/c∗ implies K∗ + 1 ≤ c∗/c∗ + 1/2 in (4.5) as in

Remark 5. �

PROOF OF THEOREM 2. As in the proof of Theorem 1, we have K∗ ≤ c∗/c∗ −
1/2 in (4.5) with α = 1/2. Let m = m∗ ≡ d∗−do ≥ (c∗/c∗−1/2)do ≥ do/2. As in
the proof of Theorem 6, for the λ in part (i), Lemma 2 gives P {2√

c∗ζ(y;m,B) >

λ} ≤ ε/
√

4 log p̃ε . Thus, (2.16) follows from (A.6). It remains to prove (2.17) with
p̃1 in (2.16).

We first bound p̃1. Since m! ≥ (m/e)m and m ≥ do = Rr/λr
mm, by (2.15)

2

m
log

(
p

m

)
≤ 2 log

(
ep

m

)
≤ 2 log

(
2epλr

mm

Rr

)
= nλ2

mm/σ 2 + r log
(

nλ2
mm

σ 2(2e)−2/r

)
.

Thus, by (2.12), σ
√

(2/n) log p̃1 ≤ λmm + ε1σ/
√

n for large nλ2
mm/σ 2.

Let β ∈ 
̃r,R and Bk be the set of j for the do largest |βj | with j /∈
B0 ∪ · · · ∪ Bk−1, k ≥ 1, with B0 = ∅. Let B = B1 and vj ≡ |βj | ∧ λmm. Since
|βj | ≤ ‖vBk−1‖1/d

o for j ∈ Bk and k ≥ 2,
∑

k≥2 ‖βBk
‖/√do ≤ ∑

k≥2 ‖vBk−1‖1/

do = ‖v‖1/d
o ≤ Rrλ1−r

mm /do = λmm. Thus, θB = ‖(In − PB)Xβ‖/√n ≤∑
k≥2 ‖XBk

βBk
‖/√n ≤ √

c∗doλmm by (2.11). Since c∗do ≤ 2c∗m, θB/
√

m +
σ
√

(2/n) log p̃1 ≤ (
√

2c∗ + 1)λmm + ε1σ/
√

n = λ/(2
√

c∗), so that

sup
β∈
̃r,R

P
{
c∗‖β̂(λ) − β̂

o‖ ≥ (3/2)λ
√

do
} → 0(A.9)

by (2.16). Since λ = 2
√

c∗λmm(1 + √
2c∗ + o(1)), by the Hölder inequality, (A.9)

and (A.5) imply that ‖β̂(λ) − β̂
o‖q

q ≤ |A1|1−q/2‖β̂(λ) − β̂
o‖q ≤ M

q
1,qλ

q
mmdo

with large probability. Moreover, we have ‖β̂o − Eβ̂
o‖2 ≤ OP (1)doσ 2/

(nc∗) = oP (λ2
mmdo/c∗) and ‖Eβ̂

o

B − βB‖2 = ‖�−1
B �B,BcβBc‖2 ≤ (c∗/c∗) ×

(
∑

k≥2 ‖βBk
‖)2 ≤ (c∗/c∗)λ2

mmdo. Since ‖βBc‖q
q ≤ Rr‖βBc‖q−r∞ ≤ λ

q
mmdo, these

inequalities imply that ‖β̂o − β‖q
q = ‖β̂o

B − βB‖q
q + ‖βBc‖q

q ≤ |B|1−q/2{(oP (1/

c∗) + c∗/c∗)λ2
mmdo}q/2 + λ

q
mmdo ≤ M

q
2,qλ

q
mmdo with large probability. We obtain

(2.17) by combining the upper bounds for ‖β̂(λ) − β̂
o‖q

q and ‖β̂o − β‖q
q . �

PROOF OF THEOREM 9. (ii) ⇒ (iii): let λ be fixed and λ0 ≡ ρ̇(0+;λ). Define
h(t) ≡ κ(ρ;λ)t2/2 +ρ(|t |;λ)−λ0|t |. Since κ(ρ;λ) is the maximum concavity in
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(2.2), h(|t |) is a continuously differentiable convex function in R. It follows that
the penalized loss

L(b;λ) =
{

1

2n
‖y − Xb‖2 − κ(ρ;λ)

2
‖b‖2

}
+

p∑
j=1

{λ0|bj | + h(|bj |)}

is a sum of two convex functions, with the first one being strictly convex for
cmin(�) > κ(ρ;λ) and the second one being strictly convex otherwise.

(iii) ⇒ (i): since the penalized loss L(b;λ) is ‖y‖2/(2n) for b = 0, y → β̂ maps
bounded sets of y in R

n to bounded sets of β̂ in R
p . Since L(b;λ) is continuous

in both y and b and strictly convex in b for each y, its global minimum is unique
and continuous in y.

(i) ⇒ (ii): since β̂ depends on y only through z̃ = X′y/n and X is of rank p, the
map z̃ → β̂ is continuous from R

p to its range I . Since β̂ is the global minimum,
(2.6) must hold and the inverse β̂ → z̃ = �β̂ + sgn(β̂)ρ̇(|β̂|;λ) is continuous for
β̂ ∈ (0,∞)p ∩ I , with per component application of functions and the product
operation. It follows that (0,∞)p ∩I is open and does not have a boundary point
in (0,∞)p . Let 1 ≡ (1, . . . ,1)′ ∈ R

p . For z̃ = x�1 with x > 0, L(x1;λ) = o(x2)

for the ordinary LSE x1 by the first condition of (5.15), and L(b;λ) is at least
cmin(�)x2 for any b outside (0,∞)p . Thus, (0,∞)p ∩I is not empty. As the only
nonempty set without any boundary point in (0,∞)p , (0,∞)p ∩ I = (0,∞)p .
Moreover, the map z̃ → β̂ is one-to-one for β̂ ∈ (0,∞)p .

We have proved that all points β in (0,∞)p are unique global minimum of
(1.1) for some z ∈ R

p . Let β̂ = x1 ∈ (0,∞)p and b be the eigenvector with �b =
cmin(�)b and ‖b‖ = 1. The quantity

t−1 ∂

∂t
L(β̂ + tb;λ)

= ‖Xb‖2 +
p∑

j=1

t−1 sgn(β̂j )bj {ρ̇(|β̂j + tbj |;λ) − ρ̇(|β̂j |;λ)}(A.10)

= cmin(�) +
p∑

j=1

t−1bj {ρ̇(x + tbj ;λ) − ρ̇(x;λ)}

must have nonnegative lower limit as t → 0+. Integrating over x ∈ [t1, t2] and then
taking the limit, we find

cmin(�)(t2 − t1) + ρ̇(t2;λ) − ρ̇(t1;λ)
(A.11)

= lim
t→0+

∫ t2

t1

t−1 ∂

∂t
L(x1 + tb;λ)dx ≥ 0.
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It remains to prove that (A.11) holds with strict inequality. If (A.11) holds with
equality for certain 0 < t1 < t2, then for t1 < x < t2 and small t (A.10) becomes

t−1 ∂

∂t
L(β̂ + tb;λ) = cmin(�) +

p∑
j=1

t−1bj {−cmin(�)tbj } = 0.

This is contradictory to the uniqueness of β̂ . �

PROOF OF PROPOSITION 2. Let P̂ be as in Theorem 7. We write (2.6) as{
P̂�β̂ + P̂ sgn(β̂)ρ̇(|β̂|;λ) = P̂̃z,
|̃zj − x′

j Xβ̂/n| ≤ λ,∀j.
(A.12)

Let η ∈ {−1,0,1}p be fixed (not confused with the η in Section 3). It follows
from Theorem 9 that the map P̂̃z → P̂β̂ is continuous in z̃ ∈ R

p and continuously
invertible given a fixed sgn(β̂) = η. Let H(η) ≡ {̃z : sgn(β̂) = η}. The boundary of
H(η) has zero Lebesgue measure, since it is contained in the set of z̃ satisfying
ηj β̂j = 0+ for ηj �= 0 or z̃j − x′

j Xβ̂/n = ±λ for ηj = 0, j = 1, . . . , p, according

to (A.12). In the interior of H(η), (A.12) gives (∂/∂z̃j )β̂ = 0 and (∂/∂ z̃)β̂j = 0
for ηj = 0 and

P̂
∂

∂β̂
(P̂̃z)′ = P̂�P̂ + P̂ diag(ρ̈(|β̂j |;λ))P̂′ = Q(β̂;λ).

Since (2.5) holds with d∗ = p, cmin(Q(β;λ)) ≥ cmin(�) − κ(ρ;λ) > 0 for all
β �= 0. Thus, the differentiation of the inverse map yields (∂/∂ z̃)β̂

′ = P̂′Q−1(β̂;
λ)P̂. �

PROOF OF THEOREM 7. It follows from Proposition 2 that β̂−�−1̃z is almost
differentiable in z̃ with derivative

∂

∂ z̃
(β̂ − �−1̃z)′ = P̂′Q−1(β̂;λ)P̂ − �−1.

Since z̃ ≡ X′y/n ∼ N(�β,�σ 2/n), this and (5.3) imply

E(β̂ − �−1̃z)(�−1̃z − β)′ = E(β̂ − �−1̃z)(̃z − �β)′�−1

= σ 2

n
{EP̂′Q−1(β̂;λ)P̂ − �−1}.

Since the ordinary LSE is β̃ = �−1̃z ∼ N(β,�−1σ 2/n), it follows that

E(β̂ − β)(β̂ − β)′

= E(β̂ − β̃)(β̂ − β̃)′ − E(β − β̃)(β − β̃)′ + 2E(β̂ − β̃)(β̃ − β)′

= E(β̂ − β̃)(β̂ − β̃)′ + 2σ 2

n
{EP̂′Q−1(β̂;λ)P̂ − �−1} + σ 2

n
�−1.
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This proves (5.5). The rest of the theorem follows immediately. �

PROOF OF THEOREM 8. Since trace(bb′) = ‖b‖2, (5.5) gives

E‖μ̂ − μ‖2 = E

{
‖μ̂ − μ̃‖2 + 2σ 2

n
trace(XP̂′Q−1(β̂;λ)P̂X′)

}

− σ 2

n
trace(X�−1X′)

= E{‖μ̂ − μ̃‖2 + 2σ 2d̂f − σ 2 rank(X)},
which implies (5.11) via (5.8). For (5.12), we observe that Q(β̂;λ) = P̂�P̂′ by
(5.4) when ρ̈(|β̂j |;λ) = 0 for all β̂j �= 0. �

PROOF OF PROPOSITION 3. Let u1, . . . ,uN be vectors in the unit sphere
Sm−1 of the range of P such that balls {v :‖v − uj‖ ≤ ε1} are disjoint and⋃N

j=1{v :‖v−uj‖ ≤ 2ε1} ⊃ Sm−1. Volume comparison yields Nεm
1 ≤ (1+ ε1)

m −
(1 − ε1)

m. Since v′ε = u′ε + (v − u)′ε, ‖Pε‖ = maxv∈Sm−1 v′ε ≤ maxj≤N u′
jε +

2ε1‖Pε‖ ≤ maxj≤N u′
jε/(1 − 2ε1)+. It follows that P {‖Pε‖ > σ1t} ≤ (1 +

1/ε1)
me−(1−2ε1)

2t2/2. Taking t2 = m(1 + x)/(1 − 2ε1)
2, we find

P

{
‖Pε‖2/σ 2

1 ≥ m(1 + x)

(1 − 2ε1)
2+

}
≤ (1 + 1/ε1)

me−m(1+x)/2 ≤ e−mx/2(1 + x)m/2

for (1 + 1/ε1)
2 = (1 + x)ex . This proves the proposition since ε1 = 1/(ex/2 ×√

1 + x − 1). �

PROOF OF LEMMA 1. Let X1 ≡ XA1 as in (2.4) and �11 ≡ X′
1X1/n. Since

|A1| ≤ d∗,

c∗ ≤ ‖�11v‖2

‖v‖ ≤ c∗, 1

c∗ ≤ ‖�−1
11 v‖2

‖v‖ ≤ 1

c∗
∀0 �= v ∈ R

|A1|,(A.13)

by (2.11). Set A2 ≡ {1, . . . , p} \ A1, A3 ≡ B and A4 ≡ A1 \ B . Define bk ≡
(bj , j ∈ Ak) for b ∈ R

p and k = 1,2,3,4. For k = 3,4, let Qk be the matrix rep-
resenting the selection of variables in Ak from A1, defined as Qkb1 = bk .

Let β̂
o

be the oracle LSE in (2.10) and ε̃ ≡ y − Xβ̂
o = (In − PB)y. Since β̂2 =

β̂
o

2 = 0, the A1 components of the negative gradient

g ≡ X′(y − Xβ̂)/n(A.14)

must satisfy g1 = X′
1(y − X1β̂1)/n = X′

1ε̃/n + �11(β̂
o

1 − β̂1), so that

�−1
11 g1 + (β̂1 − β̂

o

1) = �−1
11 X′

1ε̃/n.(A.15)

Let v1 ≡ �
−1/2
11 g1 and vk ≡ �

−1/2
11 Q′

kgk , k = 3,4. Let P1 ≡ X1�
−1
11 X′

1/n = PA1 be
the projection to the range of X1 as in (A.4). Since A1 ⊃ B , P1ε̃ = (P1 − PB)y, so
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that ‖P1ε̃‖2/n ≤ |A4|ζ 2(y; |A4|,B) by (A.4). Thus, for λ ≥ (
√

c∗/α)ζ(y; |A4|,B)

as provided,

g′
kQk�

−1
11 X′

1ε̃/n ≤ ‖vk‖‖P1ε̃‖/√n ≤ ‖vk‖αλ
√|A4|/c∗.(A.16)

Since Q4(β̂
o

1 − β̂1) = β̂
o

4 − β̂4 = −β̂4 and v3 = v1 − v4, by (A.15) we have

‖v4‖2 − ‖v3‖2 + ‖v1‖2 = 2v′
4v1 = 2g′

4Q4�
−1
11 g1 = 2g′

4Q4�
−1
11 X′

1ε̃/n − 2g′
4β̂4.

Since 2‖v4‖λ√|A4|/c∗ ≤ ‖v4‖2 + λ2|A4|/c∗, the above identity and (A.16) yield

(1 − α)‖v4‖2 + ‖v1‖2 + 2g′
4β̂4 ≤ ‖v3‖2 + αλ2|A4|/c∗.

Similarly, it follows from (A.15) and (A.16) that

‖v4‖2 + 2g′
4β̂4 + ‖�1/2

11 (β̂1 − β̂
o

1)‖2

= ‖v4‖2 + 2g′
4β̂4 + ‖v1‖2 − 2g′

1�
−1
11 X′

1ε̃/n + ‖P1ε̃‖2/n

= ‖v3‖2 + 2g′
4Q4�

−1
11 X′

1ε̃/n − 2g′
1�

−1
11 X′

1ε̃/n + ‖P1ε̃‖2/n

= ‖v3‖2 − 2g′
3Q3�

−1
11 X′

1ε̃/n + ‖P1ε̃‖2/n

≤ ‖v3‖2 + 2‖v3‖αλ
√|A4|/c∗ + α2λ2|A4|/c∗

due to g′
1 = g′

3Q3 + g′
4Q4. For the w ≡ (2 − α)/(c∗c∗/κ2 − 1) in (4.5), the {1,w}

weighted sum of the above two inequalities yields

LHS ≡ (1 − α + w)‖v4‖2
2 + ‖v1‖2 + (1 + w)2g′

4β̂4

+ w‖�1/2
11 (β̂1 − β̂

o

1)‖2

(A.17)
≤ (1 + w)‖v3‖2 + (α + wα2)λ2|A4|/c∗

+ 2w‖v3‖αλ
√|A4|/c∗.

Note that (A.17) holds with equality only in the following scenario: ‖v4‖2 =
λ2|A4|/c∗ and (A.16) holds with equalities for both v3 and v4. Since |A4| = |A1|−
|B| > 0 and �

1/2
11 vk = Qkgk have different support for k ∈ {3,4}, this scenario

could happen only if ‖v3‖ = 0. Thus, (A.17) holds strictly unless ‖v3‖ = ‖g3‖ = 0.
We first bound the LHS. Since λ(1 − κ|t |/λ)+ ≤ ρ̇(|t |;λ) ≤ λ, (2.6) and (A.14)

provide

‖g4‖2

λ2 = ∑
j∈A4

ρ̇2(|β̂j |;λ)

λ2 ≥ ∑
j∈A4

(
1 − κ

|β̂j |
λ

)2

+
,

(A.18)
‖g3‖2

λ2 ≤ ∑
j∈B

ρ̇2(|β̂j |;λ)

λ2 ≤ |B|,
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in view of the second condition on A1 = A4 ∪B . We also have β̂o
j = 0 and β̂j gj =

|β̂j gj | for j ∈ A4. Thus, by (A.13) and the definition vk ≡ �
−1/2
11 Q′

kgk ,

LHS ≡ (1 − α + w)‖v4‖2
2 + ‖v1‖2 + (1 + w)2g′

4β̂4

+ w‖�1/2
11 (β̂1 − β̂

o

1)‖2

≥ (1 − α + w)‖g4‖2
2/c

∗ + ‖g1‖2/c∗

+ (1 + w)2g′
4β̂4 + wc∗‖β̂1 − β̂

o

1‖2

(A.19)
≥ λ2

∑
j∈A4

{(2 − α + w)(1 − κtj )
2+/c∗

+ (1 + w)2(1 − κtj )+tj + wc∗t2
j } + ‖g3‖2

c∗

≥ λ2|A4| min
0≤κt≤1

{(2 − α + w)(1 − κt)2/c∗

+ (1 + w)2t (1 − κt) + wc∗t2} + ‖g3‖2

c∗ ,

where tj ≡ |β̂j |/λ. Since c∗ ≥ c∗ ≥ κ and w ≡ (2 − α)/(c∗c∗/κ2 − 1), we have

(2 − α + w)κ2/c∗ − (1 + w)2κ + wc∗
= 2{wc∗ − κ(1 + w)}

= 2
(2 − α)c∗ − κ(c∗c∗/κ2 + 1 − α)

c∗c∗/κ2 − 1
≤ 0

due to κα − c∗α ≤ 0 and −c∗c∗/κ2 − 1 + 2c∗/κ ≤ −(c∗/κ − 1)2. Thus, the min-
imum in (A.19) is taken over a concave quadratic function with equal value at
{0,1/κ}, so that

LHS ≥ λ2|A4|(2 − α + w)/c∗ + ‖g3‖2/c∗.(A.20)

Inserting (A.20) into (A.17), we find

λ2|A4|{2 − α + w − (α + wα2)}/c∗

≤ (1 + w)‖v3‖2 − ‖g3‖2/c∗ + 2w‖v3‖αλ
√|A4|/c∗

≤ (1 + w)‖v3‖2 − ‖g3‖2/c∗ + wα

( ‖v3‖2

t (1 − α)
+ t (1 − α)λ2|A4|/c∗

)
and that the strict inequality holds unless ‖v3‖ = ‖g3‖ = 0. We move wαt(1 −
α)λ2|A4|/c∗ to the left-hand side and then multiply both sides by c∗/λ2 to arrive at

{2 + w(1 + α) − twα}(1 − α)|A4|
<

(
1 + w{1 + (α/t)/(1 − α)})c∗‖v3‖2/λ2 − ‖g3‖2/λ2(A.21)

≤ {(
1 + w{1 + (α/t)/(1 − α)})c∗/c∗ − 1

}‖g3‖2/λ2
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due to c∗‖v3‖2 ≤ ‖g3‖2 by (A.13). The strict inequality holds above, since the
equality would imply ‖g3‖ = 0 and then |A4| = 0. This proves (A.5) via (A.18).

For (A.6), it follows from (A.15), (β̂
′
4 − β̂

o

4)
′g4 ≥ 0 and then (A.13) and (A.16)

that

(β̂1 − β̂
o

1)
′�11(β̂1 − β̂

o

1)

= −(β̂1 − β̂
o

1)
′g1 + (β̂1 − β̂

o

1)
′X′

1ε̃/n

≤ ‖β̂3 − β̂
o

3‖‖g3‖ + ‖X1(β̂1 − β̂
o

1)‖‖P1ε̃‖/n

≤ ‖�1/2
11 (β̂1 − β̂

o

1)‖‖g3‖/√c∗ + ‖�1/2
11 (β̂1 − β̂

o

1)‖αλ
√|A4|/c∗.

Dividing both sides by ‖�1/2
11 (β̂1 − β̂

o

1)‖, we find with another application of
(A.13) that

c∗‖β̂ − β̂
o‖ ≤ √

c∗‖�1/2
11 (β̂1 − β̂

o

1)‖ ≤ ‖g3‖ + αλ
√|A4|c∗/c∗.

Since ‖X(β̂ − β̂
o
)‖/√n = ‖�1/2

11 (β̂ − β̂
o
)‖, this proves (A.6) via (A.18) and (A.5).

�

PROOF OF LEMMA 2. Since m and B are deterministic, nmζ 2(ε;m,B)/σ 2

in (A.4) is the maximum of
(p−do

m

)
variables with the χ2

m distribution, so that

P
{
ζ(ε;m,B) ≥ σ

√
(2/n) log p̃ε

} ≤
(

p − do

m

)
P {χ2

m ≥ m(1 + x)}(A.22)

with x = 2 log p̃ε − 1 > 0. Since χ2
m/(1 + x) has the gamma(m/2, (1 + x)/2)

distribution,

P {χ2
m > m(1 + x)}

(A.23)

= e−m(1+x)/2(1 + x)m/2

�(m/2)2m/2

∫ ∞
m

tm/2−1e−(1+x)(t−m)/2 dt.

Let y = √
t and h(y) = (1 + x)(y2 − m)/2 − (m − 1) logy. Since (d/dy)2h(y) ≥

(1 + x), ∫ ∞
m

tm/2−1e−(1+x)(t−m)/2 dt

(A.24)

=
∫ ∞
√

m
2e−h(y) dy ≤ 2e−h(

√
m)

√
1 + x

∫ ∞
0

e−μz−z2/2 dz

with z = √
1 + x(y − √

m) and μ = (dh/dy)(
√

m)/
√

1 + x = (x + 1/m)
√

m/√
1 + x. Since

e−m/22e−h(
√

m)

�(m/2)2m/2 ≤ e−m/22m(m−1)/2

(m/2)m/2−1/2e−m/2
√

2π2m/2
= 1√

π
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by the Stirling formula and x + 1 = 2 log p̃ε , (A.23) and (A.24) imply

P {χ2
m ≥ m(1 + x)} ≤ e−mx/2(1 + x)m/2

√
2π log p̃ε

∫ ∞
0

e−μz−z2/2 dz.

This and (A.22) imply (A.7), since (2π)−1/2 ∫ ∞
0 e−μz−z2/2 dz = eμ2/2�(−μ) ≤

1/2 and (2.12) implies
(p−do

m

)
e−mx/2(1 + x)m/2 = ε. �
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