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ON THE CONSISTENT SEPARATION OF SCALE AND VARIANCE
FOR GAUSSIAN RANDOM FIELDS

BY ETHAN ANDERES

University of California, Davis

We present fixed domain asymptotic results that establish consistent esti-
mates of the variance and scale parameters for a Gaussian random field with
a geometric anisotropic Matérn autocovariance in dimension d > 4. When
d < 4 this is impossible due to the mutual absolute continuity of Matérn
Gaussian random fields with different scale and variance (see Zhang [J. Amer.
Statist. Assoc. 99 (2004) 250–261]). Informally, when d > 4, we show that
one can estimate the coefficient on the principle irregular term accurately
enough to get a consistent estimate of the coefficient on the second irregu-
lar term. These two coefficients can then be used to separate the scale and
variance. We extend our results to the general problem of estimating a vari-
ance and geometric anisotropy for more general autocovariance functions.
Our results illustrate the interaction between the accuracy of estimation, the
smoothness of the random field, the dimension of the observation space and
the number of increments used for estimation. As a corollary, our results es-
tablish the orthogonality of Matérn Gaussian random fields with different
parameters when d > 4. The case d = 4 is still open.

1. Introduction. A common situation in spatial statistics is when one has ob-
servations on a single realization of a random field Y at a large number of spatial
points t1, t2, . . . within some bounded region � ⊂ Rd . One is then is faced with the
problem of predicting some quantity that depends on Y at unobserved points in �.
For example, one may want to predict

∫
� Y(t) dt or the derivative Y ′(t0) where t0

is an unobserved point in �. A common technique is to first estimate the covari-
ance structure of Y , then predict using the estimated covariance. Typically, fully
nonparametric estimation of the covariance is difficult since the observations are
from one realization of the random field. In this case, it is common to consider a
class of covariance structures indexed by a finite number of parameters which are
then estimated from the observations (see [8] or [11] for an introduction to spatial
statistical techniques).

Two common parameters found in many covariance models are an overall scale
α and an overall variance σ 2. The simplest example of this model stipulates that
the random field Y is a scale and amplitude chance by an unknown α and σ of a
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known random field Z. In particular, for a spatial domain � ⊂ Rd , Y is modeled
as

{Y(t) : t ∈ �} D= {σZ(αt) : t ∈ �},(1)

where D= denotes equality of the finite-dimensional distributions. In this case, σ

is an overall amplitude (in units of Y ) and α is an overall spatial scale (in units
of t). For a nice discussion of the roll of α and σ in the Matérn autocovariance see
Section 6.5 in [28].

A fundamental question is whether or not α and σ are consistently estimable
when the number of the observations in � grows to infinity. Indeed, the answer
is no, in general. This is immediate from the existence of self-similar random

fields that satisfy {Z(αt) : t ∈ �} D= {ανZ(t) : t ∈ �} for any α > 0 where ν is a
fixed constant. For these self-similar processes, any two pairs (σ1, α1) and (σ2, α2)

that satisfy σ 2
1 α2ν

1 = σ 2
2 α2ν

2 give the same model in (1). This problem can also
be present when Z is not self-similar. For example, suppose Z is an isotropic
Ornstein–Uhlenbeck process in dimension d ≤ 3 (see Figure 1). In this case, if
σ 2

1 α1 = σ 2
2 α2 (i.e., ν = 1/2) the two models for Y yield mutually absolutely con-

tinuous measures (when d = 1, see [18, 32]; when d = 2,3, see [28, 33]) and
therefore are impossible to discern with probability one when observing one real-
ization of Y . We shall see, however, that in some cases it is possible to consistently
estimate α and σ . Moreover, it will depend on dimension; typically the larger the
dimension the more information there is to separate σ from α. Before we con-
tinue, we mention the work of Stein (see [25, 26]) which establishes that even if
two models are mutually absolutely continuous, using the wrong model to make

FIG. 1. Independent simulations of Z(2t) and
√

2Z(t), observed on a dense grid in [0,10], where
Z is the Ornstein–Uhlenbeck process with covariance structure cov(Z(s),Z(t)) = e−|s−t |. In 1, 2
and 3 dimensions these two processes (isotropically extended) are absolutely continuous and there-
fore cannot be consistently distinguished under fixed domain asymptotics. Our results establish that
when the dimension is greater than 4 one can distinguish the two with probability one under fixed
domain asymptotics.
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predictions may still yield asymptotically optimal estimates. In fact, this phenom-
enon can also occur for orthogonal measures when restricting to predictors that are
linear combinations of the observations (see [27]).

To understand the condition σ 2
1 α2ν

1 = σ 2
2 α2ν

2 one can look at what is called the
principle irregular term of the autocovariance function (see [28]). Suppose, for
exposition, that there exist constants δ2 > δ1 > 0 such that the covariance structure
of Z satisfies

cov
(
Z(t + h),Z(t)

) ≈ c1|h|δ1 + c2|h|δ2 + p(|h|) as |h| → 0,(2)

where p is an even polynomial and both δ1, δ2 are not even integers. This model
is not as restrictive as it seems and includes the Ornstein–Uhlenbeck process, the
exponential autocovariance function e−|s−t|δ1 and the Matérn autocovariance func-
tion (see below). The term c1|h|δ1 is often referred to as the principle irregular term
and is instrumental in determining the smoothness of Z. The second term, c2|h|δ2 ,
is less influential but can have an observable effect depending on dimension and
the magnitude of δ2 − δ1. Now, if we model Y by (1) and (2) we get

cov
(
Y(t + h), Y (t)

)
(3)

≈ c1σ
2αδ1 |h|δ1 + c2σ

2αδ2 |h|δ2 + p̃(|h|) as |h| → 0.

Therefore for two pairs of parameters (σ1, α1) and (σ2, α2), the condition σ 2
1 α

δ1
1 =

σ 2
2 α

δ1
2 ensures that the covariance models for Y have the same principle irregular

term. This explains the importance of the quantity σ 2αδ1 . In addition, if one can
estimate both coefficients c1σ

2αδ1 and c2σ
2αδ2 , then it is possible to get separate

estimates of σ and α. In what follows we develop consistent estimators of these
two coefficients which allow consistent estimation of σ and α.

The majority of this paper focuses on the case when Z is a mean zero,
isotropic Gaussian random field which has a Matérn autocovariance. The reasons
are twofold. First, the Matérn autocovariance has been used extensively in spatial
statistics so that results on the Matérn autocovariance are of intrinsic interest alone.
The second reason is that once one establishes the results for the Matérn it is rel-
atively easy to see how to extend to other covariance functions. In Section 3, we
give two examples that illustrate these extensions. Our Matérn assumption stipu-
lates the existence of a known ν > 0 such that

cov(Z(s),Z(t)) = |s − t|ν Kν(|s − t|)
2ν−1�(ν)

(4)

for all s, t ∈ � ⊂ Rd where | · | denotes Euclidean distance, and Kν is the mod-
ified Bessel function of the second kind of order ν > 0 (see [1]). The parameter
ν controls the mean square smoothness of the process; larger ν corresponds to
smoother Z. The flexibility provided by the smoothness parameter ν along with
the fact that it is positive definite in any dimension leads to its widespread use in
spatial statistics.
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In what follows we extend the basic model (1) to the case when there is an
unknown invertible matrix M with determinant 1 [this class of matrices we denote
by SL(d,R)] so that

{Y(t) : t ∈ �} D= {σZ(αMt) : t ∈ �}.(5)

The matrix M is called a geometric anisotropy and is used to model a directional
sheer of Z. The assumption that detM = 1 removes identifiability problems with
the overall scale parameter α. In Section 2, we construct estimates of σ 2α2ν , M

and α. We show that the estimates of σ 2α2ν and M are strongly consistent in any
dimension and the estimate of α is strongly consistent when d > 4.

There is a fair amount of literature on estimating σ 2α2ν for the Matérn au-
tocovariance. In 1991, Ying [32] established strong consistency and the asymp-
totic distribution of the maximum likelihood estimate of σ 2α2ν for the Ornstein–
Uhlenbeck process when d = 1 (which has a Matérn autocovariance for ν = 1/2).
In 2004, Zhang [33] established that the maximum likelihood estimate of σ 2α2ν

(obtained by fixing α and ν) is strongly consistent when d ≤ 3. In related work,
Loh [23] shows that maximum likelihood estimates of scale and variance parame-
ters in a nonisotropic multiplicative Matérn model are consistent when ν = 3/2
(similar results for the Gaussian autocovariance model can be found in [24]). In
Section 6.7 of [28], Stein derives asymptotic properties of the maximum likeli-
hood estimates of α, σ and ν for a periodic version of the Matérn random field.
For this periodic random field all the parameters are consistently estimable when
d ≥ 4. Our results confirm these findings for α and σ with the nonperiodic Matérn
when d > 4. The case d = 4 is still open.

Recent work by Kaufman, Schervish and Nychka [20] and Du, Zhang and
Mandrekar [12] studies maximum likelihood estimates of σ 2α2ν using a tapered
Matérn autocovariance when d ≤ 3. The advantage gained by tapering is a reduc-
tion of the computational load for computing the likelihood and for computing
kriging estimates. We will see that our estimates of the same quantity, σ 2α2ν ,
yield strongly consistent estimates in any dimension which are “root n” consistent
and are easily computed with no maximization required. However, our estimates
depend on the observed locations being on a regular grid whereas the maximum
likelihood estimates are not confined to such restrictions.

Finally we mention the long tradition of using squared increments to estimate
properties of random fields beginning with the quadratic variation theorem of Lévy
in 1940 [22]. For example, increments have been used in [19] and [6] for identifi-
cation of a local fractional index and in [10] to identify the singularity function of
a fractional process. In [4] they are used to estimate a deformation of an isotropic
random field. For more results on the convergence of quadratic variations, see [2,
5–7, 9, 13–15, 19, 21, 30].
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2. The geometric anisotropic Matérn class. In this section we construct
estimates of σ 2α2ν , M and α using increments of Y observed on a dense grid
within �. Using fixed domain asymptotics, we establish consistency of our esti-
mates under assumptions (4) and (5) and provide bounds on the rate of variance
decay as it depends on the number of increments used, the dimension of � and
the smoothness of Y measured by ν. These results will hold in any dimension.
However, when the dimension is large enough (d > 4), the second term in (3) is
influential enough so that α can be estimated consistently.

If the observation region � is an open subset of Rd and the random field Y is
modeled by (4) and (5), then Y is said to be a d-dimensional geometric anisotropic
Matérn random field with parameters (σ,α, ν,M). In this case, the covariance
structure of Y is cov(Y (s), Y (t)) = K(|Ms − Mt|) where K is defined as

K(t) � σ 2(αt)ν

�(ν)2ν−1 Kν(αt)(6)

for t > 0 and K(0) � limt↓0 K(t) = σ 2. The function Kν is the modified Bessel
function of the second kind of order ν > 0. Since |Ms − Mt| = |OMs − OMt|
for any orthogonal matrix O , one can only identify M up to left multiplica-
tion by an orthogonal matrix. To remove this identifiability problem we sup-
pose that M ∈ SL(d,R)/SO(d,R) where SO(n,R) denotes the orthogonal ma-
trices in SL(d,R). In the theorems below, we write M1 =SL/SO M2 to mean
that there exists a O ∈ SO(n,R) such that M1 = OM2, and similarly for
M1 �=SL/SO M2. Operationally, however, we estimate a representer of the cosets
in SL(d,R)/SO(d,R) given by the upper triangular matrices which have positive
diagonal elements and determinant 1 (that this is a representer follows from the
QR factorization, see [17]).

As discussed in the Introduction, the principle irregular term is important in de-
termining the sample path properties of the random field Y . The principle irregular
term for the Matérn covariance function is

Gν(t) �

⎧⎪⎪⎨
⎪⎪⎩

(−1)ν+1

22ν−1�(ν)�(ν + 1)
t2ν log t, if ν ∈ Z;

−π

22ν sin(νπ)�(ν)�(ν + 1)
t2ν, otherwise,

where Gν(0) is defined to be 0. Moreover,

cov
(
Y(t + h), Y (t)

) = σ 2Gν(|αMh|) − νσ 2Gν+1(|αMh|) + ε(|αMh|),(7)

where ε(h) = σ 2p(|h|) + o(Gν+1(|h|)) as |h| → 0 and p is an even polynomial.
Notice that when M is the identity matrix and ν /∈ Z, this gives the expansion (3)
so that σ 2Gν(|αh|) is the first principle irregular term, and −νσ 2Gν+1(|αh|) is
the second term.
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2.1. Estimating σ 2α2ν and M in any dimension. Let � be a bounded, open
subset of Rd , and let �n � � ∩ {Zd/n}. The idea is that we will be observing Y

on a region, just a bit larger than �n so that we can form the mth order increments
of Y on �n. These will then be used to estimate M and σ 2α2ν in any dimension
and additionally α, in dimension d > 4.

For a fixed nonzero vector h ∈ Rd define the increment in the direction h by

hY(t) � Y(t + h) − Y(t) and the mth iterated directional increment 
m

h Y(t) �

h
m−1

h Y(t). The following lemma establishes the relationship between the vari-
ance of these increments and the terms in (7) when the number of increments is
sufficiently large.

LEMMA 1. Let Y be a mean zero, geometric anisotropic d-dimensional
Matérn Gaussian random field with parameters (σ,α, ν,M). If m is a positive
integer such that m > ν + 1 and h ∈ Rd is a nonzero vector, then

E(
m
h/nY (t))2 = am

ν

n2ν
+ bm

ν

n2ν+2 + o(n−2ν−2)(8)

as n → ∞ where

am
ν � σ 2α2ν |Mh|2ν

m∑
i,j=0

(−1)i+j

(
m

i

)(
m

j

)
Gν(|i − j |),(9)

bm
ν � σ 2α2ν+2|Mh|2ν+2

m∑
i,j=0

(−1)i+j

(
m

i

)(
m

j

)
(−ν)Gν+1(|i − j |).(10)

Now we are in a position to estimate the coefficient am
ν . Let #�n denote the

cardinality of the finite set �n � � ∩ {Zd/n}, and define

Qm
n � 1

#�n

∑
j∈�n

n2ν(
m
h/nY (j))2.(11)

Notice that by (8), EQm
n → am

ν as n → ∞. In addition, since Qm
n is itself an aver-

age, one might hope that Qm
n converges to am

ν . The following theorem shows that,
indeed, this is the case. In addition, the theorem quantifies the decay of the variance
of Qm

n as a function of the number of increments, the smoothness of the random
field Y and the dimension of the domain. The heuristic is that when the number
of increments m is large enough, there is sufficient decorrelation of the summands
of Qm

n to guarantee convergence as n → ∞. Generally, more increments leads to
more spatial decorrelation and hence a reduction in variance. However, this only
holds up to a point, after which taking more increments no longer effects the rate of
variance decay. Finally, the higher the dimension, the more increments one needs
to take to get the best rate.
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THEOREM 1. Let Y be a mean zero, geometric anisotropic d-dimensional
Matérn Gaussian random field with parameters (σ,α, ν,M), and let � be a
bounded, open subset of Rd . If m > ν, then

Qm
n → am

ν w.p. 1,(12)

as n → ∞. Moreover, there exists a constant c > 0 such that

varQm
n ≤

⎧⎨
⎩

cn4(ν−m), if 4(ν − m) > −d;
cn−d logn, if 4(ν − m) = −d;
cn−d, if 4(ν − m) < −d,

for all sufficiently large n.

The above theorem establishes that Qm
n consistently estimates am

ν (which de-
pends on h). Now we show how these estimates can be used to recover M and
σ 2α2ν . As was mentioned above, we suppose M is upper triangular with determi-
nant one and positive diagonal elements. After renormalizing by known constants,
the values of am

ν allow us to consistently estimate |M̃h|2 where M̃ � σ 1/ναM for
finitely many directions h. We show by induction that these values are sufficient
to recover each column of M̃ . Once this is established, the requirement detM = 1
gives M = (det M̃)−1/dM̃ and σ 2α2ν = (det M̃)2ν/d .

Let M̃i,j denote the (i, j)th element of M̃ and let M̃:,i denote the ith column
of M̃ . Also let M̃1 : k,1 : k be the submatrix with elements M̃i,j for i, j = 1, . . . , k.
For the first column of M̃ , notice that |M̃e1| = M̃1,1 where e1, . . . , ed denote
the standard basis of Rd . This follows since M̃ is upper triangular with positive
diagonal. For the inductive step suppose the first k columns M̃:,1, . . . , M̃:,k are
known. Taking h = ek+1 and h = ek+1 − ei allows us to recover |M̃:,k+1|2 and
|M̃:,k+1 − M̃:,i |2 for i = 1, . . . , k. By adding and subtracting appropriate terms
we can then recover 〈M̃:,k+1, M̃:,i〉, for all i = 1, . . . , k + 1. Therefore M̃:,k+1 =
(v,

√
|M̃:,k+1|2 − |v|2,0, . . . ,0)T where v � M̃−1

1:k,1:k(〈M̃:,k+1, M̃:,i〉)ki=1. This es-

tablishes the inductive step and therefore M̃ can be identified from observing
|M̃h|2 at d(d +1)/2 different vectors h (let them be denoted by h1, . . . ,hd(d+1)/2).

Notice that as M̃ ranges over the set of upper triangular matrices with positive

diagonal, the transformation {|M̃h| : h = h1, . . . ,hd(d+1)/2} f1→ M̃
f2→ (M,σ 2α2ν)

sends an open subset of Rd(d+1)/2 to SL(d,R)×R+. Since f2 ◦f1 is a continuous
map,

(σ̂ 2α2ν, M̂) → (σ 2α2ν,M) w.p. 1,

as n → ∞.
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2.2. Estimating α when d > 4. In this section we construct an estimate of
σ 2α2ν+2|Mh|2ν+2 when d > 4 which, in combination with M and σ 2α2ν , allows
us to consistently estimate α. We start by noticing that by Lemma 1, for any p,q >

ν + 1,

En2
[
Qp

n − a
p
ν

a
q
ν

Qq
n

]
→

[
bp
ν − a

p
ν

a
q
ν

bq
ν

]

as n → ∞. The term b
p
ν − a

p
ν

a
q
ν
b

q
ν is significant because, for any positive integer

p,q ,

bp
ν − a

p
ν

a
q
ν

bq
ν = cσ 2α2ν+2|Mh|2ν+2,

where 0 ≤ c ≤ ∞ is a known constant depending on p and q . In addition, Lemma 2
in the Appendix establishes that c �= 0 and c �= ∞ for at least one p,q > ν + 1.
Moreover, a

p
ν /a

q
ν does not depend on the unknown parameters σ 2, α and M , and

therefore one can construct n2[Qp
n − a

p
ν

a
q
ν
Q

q
n] from the observed values of the ran-

dom field Y . The following theorem quantifies how large p and q need to be for

the almost sure convergence of n2[Qp
n − a

p
ν

a
q
ν
Q

q
n] to b

p
ν − a

p
ν

a
q
ν
b

q
ν .

THEOREM 2. Let Y be a mean zero, geometric anisotropic d-dimensional
Matérn Gaussian random field with parameters (σ,α, ν,M) and let � be a
bounded, open subset of Rd . Suppose p �= q are positive integers such that
p,q > ν + 1 and both are large enough so that 4 < min{2p − 2ν, d} and 4 <

min{2q − 2ν, d}. Then

n2
[
Qp

n − a
p
ν

a
q
ν

Qq
n

]
→

[
bp
ν − a

p
ν

a
q
ν

bq
ν

]
w.p. 1,

as n → ∞.

Theorems 1 and 2 show that there exist strongly consistent estimates of σ 2α2ν ,
M and σ 2α2ν+2|Mh|2ν+2. This, in turn, gives consistent estimates of α, σ and M .
Notice that when d ≤ 3 this is impossible due to the mutual absolute continuity of
Matérn Gaussian random fields with different scale and variance parameters (see
Zhang [33]). Since Gaussian random fields are either mutually absolutely contin-
uous or orthogonal, the fact that we have strongly consistent estimates of α, σ and
M gives the following corollary.

COROLLARY 3. Let Y1 and Y2 be two, mean zero, geometric anisotropic d-
dimensional Matérn Gaussian random fields defined a bounded open set � ⊂ Rd

with parameters (σ1, α1, ν,M1) and (σ2, α2, ν,M2) where d > 4. If (σ1, α1) �=
(σ2, α2) or M1 �=SL/SO M2, then the Gaussian measures induced by the random
fields Y1 and Y2 are orthogonal.
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REMARK. The strong consistency results for our estimates of σ 2α2ν , α and
M all depend on knowledge of the true value of ν. However, our results can
be extended when using an estimate ν̂ so long as the error εn � ν̂ − ν satisfies
εn logn → 0 with probability one as n → ∞. This follows since the ratio of the
quadratic variation, Qm

n , using the true ν, to the quadratic variation using the esti-
mated ν̂, is n−2εn which converges to 1 if εn logn → 0.

3. Beyond the Matérn. The previous section dealt exclusively with the
Matérn autocovariance. Now we show how these results can be extended to other
autocovariance functions. We choose two examples to illustrate how the method-
ology can be easily extended beyond the Matérn autocovariance function. The key
components for showing extensions are establishing versions of Lemmas 1 and 4.
Lemma 1 quantifies the expected value of the squared increments (


p
h/nY (t))2 in

terms of n. Lemma 4 establishes that, in effect, derivatives of the covariance away
from the origin are dominated by the derivatives of the principle irregular term.
Once the analogs of these lemmas are established, all the subsequent arguments
for versions of Theorems 1 and 2 follow almost immediately.

For our first example we consider the case when Y is a mean zero Gaussian ran-
dom field on Rd with generalized autocovariance function c1|t |δ1 + c2|t |δ2 where
δ1 and δ2 are known but c1 and c2 are unknown (it is tacitly assumed that the values
of c1 and c2 give a conditionally positive definite function of order �δ2/2� in Rd ,
see [8]). In what follows we suppose δ2 > δ1 > 0 and neither are even integers.
The appropriate version of Lemma 1 says that when p > δ2/2,

E(

p
h/nY (t))2 = c1Cp,δ1

nδ1
+ c2Cp,δ2

nδ2
,(13)

where Cp,δ � |h|δ ∑p
i,j=0(−1)i+j

(p
i

)(p
j

)|i−j |δ . Now Q
p
n is defined as in (11) with

δ1 in place of 2ν. In this case, EQ
p
n = c1Cp,δ1 + c2Cp,δ2n

δ1−δ2 and therefore we

set ĉ1 � Q
p
n/Cp,δ1 . Also, for an integer q > p we have Enδ2−δ1[Qp

n − Cp,δ1
Cq,δ1

Q
q
n] =

c2[Cp,δ1 − Cp,δ1
Cq,δ1

Cq,δ2], and after a renormalization one gets the estimate ĉ2. The

analog to Lemma 4 says that when p > δ2/2 and � is a bounded open subset
of Rd , there exists a constant c > 0 such that∣∣∂(p,p)

h cov(Y (s), Y (t))
∣∣ ≤ c|s − t|δ1−2p(14)

for all s, t ∈ � such that s �= t. Once (13) and (14) are established, Lemmas 6, 7, 8
and Theorem 1 all follow when replacing 2ν with δ1. To establish Theorem 2, re-
place the n2 term with nδ2−δ1 in (47) and continue in an similar manner to establish
the following theorem.

THEOREM 4. Suppose Y is a mean zero Gaussian random field on Rd with
generalized autocovariance function c1|t |δ1 + c2|t |δ2 observed on � ∩ {Zd/n}
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where � is a bounded open subset of Rd and 0 < δ1 < δ2 are known and not
even integers. If 0 < 2(δ2 − δ1) < d then there exists integers q > p > 0 such that
ĉ1 and ĉ2 (defined above) converge with probability one to c1 and c2 (respectively)
as n → ∞.

There are different conditions on p to guarantee convergence of c1 versus c2.
Generally, one only needs p > δ1/2 for consistent estimation of c1 which will hold
in any dimension. However, in our case, we need the additional requirement that
p > δ2/2 since we are working with a conditionally positive definite function of
order �δ2/2�. To get consistent estimation of c2 we need the additional inequality
2(δ2 − δ1) < min{2p − δ1, d}. To relate this to our Matérn results in Section 2,
set δ1 = 2ν and δ2 = 2ν + 2 so that the inequality becomes 4 < min{2p − 2ν, d}
which appears in Theorem 2. Finally the analog to Lemma 2 guarantees there exits

a q > p such that [Cp,δ1 − Cp,δ1
Cq,δ1

Cq,δ2] is nonzero which allows us to define ĉ2.

Before we continue, we mention a comment in Wahba’s book ([31], page 44)
which argues in favor of using the generalized autocovariance |t |2m−1 over the
model |t |2m−1 + c1|t |2m+1 +· · ·+ ck|t |2m+2k−1 when d = 1,2,3. The reasoning is
that the two models yield mutually absolutely continuous Gaussian measures, and
therefore cannot be consistently distinguished. We can see, however, that the di-
mension requirement d = 1,2,3 is an integral component of this argument. When
the dimension gets above 4, this reasoning no longer holds since the two models
are orthogonal by the above theorem (setting δ1 = 2m − 1 and δ2 = 2m + 1).

For our second extension we show that the variance σ 2 and scale α can be
separately estimated in the exponential autocovariance model σ 2e−|αt |δ when the
dimension d > 2δ and δ �= 1. In this case, the appropriate version of Lemma 1
becomes

E(

p
h/nY (t))2 = −σ 2αδCp,δ

nδ
+ σ 2α2δCp,2δ

2n2δ
+ O(n−3δ)(15)

as n → ∞ when p > δ/2. From (15) one can now easily construct estimates of
σ 2αδ and σ 2α2δ . When a geometric anisotropy M is present, the techniques of
Section 2 are also sufficient to also construct M̂ . Notice that by direct differentia-
tion, equation (14) holds when δ1 is replaced by δ. Using similar arguments for the
previous theorem and extending to a geometric anisotropy, the following theorem
is obtained.

THEOREM 5. Let Y be a mean zero, Gaussian process on Rd with autoco-
variance function σ 2e−|αMt|δ observed on �∩{Zd/n} where � is a bounded open
subset of Rd . Suppose δ ∈ (0,2) is known, σ and α are positive and M is upper

triangular with positive diagonal and determinant 1. If p ≥ 1, then σ̂ 2αδ → σ 2αδ ,
and M̂ → M with probability one as n → ∞. Moreover, if 2δ < d and δ �= 1, then
for any p > 3δ/2 there exists q > p such that σ̂ → σ , and α̂ → α with probability
one as n → ∞.
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Many other extensions are possible, including more general nonstationary ran-
dom fields. In this case, both am

ν and bm
ν depend on t ∈ � and Q

p
n will converge to∫

� am
ν dt and similarly for

∫
�[bp

ν − a
p
ν

a
q
ν
b

q
ν ]dt. If one also needs pointwise conver-

gence to am
ν or b

p
ν − a

p
ν

a
q
ν
b

q
ν one can consider weighted local averaging of the terms

in Q
p
n . This was the technique used in [4] when observing a deformed isotropic

Gaussian random field that locally behaved like a fractional Brownian field. How-
ever, obtaining extensions in these cases is more difficult since one needs to con-
sider rates of decay for a bandwidth parameter. That being said, this work leaves
open the possibility of constructing consistent estimates of the two deformations
f1, f2 when observing Y1 ◦f1 +Y2 ◦f2 where Y1 and Y2 have generalized autoco-
variance functions |t |δ1 and |t |δ2 , respectively. Finally we mention that since Q

p
n is

constructed from increments, one can extend our results to random fields Y with a
polynomial drift of known order.

4. Simulations. We finish with two simulations that illustrate (and hopefully
compliment) our theoretical results. The first simulation shows how one can use
directional increments to estimate σ 2α2ν and a geometric anisotropy M using fi-
nitely many directions. The second simulation shows how to estimate the coeffi-
cient on the “second principle irregular term” [c2 in (2)] and how it can be used
to construct an unbiased estimate of the coefficient on the “first principle irregular
term” [c1 in (2)].

In our first example, we simulated 500 independent realizations of a Matérn ran-
dom field with parameters σ = 1.5, α = 0.8, ν = 1.75, M(1,1) = 1.2, M(1,2) =
0.5, M(2,1) = 0 and M(2,2) = 1/1.2 observed on a square grid in [0,1]2 with
spacing 1/55. On each realization we estimated σ 2α2ν and M using 2, 3 and 4
horizontal, vertical and diagonal increments. Notice that since 1 < ν < 2, this ran-
dom field is once, but not twice, mean square differentiable. Intuitively, we there-
fore need at least two increments for sufficient de-correlation of the terms in the
quadratic variation sum (2). Table 1 displays the root mean squared error (RMSE)
for estimating σ 2α2ν , the true value is approximately 1.03, and the elements of M .
Figure 2 plots histograms of the estimates for 2 and 3 increments. It is immediately
clear that there is a large reduction in RMSE when using 3 increments as compared

TABLE 1
RMSE for estimating σ 2α2ν and M using 2, 3 and 4 increments

2 increments 3 increments 4 increments

σ 2α2ν 0.1664 0.0300 0.0289
M(1,1) 0.0360 0.0114 0.0113
M(1,2) 0.0475 0.0147 0.0147
M(2,2) 0.0248 0.0079 0.0079
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FIG. 2. 500 independent simulations of a Matérn random field with σ = 1.5, α = 0.8, ν = 1.75,
M(1,1) = 1.2, M(1,2) = 0.5, M(2,1) = 0 and M(2,2) = 1/1.2 observed on a square grid
in [0,1]2 with spacing 1/55. The top row of figures shows the histograms of the estimates of
(σ 2α2ν,M(1,1),M(1,2),M(2,2)) using the techniques derived in Section 2.1 based on increments
of order 2. The bottom row shows the histograms of the estimates using increments of order 3.

to 2 increments (and an additional bias reduction when estimating σ 2α2ν ). Indeed,
by Theorem 1, more increments leads to more spatial decorrelation and hence a
reduction in variance. In this case, ν < 2 < ν + 1 so that the estimate based on 2
increments is guaranteed to be consistent, but the variance decays at a sub-optimal
rate. Since 3 > (4ν + d)/4 = 2.25, the variance of the estimate based on 3 incre-
ments decays at the optimal rate. However, Theorem 1 also says that this variance
reduction only holds up to a point, after which taking more increments no longer
effects the rate of variance decay. Indeed, it is seen in Table 1 that taking 4 incre-
ments does not improve the RMSE nearly as much.

Our second simulation uses the results of Section 3 to estimate c1 and c2 when
observing

√
c1Y1 + √

c2Y2 on [0,1/
√

2)2 at 1000 × 1000 pixel locations where
c1 = 100, c2 = 36 and Y1 is independent of Y2. The random field Y1 has autoco-
variance 9

10 − |t |0.2 + 1
10 |t |2 and Y2 has autocovariance 8

10 − |t |0.4 + 2
10 |t |2 which

is positive definite on [0,1/
√

2)2 (see [29] for a proof). Our estimates of c1 and c2
are defined by

ĉ1 � Qp
n/Cp,δ1,(16)

ĉ2 � nδ2−δ1
Q

p
n − Cp,δ1/Cq,δ1Q

q
n

Cp,δ2 − Cp,δ1/Cq,δ1Cq,δ2

,(17)
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FIG. 3. Histograms of the estimates of c1 and c2 for 500 independent realizations of√
c1Y1 + √

c2Y2 where c1 = 100, c2 = 36 and Y1 is independent of Y2. The random field Y1 has
principle irregular term −|t |0.2 and Y2 has principle irregular term −|t |0.4. Each realization is on
[0,1/

√
2)2 measured at 1000 × 1000 pixel locations.

where δ1 = 0.2, δ2 = 0.4, p = 2, q = 3 and Cp,δ � −|h|δ ∑p
i,j=0(−1)i+j

(p
i

)(p
j

)|i−
j |δ . This example was chosen to illustrate the duality when estimating c1 and c2:
the smaller |δ1 − δ2| (in relation to the dimension d) the smaller the variance of ĉ1

and ĉ2 but the larger the bias of ĉ1. In fact, as the dimension grows, the variance ĉ1

decreases at a faster rate (proportional to n−d when using enough increments), but
the bias decreases at the same asymptotic rate for any d (proportional to nδ1−δ2 ). In
our example, since p = 2 (so the quadratic term 1

10 |t |2 vanishes), we can explicitly

compute the bias using (13) so that Eĉ1 = c1 +c2
Cp,δ2
Cp,δ1

nδ1−δ2 . Notice that using our

estimate of c2 we can now correct the bias in ĉ1. The left plot of Figure 3 shows two

histograms of the estimate ĉ1 and the bias corrected estimate ĉ1 − ĉ2
Cp,δ2
Cp,δ1

nδ1−δ2 on

the 500 simulated realizations. The right plot of Figure 3 shows the histogram of
the estimate ĉ2. We can see that not only is it possible to get an estimate of c2, but
using it to correct the bias in ĉ1 reduces the RMSE for estimating c1 (from 7.84
down to 2.29).

APPENDIX: PROOFS

We start with some notation. For a function of two variables F(s, t) let



(m,n)
h F(s, t) � 
m

h 
n
hF(s, t) where 
m

h acts on the variable s and 
n
h acts on

the variable t. Define ∂h � h · ∇ to be the directional derivative in the direction h
and ∂

(m,n)
h F(s, t) � ∂m

h ∂n
hF(s, t) where ∂m

h acts on the variable s and ∂n
h acts on t.

Let f (ξ), g(ξ) be real valued functions defined on some set 
 and let 
′ ⊂ 
.
We write f (ξ) � g(ξ) for all ξ ∈ 
′ if there there exists a positive constant c > 0
such that |f (ξ)| ≤ cg(ξ) for all ξ ∈ 
′. Notice that this definition also works for
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a sequence of functions fn, gn by considering the variable n as an argument and
replacing 
 by 
 × N.

PROOF OF LEMMA 1. We suppose σ = α = 1 and M is the identity matrix,
then rescale for the general case. First note two immediate facts about the mth di-
rectional increment operator 
m

h/n: for any function f : Rd → R the mth-increment

of f can be computed 
m
h/nf (t) = ∑m

i=0 dif (t + ih/n) where di = (−1)m+i
(m

i

)
;

The mth-increment 
m
h/n annihilates monomials of degree less than m so that



(m,m)
h/n |t − s|2k = 0 for all k = 0, . . . ,m − 1. Therefore, by the expansions given

on page 375 of [1], we have



(m,m)
h/n K(|s − t|) = 


(m,m)
h/n {Gν(|s − t|) − νGν+1(|s − t|) + r(|s − t|)},

where r(ε) = o(ε2ν+2) as ε → 0. Now for a fixed t0 ∈ Rd

E(
m
h/nY (t0))

2 = 

(m,m)
h/n {K(|s − t|)}|s,t=t0 = I1 + I2 + I3,

where

I1 � 

(m,m)
h/n {Gν(|s − t|)}|s,t=t0 = ∑

ij

didjGν

(|(i − j)h/n|),(18)

I2 � 

(m,m)
h/n {(−ν)Gν+1(|s − t|)}|s,t=t0

(19)
= ∑

ij

didj (−ν)Gν+1
(|(i − j)h/n|),

I3 � 

(m,m)
h/n {r(|s − t|)}|s,t=t0 = ∑

ij

didj r
(|(i − j)h/n|).(20)

Notice that
∑

ij didjGν(|(i − j)h/n|) = |h/n|2ν ∑
ij didjGν(|i − j |). This is ob-

viously true with ν /∈ Z. It also holds when ν ∈ Z since

Gν

(|(i − j)h/n|) = |h/n|2ν(
Gν(|i − j |) + |i − j |2ν log |h/n|)(21)

and
∑

ij didj |i − j |2ν = 0 (since ν ∈ Z and m > ν). Similar arguments can be

applied to Gν+1 when m > ν +1 which gives I1 + I2 = am
ν

n2ν + bm
ν

n2ν+2 . Finally, notice

that r(ε) = o(ε2ν+2) implies that I3 = o(n−2ν−2). This establishes the claim when
σ = α = 1 and M is the identity matrix. The general result when σ, ν > 0 and
M ∈ GL(d,R) is then established by an easy rescaling argument [using (21) when
ν ∈ Z]. �

LEMMA 2. For ν > 0, let am
ν be defined by (9) and bm

ν be defined by (10). If
m > ν, then am

ν �= 0. If m > ν + 1 then bm
ν �= 0. Finally, there exits p,q > ν + 1

such that b
p
ν − a

p
ν

a
q
ν
b

q
ν �= 0.
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PROOF. Notice first that am
ν ∝ var(
m

1 Zν) > 0 where Zν is an intrinsic ran-
dom function on R observed on Z with generalized covariance Gν (since 
m

1 an-
nihilates polynomials of order m − 1, and m > ν, see [28]). The same reasoning
establishes that −bm

ν ∝ var(
m
1 Zν+1) > 0 when m > ν + 1.

For the last part of the lemma we show that there exists p,q > ν + 1 such that

var(
p
1 Zν)

var(
q
1Zν)

�= var(
p
1 Zν+1)

var(
q
1Zν+1)

.

We will argue by contradiction and suppose that for all k > 0,

var(
q+k
1 Zν)

var(
q
1Zν)

= var(
q+k
1 Zν+1)

var(
q
1Zν+1)

.(22)

By a spectral representation of Gν (see [28], page 36) and an easy induction estab-
lishes that var(
q+k

1 Zν) = ∫ |eiw − 1|2q+2k|w|−2ν−1 dw and var(
q+k
1 Zν+1) =∫ |eiw − 1|2q+2k|w|−2ν−3 dw. Notice also that |eiw − 1|2 = 2 − 2 cosw. Let Fν

and Fν+1 be two probability measures on R defined by

Fν(B) � 1

var(
q
1Zν)

∫
B
(2 − 2 cosw)q |w|−2ν−1 dw,

Fν+1(B) � 1

var(
q
1Zν+1)

∫
B
(2 − 2 cosw)q |w|−2ν−3 dw.

Our assumption (22) then becomes∫
(2 − 2 cosw)k dFν(w) =

∫
(2 − 2 cosw)k dFν+1(w)(23)

for all k > 0. Notice that the variances var(
q
1Zν) and var(
q

1Zν+1) serve as the
normalizing constants so that Fν and Fν+1 have total mass one. In what follows
we show that the normalizing constants satisfy both var(
q

1Zν) > var(
q
1Zν+1)

and var(
q
1Zν) < var(
q

1Zν+1) to establish the desired contradiction.
By the equalities in (23), the random variables 2(1 − cosWν) and 2(1 −

cosWν+1) have the same moments when Wν ∼ Fν and Wν+1 ∼ Fν+1. In addi-
tion, 0 ≤ 2(1 − cosWν) ≤ 4 and 0 ≤ 2(1 − cosWν+1) ≤ 4 so that the moment
generating functions are both finite in a nonempty radius of the origin. Therefore

2(1 − cosWν)
L= 2(1 − cosWν+1), where L= denotes equality in law. This gives

P(cosWν < 0) = P(cosWν+1 < 0), for example. However,

P(cosWν < 0) = 1

var(
q
1Zν)

∫
1{cosw<0}(2 − 2 cosw)q |w|−2ν−1 dw

>
1

var(
q
1Zν)

∫
1{cosw<0}(2 − 2 cosw)q |w|−2ν−3 dw,
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by the fact that cosw < 0 ⇒ |w| > π/2. Therefore,

var(
q
1Zν+1) < var(
q

1Zν).(24)

To show the contradicting inequality, let’s start by computing the density of
these two random variables. The idea is to show that the nonnormalized [i.e., with-
out the term var(
q

1Zν)] density of 2(1 − cosWν) is strictly smaller than the non-
normalized density of 2(1 − cosWν+1) in a positive neighborhood of 0. In par-
ticular, the density of 2(1 − cosWν) can be written as 2

∑∞
k=1 fWν (gk(x))|gk(x)′|

where the gk’s are the different positive branches of the inverse cos−1(1 − x/2),
and fWν (w) � (2−2 cosw)q |w|−2ν−1/var(
q

1Zν) is the density of Wν . This sim-
plifies to

2xq

var(
q
1Zν)

∞∑
k=1

|gk(x)′|
|gk(x)|2ν+1 = 2xq

var(
qZν)
√

x − x2/4

∞∑
k=1

|gk(x)|−2ν−1

for 0 < x < 4. Notice that g1(x) ∼ √
x as x → 0 and gk(x) ∼ 2π�k/2� as x → 0

for all k > 1. Therefore the term g1 dominates the sum when x is small. In partic-
ular for all x > 0 sufficiently small, we have

f2−2 cosWν (x) <
2xq

var(
q
1Zν)

√
x − x2/4

∞∑
k=1

|gk(x)|−2ν−3(25)

= var(
q
1Zν+1)

var(
q
1Zν)

f2−2 cosWν+1(x).(26)

Since f2−2 cosWν (x) and f2−2 cosWν+1(x) have the same integrate integrals over
Borel subsets of (0,4), we must have var(
q

1Zν+1) > var(
q
1Zν). This contradicts

(24) and therefore establishes the lemma. �

LEMMA 3. For any ν > 0, T > 0,

∣∣∣∣ dp

dtp
tν/2 Kν

(√
t
)∣∣∣∣ �

⎧⎨
⎩

1, when p < ν;
| log t |, when p = ν;
tν−p, when p > ν,

as t ranges in the interval (0, T ) where Kν is the modified Bessel function of the
second kind of order ν.

PROOF. Using the expansions for Kν found in [1], page 375, we can write

tν/2 Kν

(√
t
) =

{
F1(t) + tν log(t)F3(t); when ν = 0,1,2, . . . ,

F4(t) + tνF5(t); otherwise,
(27)

where the Fj (t)’s are of the form
∑∞

k=0 ckt
k where the ck’s decay fast enough

so that the series converges absolutely for all t ∈ (0,∞), and all it is derivatives
exist and are bounded on (0, T ). This immediately establishes that when p < ν,
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| dp

dtp
tν/2Kν(

√
t)| � 1 for all t ∈ (0, T ) since both dp

dtp
(tν) and dp

dtp
(tν log t) are con-

tinuous and bounded on (0, T ).
When p > ν and ν /∈ Z we have that tν � d

dt
(tν) � · · · � dp

dtp
(tν) � tν−p as t

ranges in the bounded interval (0, T ). Similarly, when p > ν and ν ∈ Z, we have

tν log t � d

dt
(tν log t) � · · · � dp

dtp
(tν log t) � tν−p.

Finally, when p = ν, dp

dtp
tν log t ∝ log t + cp . The lemma now follows by (27) and

the fact that the derivative of a product satisfies (fg)(p) = ∑p
k=0

(p
k

)
f (p)g(p−k).

�

LEMMA 4. Suppose K(t) is the isotropic Matérn autocovariance function de-
fined in (6) for fixed parameters σ,α, ν > 0. Then for any integer m > ν, nonzero
vector h ∈ Rd , matrix M ∈ GL(d,R) and bounded set � ⊂ Rd ,∣∣∂(m,m)

h [K(|Ms − Mt|)]∣∣ � |s − t|2ν−2m(28)

for all s, t ∈ � such that s �= t.

PROOF. First notice that it is sufficient to show the claim when M is the
identity matrix and α = 1 (extending to general M and α follows by the chain
rule for derivatives). Define Ksq(t) � K(

√
t) and F(s, t) � |s − t|2 so that

∂
(m,m)
h [K(|s− t|)] = ∂

(m,m)
h [Ksq(F (s, t))]. Also let ∂∗

h denote a generic directional
derivative on either the variable s or t. By generic I mean that (∂∗

h)kF denotes

∂
(i,j)
h F for some i + j = k and (∂∗

hF )k = ∂∗
hF · · · ∂∗

hF where each ∂∗
h could be

with respect to s or t. Now by successive application of the directional derivatives
∂∗

h we get that

∂
(m,m)
h [Ksq(F (s, t))] =

2m∑
i=1

∑
0≤j≤i

j+i≤2m

K(i)
sq (F (s, t))(∂∗

hF(s, t))i−jBij ,(29)

where each Bij is uniformly bounded on �2. The functions Bij are uniformly
bounded by the nice fact that (∂∗

h)kF (s, t) � 1 on �2 when k ≥ 2.
We will bound the terms of the sum (29) when i < ν, i > ν and i = ν separately.

Notice first that since i ≥ j we have that

|∂∗
hF(s, t)|i−j � |s − t|i−j for all s, t ∈ �.(30)

This implies, by Lemma 3, that the terms in the sum (29), for which i < ν, are
bounded. When i > ν,∣∣K(i)

sq (F (s, t))(∂∗
hF(s, t))i−jBij

∣∣
� |F(s, t)|ν−i |s − t|i−j by (30) and Lemma 3

= |s − t|2ν−(i+j)

� |s − t|2ν−2m since i + j ≤ 2m,
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where the inequality holds for all s, t ∈ � such that |s − t| > 0 (note that we use
the fact that � is bounded implies |s − t| < T for some T ). For the last case, i = ν,
a similar argument establishes∣∣K(i)

sq (F (s, t))(∂∗
hF(s, t))i−jBij

∣∣ � |s − t|i−j | logF(s, t)|
� |s − t|2ν−2m

for all s, t ∈ � such that |s − t| > 0. Therefore ∂
(m,m)
h [Ksq(F (s, t))] � |s − t|2ν−2m

for all s, t ∈ � such that s �= t. �

LEMMA 5. Let h be a nonzero vector in Rd , ν > 0 and H be the d ×m matrix
defined by

H � (h, . . . ,h)︸ ︷︷ ︸
m columns

.(31)

If m is a positive integer greater than ν, then

sup
ξ ,η∈[0,1]m

|i − j + H(ξ − η)/n|2ν−2m � |i − j|2ν−2m

for all positive integers n and i, j ∈ �n such that |i − j| > |(m + 1)h/n|.

PROOF. First notice that

sup
ξ ,η∈[0,1]m

|i − j + H(ξ − η)/n|2ν−2m = sup
−1≤τ≤1

|i − j + mhτ/n|2ν−2m.

Now for any −1 ≤ τ ≤ 1, positive integer n and i, j ∈ �n such that |i − j| > |(m +
1)h/n|, we have

|i − j + mhτ/n| ≥ |i − j| − m|τ ||h|/n

≥ |i − j| − |i − j| m

m + 1
.

The last line follows from the assumption that |i− j| > (m+1)|h|/n which implies
m

m+1 |i − j| > m|h|/n. Therefore

sup
ξ ,η∈[0,1]m

|i − j + H(ξ − η)/n|2ν−2m ≤
(

1 − m

m + 1

)2ν−2m

|i − j|2ν−2m.
�

LEMMA 6. Let Y be a mean zero, geometric anisotropic d-dimensional
Matérn Gaussian random field with parameters (σ,α, ν,M), and let � be a
bounded, open subset of Rd . Fix a positive integer m > ν and a nonzero vector
h ∈ Rd . Let � to be the covariance matrix of the increments 
m

h/nY (i) as i ranges
in the set i ∈ �n so that

�(i, j) � E(
m
h/nY (i)
m

h/nY (j))(32)
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for all i, j ∈ �n. Then there exists an N > 0 such that

|�(i, j)| � n−2m|i − j|2ν−2m(33)

for all n > N , and i, j ∈ �n such that |i − j| > |(m + 1)h/n|. Moreover,

|�(i, j)| � n−2ν(34)

for all n > N and i, j ∈ �n such that |i − j| ≤ |(m + 1)h/n|.

PROOF. First notice that �(i, j) = E
m
h/nY (i)
m

h/nY (j) = 

(m,m)
h/n K(|M(i −

j)|) where K is the isotropic Matérn autocovariance function defined in (6). To
simplify the notation let F(i, j) � K(|M(i − j)|) and H be the d by m matrix
defined in (31). An induction argument on m establishes that when |i − j| >

(m + 1)|h|/n, we can express directional increments as integrals of directional
derivatives so that



(m,m)
h/n F (i, j) = 1

n2m

∫
ξ ,η∈[0,1]m

(
∂

(m,m)
h F

)
(i + H ξ/n, j + Hη/n)dξ dη.

Therefore,

|�(i, j)| � 1

n2m

∫
ξ ,η∈[0,1]m

∣∣(∂(m,m)
h F

)
(i + H ξ/n, j + Hη/n)

∣∣dξ dη

� 1

n2m

∫
ξ ,η∈[0,1]m

|i − j + H(ξ − η)/n|2ν−2m dξ dη by Lemma 4

� 1

n2m
sup

ξ ,η∈[0,1]m
|i − j + H(ξ − η)/n|2ν−2m

� 1

n2m
|i − j|2ν−2m by Lemma 5,

for all n > N , i, j ∈ �n such that |i − j| > |(m + 1)h/n|. On the other hand when
|i − j| ≤ |(m + 1)h/n|,

|�(i, j)| ≤
√

E(
m
h/nY (i))2

√
E(
m

h/nY (j))2 � n−2ν,(35)

where the last inequality is by Lemma 1. Actually, a direct application of Lemma 1
only establishes (35) when m > ν +1. However, a small adjustment of the proof of
Lemma 1 establishes that E(
m

h/nY (t))2 = am
ν

n2ν + o(n−2ν) as n → ∞ when m > ν.
This is, then, sufficient to establish (35). �

LEMMA 7. Let �abs be the component-wise absolute value of the covariance
matrix � [defined in (32)]. Then under the same assumptions as in Lemma 6, there
exits an N > 0 such that

‖�abs‖2 � n−2ν + cnd−2m
∫ 1

1/n
r2ν−2m+d−1 dr

for all n > N , where c is a constant and ‖ · ‖2 is the spectral norm.
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PROOF. First note that by symmetry, ‖�abs‖2 ≤ √‖�abs‖1‖�abs‖∞ =
‖�abs‖∞, where ‖�abs‖∞ is the maximum of the �1 row norms and ‖�abs‖1 is
the maximum of the �1 column norms. To bound the �1 row norms, we bound the
terms of the sum when |i− j| > (m+1)|h|/n and |i− j| ≤ (m+1)|h|/n separately.
For the off-diagonal terms we use Lemma 6 to ensure the existence of an N > 0
such that for all n > N ,

max
i∈�n

∑
j∈�n

|i−j|>(m+1)|h|/n

|�(i, j)|

(36)
� max

i∈�n

∑
j∈�n

|i−j|>(m+1)|h|/n

n−2m|i − j|2ν−2m

� nd−2m
∫ 1

1/n
r2ν−2m+d−1 dr.(37)

Inequality (37) follows by the fact that for any constant a > 0 and open set � ⊂ Rd

which is bounded and contains the origin, one has∑
i∈�∩{Zd/n}

|i|>a/n

n−d |i|β �
∫ 1

1/n
rβ+d−1 dr(38)

as n → ∞ (for details see [3], Lemma 3, page 41). In addition, by Lemma 6,

max
i∈�n

∑
j∈�n

|i−j|≤(m+1)|h|/n

|�(i, j)| � n−2ν(39)

for all n > N . This establishes the proof by noticing that the sum of the last terms
in (37) and (39) bound ‖�abs‖∞. �

LEMMA 8. Under the same assumptions as in Lemma 6 there exits an N > 0
such that

‖�‖2
F � nd−4ν + cn2d−4m

∫ 1

1/n
r4ν−4m+d−1 dr

for all n > N where c is a constant and ‖ ·‖F denotes the Frobenious matrix norm.

PROOF. First note that ‖�‖2
F = ∑

i,j∈�n
|�(i, j)|2. As in the proof of Lemma 8

we bound the near-diagonal terms of � separately from the off-diagonal terms. By
Lemma 6 there exists an N > 0 such that∑

i,j∈�n

|i−j|>(m+1)|h|/n

|�(i, j)|2 � n2d−4m
∑

i,j∈�n

|i−j|>(m+1)|h|/n

n−2d |i − j|4ν−4m(40)

� n2d−4m
∫ 1

1/n
r4ν−4m+d−1 dr(41)
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for all n > N . Notice that the last inequality is a slight variation on (38). For the
near diagonal terms we also use Lemma 6 to get∑

i,j∈�n

|i−j|≤(m+1)|h|/n

|�(i, j)|2 � ndn−4ν.(42)

Adding (41) and (42) establishes the lemma. �

PROOF OF THEOREM 1. Define the random vector 
Y to be the vector of
m-increments, the components of which are indexed by �n (in any order), so that


Y � (. . . ,
m
h/nY (j), . . .)︸ ︷︷ ︸

terms are indexed by j∈�n

.(43)

Now we can write Qm
n = n2ν

#�n

Y
YT = n2ν

#�n
W�WT where W ∼ N (0, I ) [note

that � is defined in (32)]. Therefore varQm
n = 2 n4ν

(#�)2 ‖�‖2
F and by Lemma 8,

n4ν

(#�)2 ‖�‖2
F � n−d + cn4ν−4m

∫ 1

1/n
r4ν−4m+d−1 dr

�

⎧⎨
⎩

n4(ν−m), if 4(ν − m) > −d;
n−d logn, if 4(ν − m) = −d;
n−d, if 4(ν − m) < −d,

for all sufficiently large n. This establishes the variance rates.
For the almost sure convergence result let �̃ � n2ν

#�n
�abs where �abs is the

component-wise absolute value of �. The Hanson and Wright bound in [16] then
gives

P(|Qm
n − EQm

n | ≥ ε) ≤ 2 exp
(
− c1ε

‖�̃‖2
∧ c2ε

2

‖�̃‖2
F

)
(44)

for all ε > 0 where c1, c2 are positive constants not depending on n or �̃. First
notice that by Lemma 7 we get

‖�̃‖2 = n2ν

#�n

‖�abs‖2 � n−d + cn2ν−2m
∫ 1

1/n
r2ν−2m+d−1 dr(45)

�

⎧⎨
⎩

n2(ν−m), if 2(ν − m) > −d;
n−d logn, if 2(ν − m) = −d;
n−d, if 2(ν − m) < −d,

(46)

for sufficiently large n. Also notice that this implies that ‖�̃‖2
F � ‖�̃‖2 for

sufficiently large n. Therefore for sufficiently small ε, P(|Qm
n − EQm

n | ≥ ε) ≤
2 exp(−c2ε

2/‖�̃‖2). Now the rates in (46) and the Borel–Cantelli lemma are suf-



SEPARATION OF SCALE AND VARIANCE 891

ficient to establish that Qm
n − EQm

n → 0, with probability one as n → ∞. By
Lemma 1, EQm

n → am
ν (a slight adjustment also proves the case when m > ν rather

than m > ν + 1) which establishes the theorem. �

PROOF OF THEOREM 2. First notice that when p,q > ν + 1,

En2
[
Qp

n − a
p
ν

a
q
ν

Qq
n

]
→

[
bp
ν − a

p
ν

a
q
ν

bq
ν

]
(47)

as n → ∞ by Lemma 1. To get almost sure convergence, notice

P
(
n2

∣∣∣∣
[
Qp

n − a
p
ν

a
q
ν

Qq
n

]
− E

[
Qp

n − a
p
ν

a
q
ν

Qq
n

]∣∣∣∣ ≥ ε

)
(48)

≤ P(|Qp
n − EQp

n | ≥ ε/2n2)
(49)

+ P(|ap
ν ||Qq

n − EQq
n| ≥ |aq

ν |ε/2n2).

We can again use the Hanson and Wright bound [16] and the rates derived in
Theorem 1 to get

P(|Qp
n − EQp

n | ≥ ε/2n2) ≤ 2 exp(−cn−4ε2/‖�̃‖2)(50)

for all sufficiently small ε > 0 where c is a positive constant that does not depend
on n or �̃. By inspection of the rates in (46) the Borel–Cantelli lemma can be
applied when 4 < min{2p − 2ν, d} so that Q

p
n − EQ

p
n → 0 with probability one

as n → ∞. A similar result holds for the second term in (49) using the fact that
both a

p
ν and a

q
ν are nonzero by Lemma 2. This, combined with convergence of the

expectation in (47), completes the proof. �
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