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ASYMPTOTIC INFERENCE FOR HIGH-DIMENSIONAL DATA

BY JIM KUELBS AND ANAND N. VIDYASHANKAR1

University of Wisconsin and Cornell University

In this paper, we study inference for high-dimensional data character-
ized by small sample sizes relative to the dimension of the data. In particular,
we provide an infinite-dimensional framework to study statistical models that
involve situations in which (i) the number of parameters increase with the
sample size (that is, allowed to be random) and (ii) there is a possibility of
missing data. Under a variety of tail conditions on the components of the data,
we provide precise conditions for the joint consistency of the estimators of the
mean. In the process, we clarify and improve some of the recent consistency
results that appeared in the literature. An important aspect of the work pre-
sented is the development of asymptotic normality results for these models.
As a consequence, we construct different test statistics for one-sample and
two-sample problems concerning the mean vector and obtain their asymptotic
distributions as a corollary of the infinite-dimensional results. Finally, we use
these theoretical results to develop an asymptotically justifiable methodology
for data analyses. Simulation results presented here describe situations where
the methodology can be successfully applied. They also evaluate its robust-
ness under a variety of conditions, some of which are substantially different
from the technical conditions. Comparisons to other methods used in the lit-
erature are provided. Analyses of real-life data is also included.

1. Introduction. Modern scientific technology is providing a class of statisti-
cal problems that typically involve data that are high dimensional, and frequently
lead to questions involving simultaneous inference for large sets of parameters.
The number of parameters in these datasets is often random, and grows rapidly
in comparison to the sample size; furthermore, there can be missing observations.
Microarrays epitomize this situation, but similar problems arise in other areas such
as polymerase chain reactions, proteomics, functional magnetic resonance imag-
ing, and astronomy. For example, in microarray experiments the number of ex-
pressed genes differ between replicates, and certain genes do not express in all
replications, leading to missing data. Statistical analyses of such problems is an
area of increasing concern, and various statistical models and methods have been
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developed to analyze these situations. Some recent references in this area include
[7] and [18], which study the large p small n problem. The reference [15] stud-
ies the joint asymptotics in the context of general regression problems when the
number of parameters diverge to infinity with the sample size. In particular, [7] in-
vestigates the simultaneous estimation of the marginal distributions in the large p

small n problem, and it describes how these results can then be used to control the
so-called false discovery rates (FDR).

The primary focus of this paper is to develop a general framework for joint
statistical analysis of parameters in high-dimensional problems. Furthermore, we
allow a random number of parameters and missing data in our data structures. This
is achieved using infinite-dimensional techniques. Although the methods of our pa-
per apply generally to many high-dimensional data problems, we will frequently
use the terminology from microarrays to facilitate connections to one of the con-
temporary scientific disciplines. Now we turn to some specifics of our model.

For each fixed integer n ≥ 1, we begin with a collection of independent se-
quences of real valued random variables {ξn,i,j : j ≥ 1}. All are assumed to be
defined on a common probability space, and there is no dependence relationship
assumed as n and j vary. In the context of microarrays, for n fixed, each of these
sequences represents the expression levels of genes in one replication of the ex-
periment. The index n can be interpreted as either the time frame or as a label for
the laboratory where the experiment is being performed. In particular, the random
variable ξn,i,j can then be thought of as the expression level of the j th gene in the
ith replicate with index n. The number of replicates, for fixed index n, could be
any integer r(n), but for the sake of simplicity we take r(n) = n. Nevertheless, the
techniques of this paper can be applied to develop results for other choices of r(n).

Since the expressed genes between replicates may not coincide, either due to the
random number that appear or for other reasons (which can be viewed as random
deletions), we incorporate these two nonmutually exclusive possibilities into our
model. We let Nn,i denote the random number of variables within the ith replicate
having index n. We also assume for each integer n ≥ 1 that {Nn,i : i ≥ 1} is an i.i.d.
sequence of integer valued random variables with P(Nn,i ≥ 1) = 1. Of course, in
real datasets for fixed n, the row lengths are bounded, but our results also apply to
situations where they are unbounded.

To model missing data, we postulate that the missing mechanism is independent
of the expression level and the random number of parameters involved. For this
reason, we introduce the Bernoulli random variables {Rn,i,j :n ≥ 1, i ≥ 1, j ≥ 1}
to represent missing data indicators, where

P(Rn,i,j = 1) = p for n ≥ 1, i ≥ 1, j ≥ 1.(1.1)

We will assume that 0 < p ≤ 1, and also that the sequences {ξn,i,j :n ≥ 1, i ≥
1, j ≥ 1}, {Rn,i,j :n ≥ 1, i ≥ 1, j ≥ 1}, and {Nn,i :n ≥ 1, i ≥ 1} are independent.
The case p = 1 corresponds to the case that there is no missing data.
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In traditional multivariate analysis, such data is typically represented as random
vectors in a fixed dimension d . However, since we are studying the model in which
the dimension of the parameter vector diverges to infinity with the sample size, we
represent it as a vector in R∞, the linear space of all real sequences. That is, we
set

Xn,i = ∑
j≥1

ξn,i,j θn,i,j ej , i = 1, . . . , n,(1.2)

where

θn,i,j = I (j ≤ Nn,i)Rn,i,j ,(1.3)

for n ≥ 1, i ≥ 1, j ≥ 1, and {ej : j ≥ 1} is the canonical basis for R∞; that is,
ej = {δj,k :k ≥ 1} for j = 1,2, . . . , where δj,k = 1 for j = k and 0 if j �= k. In
the context of microarrays, the coordinates of the vector Xn,i are thought to be the
“normalized expression levels” of genes identified in the ith replicate with index n.
In probabilistic terms, the collection Xn,1,Xn,2, . . . ,Xn,n forms a triangular array
of n independent R∞-valued random vectors. Let N�

n = max1≤i≤n Nn,i denote the
maximum number of components (columns) in the dataset; or in the context of
microarrays, the total number of expressed genes present. If P(N�

n < ∞) = 1,
the components of Xn,i , namely ξn,i,j θn,i,j , equal 0 for j > Nn,i . In other words,
Xn,i ∈ c0, where c0 is the linear space of all real sequences converging to 0. Hence,
we will be concerned with asymptotic inference for data in c0. Throughout the
paper, we allow the possibility that P(N�

n = ∞) > 0. We also will use the notation
x = ∑

j≥1 xj ej to denote a typical vector in R∞, where {ej : j ≥ 1} denotes the
canonical basis vectors defined above.

The space c0, with the usual sup-norm given by

‖x‖∞ = sup
i≥1

|xi |,(1.4)

is naturally appropriate when studying the asymptotic inference for a one-sample
problem using the maximum of suitable “averages” of gene expressions. In our
data analyses, we also use �ρ subspaces, 2 ≤ ρ ≤ ∞, determined by the norm

‖x‖ρ =
(∑

j≥1

|xj |ρ
)1/ρ

,(1.5)

when 2 ≤ ρ < ∞, and by (1.4) when ρ = ∞. Related theoretical results for these
norms are studied in [8]. Our main asymptotic results concern the statistics

Sn,n =
n∑

i=1

Xn,i(1.6)

and

S̃n,n =
n∑

i=1

∑
j≥1

ξn,i,j θn,i,j

V
1/2
n,j

ej ≡
n∑

i=1

Nn,i∑
j=1

ξn,i,jRn,i,j

V
1/2
n,j

ej ,(1.7)
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where

Vn,j = max
{

1,

n∑
i=1

θn,i,j

}
, n ≥ 1, j ≥ 1.(1.8)

Here, the coordinate wise random-normalizers Vn,j take into account the differ-
ences amongst columns due to missing data and random row lengths, and if we
replace the Vn,j in S̃n,n by n1/2, then we obtain Sn,n/n1/2. Our results include
consistency, rates of convergence, and asymptotic normality for these sums. The
statistic S̃n,n is important when we consider asymptotic normality in our model, as
it essentially normalizes each column by the square root of the number of terms in
that column. We also study the statistic

T̃n,n =
n∑

i=1

∑
j≥1

ξn,i,j θn,i,j

Vn,j

ej ≡
n∑

i=1

Nn,i∑
j=1

ξn,i,jRn,i,j

Vn,j

ej .(1.9)

When Nn,i = pn, where pn is nonrandom, exponential in n, and p = 1, this
is sometimes called the large p small n problem, and [7] and [18] studied the
behavior of Sn,n in the sup-norm under various assumptions on the tail behavior
of ξn,i,j . For example, the results proved in [18] assume that the random variables
have bounded support, while [7] replaces this condition by various exponential
decay conditions on the tail behavior of ξn,i,j . The primary technique employed
in [7] to obtain consistency results uses the uniform constants for the exponential
rate of sup-norm convergence of the empirical distribution function to the true
distribution function. This is then used to obtain results for the relevant partial sums
of random variables using integration-by-parts techniques. While this approach
yields useful results, the integration by parts required seems to obscure the true
nature of the matter. From what we do here, we will see that it is more fruitful
to study the problem from the point of view of the random variables themselves
in that we are able to clarify some of the results described in [7], and also extend
them under a broader range of conditions to our more general model. While we
focus on the mean functional, [7] studies other interesting functionals of the data.

The rest of the paper is organized as follows. Section 2 presents the main results.
These results concern joint consistency and joint asymptotic normality. Section 3
contains applications to hypothesis tests and Section 4 is devoted to simulation re-
sults and real data analysis. Section 5 contains the necessary probability estimates,
while Sections 6 and 7 contain the proofs of our main results.

Throughout the paper, Lx = L(x) = loge(max(x, e)).

2. The main results. The results that we obtain will depend critically on the
tail probabilities of the random variable {ξn,i,j }. These assumptions are of two
types, namely that the tail probabilities decay at an exponential rate, or that they
decay polynomially. In the large p small n problem, our results imply that these tail
probability conditions are closely tied to the way p must relate to n. For example,
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in the classic version of this problem where p grows exponentially fast in n, we
need tail probabilities that decay exponentially fast, whereas if p grows only as a
power of n, then we only need polynomial decay for the tails. The precise nature
of this interplay for consistency results is contained in Theorems 2.2 and 2.3. In
particular, the remarks following these theorems contain precise information on
their relationship to the large p small n problem.

First, we discuss the exponential decay case. Here, we assume that for some r ,
0 < r ≤ 2, and all x ≥ 0 there are constants cn,j and kn,j such that

P(|ξn,i,j | ≥ x) ≤ cn,j e
−kn,j xr

(2.1)

for all n ≥ 1, j ≥ 1. Random variables satisfying (2.1) with r = 2 are usually said
to be sub-Gaussian, and if for 1 ≤ i ≤ n we have that each ξn,i,j takes values in the
interval [an,j , bn,j ], then we will see below that (2.1) holds with r = 2,

cn,j = 2 and kn,j = (
2(bn,j − an,j )

2)−1
, n ≥ 1, j ≥ 1.(2.2)

Throughout, when ξn,i,j = 0 with probability one, in (2.1) we take

cn,j = 1 and kn,j = ∞, n ≥ 1, j ≥ 1.(2.3)

In addition, note that cn,j ≥ 1 is necessary by setting x = 0 in (2.1).
It is also useful to notice that if the condition (2.1) holds for some r∗ > 1, then

it holds for all 1 ≤ r ≤ r∗ by simply adjusting the constants cn,j and keeping the
same kn,j . In particular, if (2.1) holds for some r > 2, then it holds for r = 2, and
we are in the sub-Gaussian setting. In [7], this seems to have gone unnoticed, and
there one finds results for r > 2 which are weaker than the corresponding r = 2
results. However, this should not be the case as the previous comment implies the
r = 2 result applies directly to what is proved there. Of course, in some settings
there could be results that distinguish between various r values, even for r > 2,
but that does not happen here, and is why we restrict r to be in (0,2]. Our methods
also yield results when 0 < r < 1, whereas in [7], the parameter r is always greater
than equal to one.

Another situation we will discuss is when the assumption of exponential decay
of the tails of ξn,i,j in (2.1) is replaced by the polynomial decay

P(|ξn,i,j | ≥ x) ≤ cn,j

(1 + x)kn,j
, x ≥ 0,(2.4)

where cn,j ≥ 1 and typically for our results, 2 < kn,j < ∞.
We will assume throughout the paper that E(ξn,i,j ) = 0 for all n, i, j ≥ 1.

Should this not be the case, one would simply replace the tail probability con-
ditions in (2.1) and (2.4) by analogous conditions for the variables {ξn,i,j −
E(ξn,i,j )}, and formulate the results in terms of these variables.
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2.1. Consistency and rates of convergence. In this subsection we present sev-
eral consistency and rate of convergence results for Sn,n and S̃n,n.

THEOREM 2.1. Let {Xn,i : 1 ≤ i ≤ n} be as in (1.2), assume (2.1) holds with
r = 2, and take {an :n ≥ 1} to be a sequence of positive numbers. Furthermore,
assume cn,j , kn,j are constants such that cn,j ≥ 1, kn,j ≤ ∞ and∑

n≥1

∑
j≥1

exp{−(εan)
2kn,j /(16cn,j )} < ∞(2.5)

for all ε > ε0. Then ∑
n≥1

P(‖S̃n,n‖∞ ≥ εan) < ∞(2.6)

for all ε > ε0, where S̃n,n is given as in (1.7). Thus, if the constants cn,j and kn,j

are such that uniformly in n ≥ 1 and for some δ > 0,

kn,j /(16cn,j ) ≥ δL(j + 3),(2.7)

then for all ε > 0 such that ε2δ > 1 we have

lim sup
n→∞

‖S̃n,n‖∞
(L(n + 3))1/2 ≤ ε.(2.8)

In particular, if (2.7) holds, then with probability one

M = sup
n≥1

‖S̃n,n‖∞
(L(n + 3))1/2 < ∞(2.9)

and there exists an α > 0 such that

E(eαM2
) < ∞.(2.10)

Moreover, if the V
1/2
n,j are replaced by n1/2 in S̃n,n, then again (2.6), (2.8) and

(2.10) continue to hold.

REMARK 2.1. In Theorem 2.4, we will establish a central limit theorem for
S̃n,n, and that T̃n,n converges to zero in probability under related conditions.

In Theorem 2.1, the impact of the random row sizes {Nn,i : i ≥ 1} is hidden due
to our choice of normalizations {an} as given in (2.5). For example, (2.5) implies
the ratio kn,j /cn,j cannot be bounded as j goes to infinity, but in our next result we
only require this ratio to be uniformly bounded below in both n and j by a strictly
positive constant. Under this different set of conditions, the role of {Nn,i : i ≥ 1}
appears in the normalizations for S̃n,n given by h(n) in (2.12). In particular, if
Nn,i = pn for {i ≥ 1, n ≥ 1}, then Theorem 2.2 and Remark 2.4 below yield the
results in Corollaries 1 and 2 in [7] when r = 2. The consistency results in [7] for
1 ≤ r < 2, as well as for many other cases, follow immediately from Theorem 2.3
below.
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THEOREM 2.2. Let {Xn,i : 1 ≤ i ≤ n} be as in (1.2), and assume (2.1) holds
with r = 2, and that for 1 ≤ c < ∞,0 < k < ∞, we have cn,j ≤ c and kn,j ≥ k for
all n, j ≥ 1. Let

h(n) = (
θ−1

1 L(E(N∗
n )) + θ2L(n)

)1/2
,(2.11)

where θ1 = k/(16c) and θ2 > 0. Then

lim
n→∞P

(‖S̃n,n‖∞
h(n)

≥ 1
)

= 0(2.12)

and if also θ1θ2 > 1, then ∑
n≥1

P
(‖S̃n,n‖∞ ≥ h(n)

)
< ∞.(2.13)

Finally, if the V
1/2
n,j are replaced by n1/2 in S̃n,n, then again (2.12) and (2.13) hold.

REMARK 2.2. Note that (2.12) immediately implies

‖S̃n,n‖∞
n1/2 = OP

((
L(E(N∗

n )) + L(n)

n

)1/2)
.(2.14)

In particular, if L(E(N∗
n ))/n converges to zero, then (2.14) implies that ‖S̃n,n‖∞/

n1/2 tends to zero in probability. In addition, (2.13) implies with probability one
that

lim sup
n→∞

‖S̃n,n‖∞
h(n)

≤ 1(2.15)

and hence S̃n,n/n1/2 converges to zero with probability one provided θ1θ2 > 1 and
limn→∞ n−1L(E(N∗

n )) = 0. Furthermore, if Nn,i = pn ≥ n, {i ≥ 1, n ≥ 1}, then
(2.14) immediately relates to the results of Corollary 2 in [7], as it implies

‖S̃n,n‖∞
n1/2 = OP

((
L(pn)

n

)1/2)
.(2.16)

In particular, (2.14) improves Corollary 2 and its proof considerably whenever
r ≥ 2 there, and the case 0 < r < 2 will be discussed in what follows. Once we
establish Lemma 1 below these results also apply to Corollary 1 of [7] in a standard
way.

We next study the situation when the random variables {ξn,i,j } satisfy the expo-
nential tail condition (2.1) with 0 < r < 2, or polynomial decay as in (2.4). When
1 ≤ r < 2, a special case of these results clarifies Corollary 2 of [7]. This can be
seen in Remark 2.3 below. The r = 2 case in this corollary already appeared in
(2.16) when Vn,j = n. It should also be observed that Theorem 2.3 provides suffi-
cient conditions for consistency which involve a precise relationship between the
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size of pn in the large p small n problem, and the tail decay of the data. This re-
lationship is shown to exist even when there is only polynomial decay in the data,
and as one might expect in this situation the growth of pn, or E(N∗

n ), needs to be
further restricted, that is, in such results pn and E(N∗

n ) grow at a corresponding
polynomial rate.

THEOREM 2.3. Let {Xn,i : 1 ≤ i ≤ n} be as in (1.2) and assume that (2.1)
holds with 0 < r < 2. Also assume for all n ≥ 1 and j ≥ 1, that cn,j ≤ c and
kn,j ≥ k, where 1 ≤ c < ∞,0 < k < ∞. Let sn = c1(L(E(N∗

n )) + 2L(n))1/r , and

h(n) = (
c−1

2 L(E(N∗
n )) + c3L(n)

)1/2
,(2.17)

where c1 > 2/k1/r , c2 = k/(128c), and c3 > 0. Then

lim
n→∞P

( ‖Sn,n‖∞
n1/2snh(n)

≥ 1
)

= 0.(2.18)

If we also assume c2c3 > 1, then∑
n≥1

P
(‖Sn,n‖∞ ≥ n1/2snh(n)

)
< ∞.(2.19)

Furthermore, if k > 2 and the polynomial condition in (2.4) holds, then

‖Sn,n‖∞ = OP (n1/2sn(L(E(N∗
n )))1/2),(2.20)

where sn = (nE(N∗
n ))1/k+β and β > 0. Additionally, if E(N∗

n ) ≥ n, b > 8, and
kβ > 1/2, then ∑

n≥1

P
(‖Sn,n‖∞ ≥ bsnn

1/2(L(E(N∗
n )))1/2)

< ∞.(2.21)

In particular, if E(N∗
n ) is asymptotic to nγ for γ ≥ 1, then∑

n≥1

P
(‖Sn,n‖∞ ≥ bsnn

1/2(L(E(N∗
n )))1/2)

< ∞,(2.22)

provided b > 8 and (γ + 1)kβ > 1.

REMARK 2.3. An immediate consequence of (2.18) is that

‖Sn,n‖∞
n

= OP

(
(L(E(N∗

n )) + L(n))(2+r)/(2r)

n1/2

)
(2.23)

and if (L(E(N�
n))(2+r)/(2r)/n1/2 → 0, then (2.23) easily implies Sn,n/n converges

to zero in probability. In addition, if Nn,i = pn for n ≥ 1, i ≥ 1, where {pn :n ≥ 1}
is a sequence of integers, and pn ≥ n, then it follows from (2.23) that

‖Sn,n‖∞
n

= OP

(
(L(pn))

(2+r)/(2r)

n1/2

)
.(2.24)
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Hence, using the above for r ∈ (0,2), and (2.16) for the case r = 2, one obtains an
extension and clarification of Corollary 2 and its proof in [7]. It is also interesting
to observe that the method of proof for Theorem 2.3 applied to the r = 2 situation
only yields

‖Sn,n‖∞
n

= OP

(
L(pn)

n1/2

)
.(2.25)

Hence, we see the methods used for the r = 2 case in Theorem 2.2 are sharper than
those we have for other values of r .

REMARK 2.4. Under the assumption of polynomial decay given in Theo-
rem 2.3, and assuming that E(N∗

n ) is asymptotic to nγ for γ ≥ 1, we easily see
from (2.22) that ‖Sn,n‖∞/n converges to zero almost surely provided k is suffi-
ciently large so that for β > 0 we have (γ +1)βk > 1 and (γ +1)(1/k+β) < 1/2.

2.2. Asymptotic normality results. In this section, we present results on the as-
ymptotic normality of the quantity S̃n,n. Since this estimator typically lives in c0,
Theorem 2.4 is a central limit theorem in that setting. Nevertheless, we also have
proved CLTs in �ρ,2 ≤ ρ < ∞, similar to that found in Theorem 2.4. They ap-
pear in [8]. These results hold when the underlying process is a triangular array
with random row lengths and possibly missing data. We also are able to use the
coordinate-wise random normalizations V

1/2
n,j . However, we also use classical nor-

malizations for some of the �ρ results, and in that case the related CLTs hold under
far weaker moment conditions. See [1], page 206, for some classical results. The
paper [14] contains CLTs in c0, as well as related references, and much is known
about the CLT in the spaces �ρ,2 ≤ ρ < ∞. However, none of these results in-
corporate random row lengths, missing data, or coordinate-wise random normal-
izations in their formulations. In addition, the results in [14] require a uniform
boundedness assumption on the {ξn,i,j } to obtain results related to what we prove.
Finally, we mention that in our simulation results we include the use of our CLTs
in �ρ , 2 ≤ ρ < ∞.

A key assumption in any central limit theorem is that there is a limiting covari-
ance function. Since our results include the use of random column-wise normaliz-
ers, we have need of a couple different limiting covariances. That is, if

�n(j1, j2) =
n∑

i=1

E(ξn,i,j1ξn,i,j2)/n

is such that

lim
n→∞�n(j1, j2) = �(j1, j2)(2.26)

for all j1, j2 ≥ 1, then for k = 1,2 we set

�(k, j1, j2) = pk�(j1, j2) for j1 �= j2,(2.27)
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and

�(k, j1, j2) = pk−1�(j1, j2) for j1 = j2.(2.28)

THEOREM 2.4. Let {Xn,i : 1 ≤ i ≤ n} be as in (1.2), assume (2.1) holds with
r = 2, and that cn,j , kn,j are constants such that cn,j ≥ 1, kn,j < ∞ and

sup
n,j≥1

cn,j /kn,j < ∞.(2.29)

Also assume for all δ > 0 that

lim
d→∞ sup

n≥1

∑
j≥d

exp{−δkn,j /cn,j } = 0.(2.30)

If S̃n,n is given as in (1.7), then

{L(S̃n,n) :n ≥ 1} is tight in c0.(2.31)

In addition, if T̃n,n is as in (1.9), and for each j ≥ 1 we have limn→∞ P(Nn,1 <

j) = 0, then T̃n,n converges in probability to zero in c0. Moreover, if the V
1/2
n,j are

replaced by n1/2 in S̃n,n, then again (2.31) holds, and T̃n,n converges in probability
to zero. Furthermore, if we also assume (2.26), (2.27), and (2.28) hold, and for
each d < ∞ we have P(min1≤i≤n Nn,i < d) = o(1/n2) as n tends to infinity, then
�(k, ·, ·) is the covariance of a centered Gaussian measure γk on c0 for k = 1,2,
and

L(S̃n,n) converges weakly to γ1(2.32)

on c0. If the V
1/2
n,j are replaced by n1/2, then (2.32) still holds with limiting mea-

sure γ2.

REMARK 2.5. The conditions (2.26), (2.29), and (2.30), along with (2.1)
when r = 2, allow the limiting Gaussian measures γk to exist on c0. Moreover,
without such assumptions, with the most important being (2.26) and (2.30), there
are examples of triangular arrays of the form indicated when the CLT must fail
on c0, although it may hold on R∞. Of course, without (2.26), then the CLT will
fail even on R∞.

3. Application to hypothesis tests. In this section, we deal with application
of our results to one-sample problem, two-sample problem, and one-way random
effects models. Joint hypothesis testing was also considered in [11]. We assume
throughout this section that the distribution of the random variables Xn,i in (1.2)
are independent of i. This implies that E(ξn,i,j ) = μn,i,j is independent of i and
we write it as μn,j .
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3.1. One-sample and two-sample problems. In this subsection, we apply our
results to test if the “mean vector” equals a specified vector in the one-sample case
and if the difference in the “mean vectors” is zero in the two-sample case. More
precisely, for the one-sample case consider testing the null hypothesis H0 :μn = 0,
where μn is an infinite-dimensional vector whose components are μn,j . The quan-
tity S̃n,n, defined by (1.7), can be used for developing a test of H0. To this end, let
us denote the data vectors by �Xn = {Xn,1, . . . ,Xn,n}. One can use the �ρ norm for
ρ ≥ 2 and the c0 norm to define various nonrandomized test functions φρ(�Xn) as
follows:

φρ(�Xn) =
{

1, if ‖S̃n,n‖ρ > c,
0, otherwise,

(3.1)

where c = cρ is so chosen that E(φρ(�Xn)|H0) ≤ α. The test function based on the
c0 norm is given by

φ∞(�Xn) =
{

1, if ‖S̃n,n‖∞ > c,
0, otherwise,

(3.2)

where c = c∞ is so chosen that E(φ∞(�Xn)|H0) ≤ α. In the context of the two-
sample problem, the null hypothesis is H0 :μ1

n = μ2
n, where μk

n represents the
infinite-dimensional mean vector from the kth population. Now, using S̃(k)

n,n to de-
note S̃n,n for the kth population [note that these are constructed using a superscript
k in all the quantities in (1.2) and (1.3) and these quantities are independent in k],
the test function for the �ρ norm is

φ(2)
ρ (�Xn) =

{
1, if

∥∥S̃(1)
n,n − S̃(2)

n,n

∥∥
ρ > c,

0, otherwise,
(3.3)

where c = cρ is so chosen that E(φ
(2)
ρ (�Xn)|H0) ≤ α. The test function based on

the c0 norm is given by

φ(2)∞ (�Xn) =
{

1, if
∥∥S̃(1)

n,n − S̃(2)
n,n

∥∥∞ > c,
0, otherwise,

(3.4)

where c = c∞ is so chosen that E(φ
(2)∞ (�Xn)|H0) ≤ α. We observe that under our

formulation unequal sample sizes from the two populations are allowed. In some
applications, the number of components in the two groups and the sample sizes
coincide. In these cases, as in traditional multivariate analysis, the two-sample
problem reduces to the one-sample problem.

To perform the test one needs the distribution of ‖S̃n,n‖ρ , ‖S̃n,n‖∞, ‖S̃(1)
n,n −

S̃(2)
n,n‖ρ , and ‖S̃(1)

n,n − S̃(2)
n,n‖∞. The following proposition provides the asymptotic

distribution for these statistics. It’s proof can be obtained as a corollary of Theo-
rem 2.4 for the c0 case, and Theorem 7 and Remark 11 of [8] for �ρ spaces, and
using the fact that the distribution function of the norm with respect to a Gaussian
measure on a separable Banach space is continuous.
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PROPOSITION 3.1. If the appropriate null hypothesis holds, then Theo-
rem 2.4 implies that P(‖S̃n,n‖∞ > c) and P(‖S̃(1)

n,n − S̃(2)
n,n‖∞ > c) converges to

P(‖G‖∞ > c) and P(‖G(1) − G(2)‖∞ > c), respectively, for all c > 0, where
L(G) = L(G(1)) = L(G(2)) = γ and γ is the Gaussian measure identified there.
Furthermore, G(1) and G(2) are independent. A similar result holds under the con-
ditions of Theorem 7 of [8] when the infinity norm is replaced by the ρ-norm.

3.2. One-way random effects models. In the analysis of gene-expression data,
the random effects model with random plate effect is often used for data analysis.
That is, if ξn,i,j,k are the expression levels of the j th gene in the ith replicate,
receiving the kth treatment, then for k = 1,2 the one-way random effects model is
given by

ξn,i,j,k = μn,j,k + Tn,i,k + εn,i,j,k,
(3.5)

i = 1,2, . . . , n, j = 1,2, . . . , b(n),

where μn,j,k is the mean expression level for the j th gene receiving the kth treat-
ment in the lab n, Tn,i,k are independent Gaussian random variables with 0 and
variance σ 2

n,k and εn,i,j,k are i.i.d. random variables with mean 0 and variance σ 2.
More complicated models that take into account tip effect and dye effects have
been studied in the applied literature. The index n in the subscript is usually sup-
pressed in the applied literature but we keep it to show the relationship with our
model. The random variables Tn,i,k introduce correlations in the expression lev-
els of ξn,i,j,k across genes and a standard calculation shows that this correlation
structure is compound symmetric. This model can be seen as a particular case of
our model with Nn,i = b(n), Rn,i,j ≡ 1, and compound symmetric covariance ma-
trix. Proposition 3.1 above can be used for performing hypothesis tests concerning
the expression levels of multiple genes simultaneously. Furthermore, the models
developed in the paper allow for some extensions of the one-way random effects
models to incorporate missing data and random number of parameters.

4. Simulation results and real data analysis.

4.1. Simulation results. In this section, we evaluate our methodology, using
simulations, when the number of replications is small, but the number of variables
is large. All our simulation results are based on 5000 independent trials of 10
replications. We purposely chose n small to reflect many real applications.

As a first step, we need to “approximate” the limiting distribution of the random
variables appearing in Proposition 3.1. We will work with the case Nn,i = b(n),
and assume that Xn,1, . . . ,Xn,n are n i.i.d. b(n)-dimensional vectors with distrib-
ution Gn(·), whose coordinates have tails that satisfy the sub-Gaussian property.
Let �̂n denote an estimate of the covariance matrix �n = ((σn,u,v)), where �n is
a b(n) × b(n) matrix given by

σn,u,v = E
(
ξn,1,u − μ(0)

n,u

)(
ξn,1,v − μ(0)

n,v

)
.(4.1)
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In the above definition, μ
(0)
n,u and μ

(0)
n,v are the specified values under the null hy-

pothesis. Note that �̂n is a function of the data vector �Xn,n. One choice for �̂n

is the sample covariance matrix. In fact, better options are available, and we will
explain them later below. If �̂n is positive definite, then given �Xn,n, we generate t

i.i.d. random vectors Yn,i of dimension b(n) whose distribution is Gaussian with
mean vector 0 and covariance matrix �̂n; that is,

Yn,i | �Xn ∼ Nb(n)(0, �̂n) a.s.,1 ≤ i ≤ t.(4.2)

We will call Yn,i the Monte Carlo (MC) samples, and throughout the simulations
t = 2000. We will use ‖ · ‖ to denote the lρ norm (ρ ≥ 2) or the c0 norm de-
pending on the space being used. Let ‖Yn,1‖, . . . ,‖Yn,n‖ denote the norms of the
MC samples. Furthermore, consider the following nonparametric density estima-
tor; namely, for x ∈ R,

ht (x) = 1

tct

t∑
i=1

K

(
x − ‖Yn,i‖

ct

)
,(4.3)

where ct is a sequence of positive constants converging to 0 such that tct → ∞,
and K(·) is a density function with

∫
R tK(t) dt = 0. In the above, we have sup-

pressed the dependence on n and on ω since n and ω will be held fixed in this
discussion. It follows from Devroye [2] that as t → ∞, that for every fixed ω ∈ �,
ht (x) converges almost everywhere with respect to Lebesgue measure and in L1
to the probability density of the random variable ‖N(0, �̂n)‖. In all our numerical
experiments, we will take K(·) to be a standard normal density, t = 2000, and fix
the window width ct at 0.7. Figure 1(a) presents the graph of the density function
for the 2-norm, the 10-norm, and the sup-norm. We use these densities to “ap-
proximate” the tail probabilities of the norms of the limiting Gaussian appearing

FIG. 1. Kernel density estimates of the norms of statistics and the histogram of p-values under the
sup norm.
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in Proposition 3.1. Figure 1(b) shows that the p-values from these hypothesis tests
are uniformly distributed when we use the sup-norm. This histogram was gener-
ated using the p-values from a hypothesis test for data generated using a com-
pound symmetric covariance structure. The vertical axis represents the proportion
of times the p-values belonged to a particular range.

Structured and unstructured covariance estimation, shrinkage and sparsity.
The methodology described above requires an estimate of the covariance matrix. It
is folklore in statistics literature that covariance matrix estimation is a hard prob-
lem, and the difficulties increase when the number of variables is much larger than
the sample size. The papers [10] and [17], as well as others, have clearly demon-
strated that the sample covariance matrix behaves poorly in terms of the mean
square error. This difficulty is frequently due to having a large number of parame-
ters to estimate, and a limited number of observations available to estimate them.
Hence, it is reasonable to expect that if one uses structured covariances some of
these difficulties can be mitigated. However, one has to be cautious since it is also
well known that assuming independence when correlations are present lead to sub-
stantial bias in type-I error rates. Extensive simulations concerning these issues are
described in detail in [8] and [9]. Thus, to make the methodology presented here
useful and applicable, we need to describe how to handle the covariance matrix
estimation.

In studies involving the joint analysis of multiple cDNA microarray data, [16],
one frequently encounters covariances that have a block structure. This phenom-
enon also occurs in the context of sparse covariance estimation where regulariza-
tion is adopted. Borrowing the idea from shrinkage estimation, [10] developed an
estimator of �n by taking a convex combination of the unstructured sample co-
variance matrix and a structured covariance matrix. Their estimator is given by

��
n = (1 − λ)�̂n + λ�̃n,(4.4)

where �̂n is the method of moments estimator and �̃n is an estimator assuming
a particular structure for the covariance matrix. The parameter λ can be estimated
from the data, and has a closed form expression when �̃n is taken to be the identity
matrix, or is compound symmetric, heterogeneous compound symmetric, as well
as many other structures. We propose to use (4.4) as the estimator of the covariance
matrix needed for generating samples in (4.2). Our extensive simulations described
in [8] show that when one shrinks the variances and the covariances, the type-I
error rate approaches the nominal values for the test based on the sup-norm. These
methods can also be applied to situations when there is mean sparsity. In these
cases, one can apply the LASSO type algorithm for estimation purposes and then
use our methodology for hypothesis testing.

Simulation analysis using real data information. We now describe a numeri-
cal experiment which examines whether some of the difficulties described in the
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TABLE 1
Type I error rates with unstructured covariance matrix and shrinkage

ρ = 2 ρ = 4 ρ = ∞
b(n) = 100 0.1312 0.0838 0.0686
b(n) = 500 0.1914 0.0874 0.057
b(n) = 1000 0.237 0.1042 0.0526

previous subsection due to covariance matrix estimation can be minimized by us-
ing the shrinkage method for estimating the covariance matrix. To make the model
closely resemble micro-array data, we considered the leukemia data set described
in [6] which studies the gene expression in two types of leukemia, acute lym-
phoblastic leukemia (ALL) and acute myeloid leukemia (AML). We use the same
preprocessing step as described in [3], Section 3.1; retaining 3571 genes from 72
patients, 38 ALL and 25 AML. We apply the standardization technique described
in Section 3.3 of [3] on these retained genes. For our simulations, we consider in-
formation from the AML group only. The nominal type-I error rate is taken to be
5% in all of our experiments.

The simulation experiments are based on data generated from a b(n)-dimen-
sional normal random variable with n = 10. We now describe how the mean and
covariance matrix are obtained from the data. First, we fix a b(n) and randomly
generate b(n) genes from the 3571 genes. From the 25 AML patients, we estimate
the b(n)-dimensional mean vector μn and the corresponding covariance matrix �n

by shrinking the covariances as described in [17]. The shrinkage method yields
a nonsingular covariance matrix. For all the 5000 simulations, this mean vector
and the covariance matrix are fixed. Now, using the shrinkage method described
above, we apply our methodology. The resulting type-I error rate is described in
the Table 1 above.

From the table, we notice that the type-I error rate is closer to the nominal value
for larger values of ρ. Further analysis (data not presented here) shows that this
phenomenon existed for the other choices of variances and covariances as well
(see [8]).

4.2. Real data analysis. In a typical microarray situation, one is interested
in identifying if a set of genes are differentially expressed. This is a two-sample
problem and one can use the methods described in Proposition 3.1 to address this
problem. We analyzed the leukemia data set described in [6], which also was used
in the previous section. We analyzed the sixteen genes given in Table 2 of [19]. The
value of the test statistics defined in (3.3) were determined to be 4.4992, 2.7396
for ρ = 2 and ρ = 4, respectively. Also the value of the test statistic in (3.4) was
determined to be 2.0250. The covariance matrices needed to apply the method-
ology were calculated by shrinking the variances and covariances using the algo-
rithm described in [17]. The p-values corresponding to these test statistics were
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all less than 10−6 showing that the genes are differentially expressed. The same
conclusion was also obtained by Yan et al. [19] using different methods. More
importantly, as explained in [19], these genes have biological significance and the
three existing statistical methods in popular use did not identify them to be dif-
ferentially expressed. Even though this example involved only sixteen genes, the
simulation results in the previous section show that such a limitation is not nec-
essary. Thus, this analysis combined with our simulation results described above,
show the importance and usefulness of the proposed methodology.

5. Some probability estimates. Here, we provide some basic probability es-
timates used throughout the paper. The first lemma deals with the sub-Gaussian
situation, and the inequality we present for bounded random variables is not best
possible, as slightly better constants in the basic estimate can be obtained from
Theorem 1 in [5]. Nevertheless, we include a proof for this case, as our argu-
ment generalizes to the unbounded case. Our approach is to compute the necessary
Laplace transforms, and then use Markov’s inequality efficiently. This is standard
for such problems, but in order to proceed from first principles, and also keep track
of relevant constants, we include the details.

LEMMA 5.1. Let X1, . . . ,Xn be independent random variables with E(Xi) =
0. If P(Xi ∈ [a, b]) = 1 for 1 ≤ i ≤ n, then

P

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
/

n ≥ x

)
≤ 2 exp

{−nx2(
2(b − a)2)−1}

(5.1)

for all x ≥ 0. In particular, when n = 1 each Xi is sub-Gaussian with relevant
constants c = 2 and k = (2(b − a)2)−1. If

P(|Xi | ≥ x) ≤ ce−kx2
(5.2)

for 1 ≤ i ≤ n and all x ≥ 0, then

P

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
/

n ≥ x

)
≤ 2 exp{−nkx2/(16c)}.(5.3)

PROOF. First, observe that if Y is a mean zero random variable, then Jensen’s
inequality implies E(etY ) ≥ etE(Y ) = 1 for all real t . Thus, for Y1, Y2 independent
copies of Y , we have E((Y1 − Y2)

l) = 0 for l odd, and therefore

E(etY ) ≤ E
(
et(Y1−Y2)

) = 1 + ∑
l≥1

t2lE
(
(Y1 − Y2)

2l)/(2l)!.(5.4)

If P(Xi ∈ [a, b]) = 1 for 1 ≤ i ≤ n, then E((Y1 − Y2)
2l) ≤ (b − a)2l and since

(2l)! ≥ 2l(l!)2 for l ≥ 1 we therefore have

E(etY ) ≤ 1 + ∑
l≥1

t2l(b − a)2l/(2l l!) = et2(b−a)2/2.
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Applying this estimate to each of the Xi’s for 1 ≤ i ≤ n, the independence of the
Xi’s and Markov’s inequality implies that for each t ≥ 0 we have

P

(
n∑

i=1

Xi/n ≥ x

)
≤ e−ntx

n∏
i=1

E(etXi ) ≤ e−n(tx−t2(b−a)2/2).

Since x ≥ 0, minimizing the right-hand side term over t ≥ 0, we take t = x/(b −
a)2, and hence

P

(
n∑

i=1

Xi/n ≥ x

)
≤ e−nx2/(2(b−a)2).

Applying the previous argument to −∑n
i=1 Xi , we thus have (5.1).

To prove (5.3), we first show that if E(Y ) = 0 and

P(|Y | ≥ x) ≤ ce−kx2
(5.5)

holds for all x ≥ 0, then

E(etY ) ≤ e4ct2/k(5.6)

for all t ≥ 0. This can be done by utilizing (5.4) and by showing for Y1, Y2 inde-
pendent copies of Y that

E
(
(Y1 − Y2)

2l) ≤ 2c(4/k)ll

∫ ∞
0

e−ssl−1 ds = 2c(4/k)ll! ≤ (8c/k)ll!.

Thus, (5.6) holds and by applying the previous inequality, independence, and
Markov’s inequality as before, we have

P

(
n∑

i=1

Xi ≥ nx

)
≤ exp{−nkx2/(16c)}.

Applying the previous argument to −∑n
i−1 Xi , we thus have (5.3), and the lemma

is proven. �

LEMMA 5.2. Let {Xn,i : 1 ≤ i ≤ n} be defined as in (1.2), and assume (2.1)
holds for r = 2, and the constants cn,j , kn,j are such that 1 ≤ cn,j and 0 < kn,j ≤
∞. If Qd(x) = ∑

j≥d+1 xj ej for x ∈ R∞, and S̃n,n is given as in (1.7), then for all
d ≥ 0 and δ > 0

P
(‖Qd(S̃n,n)‖∞ ≥ δ

) ≤ ∑
j≥d+1

2 exp{−δ2kn,j /(16cn,j )}.(5.7)

In addition, if the Vn,j are replaced by n1/2 in S̃n,n, then again (5.7) holds.
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PROOF. We first establish (5.7) for general Vn,j . When the Vn,j are replaced
by n1/2, the result then follows by an immediate simplification of this argument.

If θn,i,j = I (j ≤ Nn,i)Rn,i,j as indicated, then P(θn,i,j = 1) = pn,jp, where
pn,j = P(j ≤ Nn,i) for n ≥ 1, j ≥ 1, and for k = 0,1, . . . , n we define the events

Ek,n,j = ⋃
I∈Ik,n,j

FI ,(5.8)

where Ik,n,j denotes all subsets I = {i1, . . . , ik} of size k in {1, . . . , n} and

FI = {
θn,i,j = 1 for all i ∈ I and θn,i,j = 0 for i ∈ {1, . . . , n} ∩ I c}.

Note that FI depends on n and j , but we suppress that in our notation.
Since Vn,j = max{1,

∑n
i=1 θn,i,j } and

∑n
i=1 ξn,i,j θn,i,j = 0 on E0,n,j , we there-

fore have for each δ > 0, n ≥ 1, and d ≥ 0 that

P
(‖Qd(S̃n,n)‖∞ ≥ δ

) ≤ ∑
j≥d+1

n∑
k=1

P

({∣∣∣∣∣
n∑

i=1

ξn,i,j θn,i,j

∣∣∣∣∣ ≥ δV
1/2
n,j

}
∩ Ek,n,j

)
.

Now

P

({∣∣∣∣∣
n∑

i=1

ξn,i,j θn,i,j

∣∣∣∣∣ ≥ δV
1/2
n,j

}
∩ Ek,n,j

)

= ∑
I∈Ik,n,j

P

({∣∣∣∣∣
k∑

l=1

ξn,il ,j

∣∣∣∣∣ ≥ δk1/2

}
∩ FI

)

and letting

An = ∑
j≥d+1

n∑
k=1

P

({∣∣∣∣∣
n∑

i=1

ξn,i,j θn,i,j

∣∣∣∣∣ ≥ δV
1/2
n,j

}
∩ Ek,n,j

)
,

we have by using the independence of the various sequences of random variables
involved that

An = ∑
j≥d+1

n∑
k=1

∑
I∈Ik·n,j

P

({∣∣∣∣∣
k∑

l=1

ξn,il ,j

∣∣∣∣∣ ≥ δk1/2

})
P(FI , I = {i1, . . . , ik})

≤ 2
∑

j≥d+1

n∑
k=1

exp{−δ2kn,j /16cn,j }P(Ek,n,j ).

Of course, in the previous inequality we are applying (5.3) of Lemma 5.1 to esti-
mate P({|∑k

l=1 ξn,il ,j | ≥ δk1/2}). Thus, we have (5.7) for general Vn,j .
When the Vn,j are replaced by n, the proof is immediate since the random vari-

ables {ξn,i,j θn,i,j :n ≥ 1, i ≥ 1, j ≥ 1} also satisfy (2.1), and hence one can apply
(5.3) immediately to obtain (5.7). Hence, the lemma is proven. �
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In order that the probability estimate in the previous lemma be useful kn,j /cn,j

must be unbounded as j tends to infinity. Our next task is to see what happens
if we remove this assumption, and only ask that this ratio is uniformly bounded
below by a strictly positive constant. This is the content of our next lemma, which
is a modification of Lemma 5.2.

LEMMA 5.3. Let {Xn,i : 1 ≤ i ≤ n} be defined as in (1.2), and assume (2.1)
holds for r = 2, and the constants cn,j , kn,j are such that 1 ≤ cn,j ≤ c < ∞ and
0 < k ≤ kn,j ≤ ∞. If S̃n,n is given as in (1.7), and N∗

n = max1≤i≤n Nn,i , then

P(‖S̃n,n‖∞ ≥ x) ≤ 2E(N∗
n ) exp

{
−kx2

16c

}
.(5.9)

In addition, if the Vn,j are replaced by n1/2 in S̃n,n, then again (5.9) holds.

REMARK 5.1. If Nn,i = pn for {i ≥ 1, n ≥ 1}, then (5.9) immediately implies

P(‖S̃n,n‖∞ ≥ x) ≤ 2pn exp
{
−kx2

16c

}
(5.10)

and if the V
1/2
n,j are replaced by n1/2 in S̃n,n, then again (5.10) holds.

PROOF OF LEMMA 5.3. Following the proof of Lemma 5.2, we observe that if
θn,i,j = I (j ≤ Nn,i)Rn,i,j , then P(θn,i,j = 1) = pn,jp, where pn,j = P(j ≤ Nn,i)

for n ≥ 1, j ≥ 1, and for m = 0,1, . . . , n we define the events

Em,n,j = ⋃
I∈Im,n,j

FI ,

where Im,n,j denotes all subsets I = {i1, . . . , im} of size m in {1, . . . , n} and

FI = {
θn,i,j = 1 for all i ∈ I and θn,i,j = 0 for i ∈ {1, . . . , n} ∩ I c}.

Recall Vn,j = max{1,
∑n

i=1 θn,i,j } and observe that
∑n

i=1 ξn,i,j θn,i,j = 0 on
E0,n,j . Hence, for each x > 0, n ≥ 1,

P(‖S̃n,n‖∞ ≥ x)

≤ ∑
u≥1

u∑
j=1

n∑
m=1

P

({∣∣∣∣∣
n∑

i=1

ξn,i,j θn,i,j

∣∣∣∣∣ ≥ xV
1/2
n,j

}
∩ Em,n,j ∩ {N∗

n = u}
)
.

Now setting Bn,m = {|∑m
l=1 ξn,il ,j | ≥ xm1/2}

P

({∣∣∣∣∣
n∑

i=1

ξn,i,j θn,i,j

∣∣∣∣∣ ≥ xV
1/2
n,j

}
∩ Em,n,j ∩ {N∗

n = u}
)

= ∑
I∈Im,n,j

P (Bn,m ∩ FI ∩ {N∗
n = u})
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and letting

An = ∑
u≥1

u∑
j=1

n∑
m=1

P

({∣∣∣∣∣
n∑

i=1

ξn,i,j θn,i,j

∣∣∣∣∣ ≥ xV
1/2
n,j

}
∩ Em,n,j ∩ {N∗

n = u}
)
,

we have by using the independence of the various sequences of random variables
involved and (5.3) of Lemma 5.1 that

An ≤ 2
∑
u≥1

u∑
j=1

n∑
m=1

exp{−x2kn,j /16cn,j }P(Em,n,j ∩ {N∗
n = u}).

Thus, by first summing on m and using cn,j ≤ c and kn,j ≥ k for all n, j ≥ 1, we
have that

P(‖S̃n,n‖∞ ≥ x) ≤ 2
∑
u≥1

u∑
j=1

exp{−x2k/(16c)}P(N∗
n = u).(5.11)

Hence, this implies (5.9), and when the Vn,j are replaced by n, the proof follows
from the ideas used in the general case. Thus, the lemma is proven. �

Next, we turn to a method which will allow us to handle a broader collection of
random variables. Here the {ξn,i,j } satisfy (2.1) with r ∈ (0,2), or the less restric-
tive conditions of polynomial decay given in (2.4). Of course, the results depend on
the rate of decay of the tails of the {ξn,i,j }, but under a variety of assumptions we
are able to obtain further consistency results in this setting. The relevant probabil-
ity inequalities are obtained in our next lemma, and can be viewed as a substitute
for those in Lemma 5.1.

LEMMA 5.4. For each integer n ≥ 1 let X1, . . . ,Xn be independent, mean
zero random variables, such that for some r ∈ (0,2) we have

P(|Xi | ≥ x) ≤ ce−kxr

(5.12)

for 1 ≤ i ≤ n and all x ≥ 0. Then for all x ≥ √
8Mc,k,r/

√
n and all s ≥ 0

P

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ ≥ nx

)
≤ 4 exp

{
− nx2

32s2

}
+ 4cn exp

{
−ksr

2r

}
,(5.13)

where M2
c,k,r = ∫ ∞

0 ce−kxr/2
dx < ∞. In addition, for all x ≥ √

8Mc,k,r/
√

n and
all s ≥ 1, we also have

P

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ ≥ nx

)
≤ 4 exp

{
− nkx2

128cs2

}
+ 4cn exp

{
−ksr

2r

}
.(5.14)

Moreover, if for some c > 0 and k > 2, (5.12) is replaced by

P(|Xi | ≥ x) ≤ c

(1 + x)k
(5.15)
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for 1 ≤ i ≤ n and all x ≥ 0, then for all x ≥ √
8Mc,k/

√
n and all s ≥ 0

P

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ ≥ nx

)
≤ 4 exp

{
− nx2

32s2

}
+ 22+kcn

(2 + s)k
,(5.16)

where M2
c,k = ∫ ∞

0
c

(1+t1/2)k
dt < ∞.

REMARK 5.2. If we take s = n1/(2+r)x2/(2+r) then for x ≥ √
8Mc,k,r/

√
n, we

have that (5.13) implies

P

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ ≥ nx

)
≤ 4 exp

{
−nr/(2+r)x2r/(2+r)

32

}

+ 4cn exp
{
−knr/(2+r)x2r/(2+r)

2r

}
,

which makes the exponents on the right of comparable size. Since the proof of
(5.13) and (5.14) also implies (5.13) and (5.14) when r = 2, it is interesting to
note that the previous inequality is not as sharp as that in (5.3) in Lemma 5.1 when
r = 2.

REMARK 5.3. If the median of each Xi is zero, then (5.13) and (5.14) hold
for all x ≥ 0 and s ≥ 0. That is, when the medians are zero the key inequality
(5.18) below follows directly from (5.8) in [4], page 147, without restrictions on x.
A similar remark holds for (5.14) provided s ≥ 1.

PROOF OF LEMMA 5.4. First, we observe that for r fixed, uniformly in i, 1 ≤
i ≤ n, (5.12) implies E(X2

i ) ≤ M2
c,k,r < ∞. Hence if x ≥ √

8Mc,k,r/
√

n we have
by Cheyshev’s inequality that P(|∑n

i=1 Xi | ≥ nx/2) ≤ 1/2. Now let Y1, . . . , Yn be
an independent copy of X1, . . . ,Xn and observe that

P

(∣∣∣∣
n∑

i=1

Xi

∣∣∣∣ ≥ nx

)
P

(∣∣∣∣∣
n∑

i=1

Yi

∣∣∣∣∣ ≤ nx/2

)
≤ P

(∣∣∣∣∣
n∑

i=1

(Xi − Yi)

∣∣∣∣∣ ≥ nx/2

)
.(5.17)

Then for all x ≥ √
8Mc,k,r/

√
n, we have

P

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ ≥ nx

)
≤ 2P

(∣∣∣∣∣
n∑

i=1

(Xi − Yi)

∣∣∣∣∣ ≥ nx/2

)
.(5.18)

Taking s ≥ 0, we define (Xi − Yi)
s = (Xi − Yi)I (|Xi − Yi | ≤ s). Then

P

(∣∣∣∣∣
n∑

i=1

(Xi − Yi)

∣∣∣∣∣ ≥ nx/2

)
≤ In(s, x) + IIn(s, x),(5.19)



ASYMPTOTIC INFERENCE FOR HIGH-DIMENSIONAL DATA 857

where

In(s, x) = P

(∣∣∣∣∣
n∑

i=1

(Xi − Yi)
s

∣∣∣∣∣ ≥ nx/2

)

and

IIn(s, x) = P
(

max
1≤i≤n

|(Xi − Yi) − (Xi − Yi)
s | > 0

)
.

Applying (5.1) to (X1 − Y1)
s, . . . , (Xn − Yn)

s , we see that

In(s, x) ≤ 2 exp{−n(x/2)2(2(2s)2)−1}(5.20)

and (5.12) implies

IIn(s, x) ≤ 2
n∑

i=1

P(|Xi | > s/2) ≤ 2cn exp
{
−ksr

2r

}
.(5.21)

Applying (5.18), (5.19), (5.20) and (5.21) we thus have (5.13).
The proof of (5.14) follows that for (5.13) up to the point we apply (5.1) of

Lemma 5.1 to In(s, x) in (5.20). At this point, we now apply (5.3) of Lemma 5.1
to the random variables (X1 − Y1)

s, . . . , (Xn − Yn)
s . That is, (5.12) implies that

for all x ≥ 0 and 1 ≤ i ≤ n that

P
(|(Xi − Yi)

s | ≥ x
) ≤ P(|Xs

i | ≥ x/2) + P(|Y s
i | ≥ x/2) ≤ 2ce−kx2/(4s2),

where the last inequality follows since xr/2r ≥ x2/(4s2) when 0 ≤ x ≤ 2s, 0 <

r < 2, and s ≥ 1. Hence, by (5.3) of Lemma 5.1, with k replaced by k/(4s2) and c

by 2c, we obtain

In(s, x) ≤ 2 exp{−nkx2/(128cs2)}.(5.22)

Now combining (5.22) and the estimate for IIn(s, x) in (5.21) to (5.18) and (5.19),
we obtain (5.14).

Next, we observe that uniformly in i, 1 ≤ i ≤ n, (5.15) and k > 2 implies

E(X2
i ) =

∫ ∞
0

P(|Xi | > t1/2) dt ≤
∫ ∞

0

c

(1 + t1/2)k
dt < ∞.

Hence, if we choose x ≥ √
8Mc,k/

√
n we have by the argument leading to (5.17)–

(5.19) that

P

(∣∣∣∣∣
n∑

i=1

(Xi − Yi)

∣∣∣∣∣ ≥ nx/2

)
≤ In(s, x) + IIn(s, x),(5.23)

where

In(s, x) = P

(∣∣∣∣∣
n∑

i=1

(Xi − Yi)
s

∣∣∣∣∣ ≥ nx/2

)
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and

IIn(s, x) = P
(

max
1≤i≤n

|(Xi − Yi) − (Xi − Yi)
s | > 0

)
.

Applying (5.1) to (X1 − Y1)
s, . . . , (Xn − Yn)

s , we see that

In(s, x) ≤ 2 exp{−n(x/2)2(2(2s)2)−1}(5.24)

and (5.14) implies

IIn(s, x) ≤
n∑

i=1

P(|Xi − Yi | > s) ≤ 2
n∑

i=1

P(|Xi | > s/2) ≤ 2cn

(1 + s/2)k
.(5.25)

Applying (5.23), (5.24) and (5.25), we have (5.16). Thus, Lemma 5.4 is proven.
�

6. Proofs of consistency results.

6.1. Proof of Theorem 2.1. Applying Lemma 5.2 with d = 0, we have for all
x > 0 and each integer n ≥ 1 that

P(‖S̃n,n‖∞ ≥ x) ≤ ∑
j≥1

2 exp{−x2kn,j /(16cn,j )}.(6.1)

Taking x = εan in (6.1) and applying (2.5), we thus have (2.6) for general V
1/2
n,j ,

and also when the V
1/2
n,j are replaced by n1/2.

If the constants cn,j and kn,j satisfy (2.7) as indicated, then with an = (L(n +
3))1/2 and x = εan in (6.1) we have

P
(‖S̃n,n‖∞ ≥ ε

(
L(n + 3)

)1/2) ≤ ∑
j≥1

2 exp{−ε2δL(n + 3)L(j + 3)}
(6.2)

= 2
∑
j≥1

(j + 3)−ε2δL(n+3).

Thus, for ε2δ > 1, ∑
n≥1

P
(‖S̃n,n‖∞ ≥ ε

(
L(n + 3)

)1/2)

≤ 2
∑
n≥1

∫ ∞
3

x−ε2δL(n+3) dx(6.3)

≤ 2
∑
n≥1

3−L(n+3)−1

(L(n + 3) − 1)
< ∞



ASYMPTOTIC INFERENCE FOR HIGH-DIMENSIONAL DATA 859

and hence (2.8) holds for general Vn,j . In particular, we then have from (6.3) that

(2.9) is immediate, and it remains to show E(eαM2
) < ∞ for all α > 0 sufficiently

small. Now

E(eαM2
) =

∫ ∞
0

P(eαM2
> t)dt ≤ 3 +

∫ ∞
3

P

(
M >

(
log t

α

)1/2)
dt

and ∫ ∞
3

P

(
M >

(
log t

α

)1/2)
dt

≤ ∑
n≥1

∫ ∞
3

P

(
‖S̃n,n‖∞ ≥ (

L(n + 3)
)1/2

(
log t

α

)1/2)
dt

≤ 2
∑
n≥1

∑
j≥1

∫ ∞
3

exp
{
−δL(j + 3)L(n + 3)

log t

α

}
dt,

where the last inequality follows from (6.1) and that (2.7) holds.
Therefore, for α < δ/2 we have

E(eαM2
) ≤ 3 + 2

∑
n≥1

∑
j≥1

∫ ∞
3

exp{−2L(j + 3)L(n + 3) log t}dt

= 3 + 6
∑
n≥1

∑
j≥1

exp{−2 log 3L(j + 3)L(n + 3)}
2L(j + 3)L(n + 3) − 1

.

Now x, y ≥ 1 + η for some η > 0 implies xy ≥ (x + y)(1 + η)/2 and hence since
j, n ≥ 1 implies L(j + 3),L(n + 3) ≥ L4 ≥ 1 + η for η = L4 − 1 > 0 we have

E(eαM2
) ≤ 3 + 6

∑
n≥1

∑
j≥1

exp{−(1 + η) log 3(L(j + 3) + L(n + 3))}
2L(j + 3)L(n + 3) − 1

< ∞

since (1 + η) log 3 > 1. Since (5.1) holds when the V
1/2
n,j are replaced by n1/2, the

proof also holds in this situation. Thus, Theorem 2.1 is proven.

6.2. Proof of Theorem 2.2. Under our assumptions, Lemma 5.3 with x = h(n)

implies that

P
(‖S̃n,n‖∞ ≥ h(n)

) ≤ 2E(N∗
n ) exp

{
−kh(n)2

16c

}
.

Since x = h(n) = (θ−1
1 L(E(N∗

n )) + θ2Ln)1/2, θ1 = k/(16c) and θ2 > 0, we have

P
(‖S̃n,n‖∞ ≥ h(n)

) ≤ 2L(E(N∗
n )) exp{−L(E(N∗

n )) − θ1θ2Ln}.
Since θ1 > 0, we thus have (2.13) if θ2 > 0, and (2.14) follows immediately pro-
vided θ1θ2 > 1. Since the above holds for general V

1/2
n,j , and also the n1/2 normal-

izations, Theorem 2.2 is proven.
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6.3. Proof of Theorem 2.3. First, observe that for all x ≥ 0 that

P(‖Sn,n‖∞ ≥ nx) = P

( N∗
n⋃

j=1

{∣∣∣∣∣
n∑

i=1

ξn,i,j θn,i,j

∣∣∣∣∣ ≥ nx

})
.(6.4)

Letting b = (b1, . . . , bn), where bi is a positive integer for 1 ≤ i ≤ n, and setting
En,b = {Nn,1 = b1, . . . ,Nn,n = bn}, we thus have by conditioning on En,b that

P(‖Sn,n‖∞ ≥ nx) ≤ ∑
(b1,...,bn)

max(b1,...,bn)∑
j=1

J (n, j,b, x)P (En,b),

where J (n, j,b, x) = P(|∑n
i=1 ξn,i,j θn,i,j | ≥ nx|En,b). Fixing n and j , and defin-

ing Xi = ξn,i,j θn,i,j I (j ≤ bi) for 1 ≤ i ≤ n, we see X1, . . . ,Xn are independent
random variables, and it is easy to check from our assumptions on cn,j and kn,j ,
and (2.1), that for all x ≥ 0

P(|Xi | ≥ x) ≤ ce−kxr

.

Therefore, X1, . . . ,Xn satisfy the conditions in Lemma 5.4 and using the in-
dependence of the sequences {ξn,i,j }, {Rn,i,j }, and {Nn,i}, we have for x ≥√

8Mc,k,r/
√

n and s ≥ 1 that (5.14) implies

J (n, j,b, x) ≤ 4 exp{−nkx2/(128cs2)} + 4cn exp
{
−ksr

2r

}
.

Combining the previous inequalities in this proof, we have that

P(‖Sn,n‖∞ ≥ nx) ≤ 4E(N∗
n )[An(1) + An(2)],(6.5)

where An(1) = exp{−nkx2/(128cs2)} and An(2) = cn exp{− ksr

2r }. Recalling
h(n) = (c−1

2 L(E(N∗
n )) + c3L(n))1/2 and taking s = sn = c1(L(E(N∗

n )) + 2 ×
L(n))1/r and x = xn = sn{c−1

2 L(E(N∗
n )) + c3L(n)}1/2/n1/2 in (6.5), then for all

sufficiently large n we have x ≥ √
8Mc,k,r/

√
n, s ≥ 1, and (6.5) holds. Thus, (2.18)

holds if c1 > 2/k1/r and c3 > 0, and (2.19) follows if we also have c2c3 > 1. Thus,
Theorem 2.3 is proven when (2.1) holds and 0 < r < 2.

We now turn to the situation where there is only polynomial decay in the tails
of the data ξn,i,j as in (2.4), where cn,j ≤ c and kn,j ≥ k for all n ≥ 1, j ≥ 1 and
1 ≤ c < ∞, 2 < k < ∞. Then the random variables ξn,i,j θn,i,j are also easily seen
to satisfy (2.4), and arguing as in (6.4) and (6.5), and applying (5.16), we have for
s ≥ 0 and x ≥ √

8Mc,k/n1/2 that

P(‖Sn,n‖∞ ≥ nx) ≤ 4E(N∗
n )

[
exp

{
− nx2

32s2

}
+ 2kcn

(2 + s)k

]
.(6.6)

Taking s = sn = (nE(N∗
n ))1/k+β , β > 0, and x = xn = bsn(LE(N∗

n ))1/2/n1/2,
then for all n sufficiently large

P
(‖Sn,n‖∞ ≥ bn1/2sn(LE(N∗

n ))1/2) ≤ 4E(N∗
n )[An(3) + An(4)],
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where An(3) = exp{− b2

32L(E(N∗
n ))} and An(4) = 2kcn[2 + sn]−k . Thus, (2.20)

holds when β > 0 by taking b large and using the definition of sn. Moreover, (2.21)
holds if b ≥ 8 and kβ > 1/2, and (2.22) holds when if b > 8 and βk(γ + 1) > 1.
Thus, Theorem 2.3 is proven.

7. Proof of Theorem 2.4. The proof proceeds with a sequence of lemmas.
Our first lemma provides tightness, and shows T̃n,n converges in probability to

zero in c0.

LEMMA 7.1. Under the conditions (2.29) and (2.30),

{L(S̃n,n) :n ≥ 1} is tight in c0.(7.1)

In addition, if for each j ≥ 1 we have limn→∞ P(Nn,1 < j) = 0, then T̃n,n con-
verges in probability to zero in c0.

PROOF. For general Vn,j , or if the Vn,j are replaced by n, (5.7) implies that

P
(‖Qd(S̃n,n)‖∞ ≥ δ

) ≤ ∑
j≥d+1

2 exp{−δ2kn,j /(16cn,j )}.(7.2)

Hence, (2.30) implies for δ > 0 arbitrary that

lim
d→∞ sup

n≥1
P

(‖Qd(S̃n,n)‖∞ > δ
) = 0.(7.3)

Now (2.1) easily implies E(ξ2
n,i,j ) ≤ cn,j /kn,j , and the independence of the se-

quences of random variables involved implies for each j ≥ 1 that

P

(∣∣∣∣∣
n∑

i=1

ξn,i,j θn,i,j

∣∣∣∣∣ ≥ bV
1/2
n,j

)
≤ b−2cn,j /kn,j .

Thus (2.29), (7.3), and an application of the remark on page 49 of [13] easily
combine to prove the tightness in (7.1) for general Vn,j and also when the Vn,j are
replaced by n.

If T̃n,n is defined as in (1.9), then for each ε > 0 and d ≥ 1 we have

P(‖T̃n,n‖∞ > 2ε) ≤ P
(‖T̃n,n − Qd(T̃n,n)‖∞ > ε

) + P
(‖Qd(T̃n,n)‖∞ > ε

)
.

Now (7.3) immediately implies there exists d ≥ 1 such that uniformly in n,
P(‖Qd(T̃n,n)‖∞ > ε) < ε/2. Independence of the sequences of random variables
involved then implies for each j ≥ 1 and b > 0 that

P

(∣∣∣∣∣
n∑

i=1

ξn,i,j θn,i,j

∣∣∣∣∣ ≥ bVn,j

)

≤ b−2E

(
E

((
n∑

i=1

ξn,i,j θn,i,j

)2/
V 2

n,j |θn,1,j , . . . , θn,n,j

))

≤ b−2E(V −1
n,j )cn,j /kn,j .
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Since limn→∞ P(Nn,1 < j) = 0, the weak law of large numbers and Chebyshev’s
inequality applied to the i.i.d. sequence of random variables {θn,i,j : i ≥ 1} im-
plies for each fixed j ≥ 1 and M > 0 that lim supn→∞ P(Vn,j ≤ M) = 0. Thus,
lim supn→∞ E(V −1

n,j ) = 0, so for each fixed j ≥ 1 and b > 0 we have

lim
n→∞P

(∣∣∣∣∣
n∑

i=1

ξn,i,j θn,i,j

∣∣∣∣∣ ≥ bVn,j

)
= 0.

Now

P
(‖T̃n,n − Qd(T̃n,n)‖∞ > ε

) ≤
d∑

j=1

P

(∣∣∣∣∣
n∑

i=1

ξn,i,j θn,i,j

∣∣∣∣∣ ≥ εVn,j

)

and hence from the above we have for each ε > 0 that

lim
n→∞P(‖T̃n,n‖∞ > 2ε) ≤ ε.

Thus, the lemma is proven. �

Now that we have tightness of {L(S̃n,n) :n ≥ 1} in c0, the next step of the proof
is to show that the finite-dimensional distributions induced by

⋃
d≥1 c∗

0,d are the

same for every limiting measure of {L(S̃n,n) :n ≥ 1}. Here c∗
0 denotes the continu-

ous linear functionals on c0 and

c∗
0,d = {f ∈ c∗

0 :f (Qd(x)) = 0 for all x ∈ c0}.(7.4)

We start by showing that the limiting covariance functions �(k, ·, ·) given in
(2.26)–(2.28) determine the limiting variance of f (S̃n,n) for each d ≥ 1 and f ∈
c∗

0,d . This follows from our next lemma.

LEMMA 7.2. If (2.26)–(2.28) hold and P(min1≤i≤n Nn,i < d) = o(1/n2) as
n tends to infinity, then for all d ≥ 1 and f ∈ c∗

0,d we have

lim
n→∞E(f 2(S̃n,n)) =

d∑
u=1

d∑
v=1

�(1, u, v)f (eu)f (ev).(7.5)

If Vn,j is replaced by n in S̃n,n, then (7.5) holds with �(1, ·, ·) replaced by �(2, ·, ·)
in the right-hand side term.

PROOF. Since f ∈ c∗
0,d , we have

E(f 2(S̃n,n)) =
d∑

u=1

d∑
v=1

[
n∑

i=1

�n,i(u, v)E

(
θn,i,u

V
1/2
n,u

θn,i,v

V
1/2
n,v

)]
f (eu)f (ev),(7.6)

where �n,i(u, v) = E(ξn,i,uξn,i,v). This follows immediately since the sequences
{θn,i,j } and {Vn,j } are independent of the sequence {ξn,i,j }, and E(ξn,i,j ) = 0 with
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the random variables ξn,i,j independent in i. Hence, (7.5) and Lemma 7.1 follows
from (7.6) once we prove the following lemma. The situation when Vn,j is replaced
by n in S̃n,n is simpler, so for the time being, we assume the Vn,j are random. The
nonrandom case will be taken up later. �

LEMMA 7.3. Under the assumptions of Theorem 2.4, we have

lim
n→∞

n∑
i=1

�n,i(u, v)E

(
θn,i,u

V
1/2
n,u

θn,i,v

V
1/2
n,v

)
= �(1, u, v).(7.7)

PROOF. Since limn→∞
∑n

i=1 �n,i(u, v)/n = �(u, v) by assumption, (7.7)
will follow if we first show for u �= v that

E

(
θn,i,u

V
1/2
n,u

θn,i,v

V
1/2
n,v

)
= p

n
an,i,(7.8)

where limn→∞ sup1≤i≤n|an,i − 1| = 0, and that

sup
n≥1,i≥1

�n,i(u, v) < ∞.(7.9)

Now

sup
n≥1,i≥1

�n,i(u, v) = sup
n≥1,i≥1

E(ξn,i,uξn,i,v)(7.10)

and, as mentioned earlier, (2.1) with r = 2 implies E(ξ2
n,i,u) ≤ cn,j /kn,j . There-

fore, the Cauchy–Schwarz inequality and (2.29) easily combine to imply (7.9).
Hence, when u �= v it remains to prove (7.8).

To verify (7.8) for random Vn,j , for n ≥ 1, u ≥ 1, let

�n,i = θn,i,u

V
1/2
n,u

θn,i,v

V
1/2
n,v

and Wn,u = max

{
1,

n∑
i=1

Rn,i,u

}
.

Thus, we have

E(�n,i) = E
(
�n,iI

(
min

1≤i≤n
Nn,i ≥ d

))
+ E

(
�n,iI

(
min

1≤i≤n
Nn,i < d

))
(7.11)

= Bn(1, i) − Bn(2, i) + Bn(3, i),

where

Bn(1, i) = E

(
Rn,i,u

W
1/2
n,u

Rn,i,v

W
1/2
n,v

)
, Bn(3, i) = E

(
�n,iI

(
min

1≤i≤n
Nn,i < d

))

and

Bn(2, i) = E

(
Rn,i,u

W
1/2
n,u

Rn,i,v

W
1/2
n,v

I
(

min
1≤i≤n

Nn,i < d
))

.
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Also,

Bn(3, i) ≤ P
(

min
1≤i≤n

Nn,i < d
)

= o(1/n)(7.12)

and

Bn(2, i) ≤ P
(

min
1≤i≤n

Nn,i < d
)

= o(1/n).(7.13)

Hence, (7.8) will follow if we show for all i,1 ≤ i ≤ n, and u �= v that

Bn(1, i) = p

n
an,(7.14)

where lim→∞ an = 1. To verify (7.14), we establish the following lemma, which
immediately implies (7.14) when u �= v. If u = v, then from the above we
see that the analogue of (7.14) required is that E(Rn,i,u/Wn,u) = cn/n where
limn→∞ cn = 1. This follows since from the proof of Lemma 7.4 below we actu-
ally have cn = 1 − (1 − p)n. Hence, the proof of Lemma 7.3 and also Lemma 7.2
for random Vn,j , will follow once Lemma 7.4 is established. �

LEMMA 7.4. Let {Xi : 1 ≤ i ≤ n} and {Yi : 1 ≤ i ≤ n} be independent collec-
tions of i.i.d. Bernoulii random variables with P(Xi = 1) = P(Yi = 1) = p. Let
An = max{1,

∑n
i=1 Xi} and Bn = max{1,

∑n
i=1 Yi}. Then for all i,1 ≤ i ≤ n, we

have

E

(
Xi

A
1/2
n

Yi

B
1/2
n

)
= p

n
bn,(7.15)

where lim→∞ bn = 1.

PROOF. By the independence assumed, we have

E

(
Xi

A
1/2
n

Yi

B
1/2
n

)
= E

(
Xi

A
1/2
n

)
E

(
Yi

B
1/2
n

)

and hence since {Xi : 1 ≤ i ≤ n} and {Yi : 1 ≤ i ≤ n} i.i.d. Bernoulii random vari-
ables with P(Xi = 1) = P(Yi = 1) = p, it suffices to verify that

E

(
X1

A
1/2
n

)
=

(
p

n

)1/2

cn,(7.16)

where lim→∞ cn = 1. Now, using Jensen’s inequality and an easy calculation, we
have

E

(
X1

A
1/2
n

)
≤ p

(
E

(
1

1 + ∑n
i=2 Xi

))1/2

= p

(
1 − (1 − p)n

np

)1/2

.

Hence, since we assume 0 < p ≤ 1, we have

E

(
Xi

A
1/2
n

)
≤

(
p

n

)1/2

.(7.17)
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Thus, Lemma 7.4 will follow provided we establish a comparable lower bound.
Now for each ε,0 < ε < p, we have

E

(
X1

A
1/2
n

)
≥ p

C(n,p, ε)

∑
{k : |k/(n−1)−p|<ε/L(n)}

P

(
n∑

i=2

Xi = k

)
,

where C(n,p, ε) = (1 + (n − 1)p − (n − 1)ε/L(n))1/2. Since ε > 0, Theorem 1
of [12] implies

∑
{k : |k/(n−1)−p|<ε/L(n)}

P

(
n∑

i=2

Xi = k

)
≥ 1 − 2 exp

{
−2(n − 1)

(
ε

L(n)

)2}

and hence

E

(
X1

A
1/2
n

)
≥ p

C(n,p, ε)

[
1 − 2 exp

{
−2(n − 1)

(
ε

L(n)

)2}]
=

(
p

n

)1/2

dn,

where limn→∞ dn = 1. This implies the comparable lower bound to (7.17), and
therefore Lemma 7.4 holds.

As mentioned earlier, Lemma 7.4 completes the proof of Lemma 7.3, and hence
Lemma 7.2 is established with (7.5) providing a limiting variance function when
the Vn,j are random. If the Vn,j are replaced by n in S̃n,n, then the proof of Lem-
ma 7.3 with the right-hand side of (7.7) being �(2, u, v) is much simpler, and the
details are left for the reader. Hence, Lemma 7.2 is proven. �

Now that Lemma 7.2 is verified, the next step is to show for all d ≥ 1, f ∈ c∗
0,d ,

and random Vn,j that all limit laws of {L(f (S̃n,n)) :n ≥ 1} are centered Gaussian
random variables with variance given by

σ 2(f ) =
d∑

u=1

d∑
v=1

�(1, u, v)f (eu)f (ev).(7.18)

Of course, if the Vn,j are replaced by n in S̃n,n, then (7.18) holds with �(1, u, v)

replaced by �(2, u, v).
To verify this step of the proof, we first prove a lemma which will put us in

position to allow an application of Lyapunov’s central limit theorem.

LEMMA 7.5. For each integer d ≥ 1 and x ∈ c0, let �d(x) = ∑d
j=1 xj ej .

Under the conditions of the theorem, we have for each d ≥ 1 that

lim
n→∞

n∑
i=1

E(‖�d(X̃n,i)‖4∞) = 0,(7.19)

where

X̃n,i = ∑
j≥1

ξn,i,j θn,i,j

V
1/2
n,j

ej .
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PROOF. By Jensen’s inequality, we see that

‖�d(X̃n,i)‖4∞ ≤
∣∣∣∣∣

d∑
j=1

|ξn,i,j |θn,i,j

V
1/2
n,j

∣∣∣∣∣
4

≤ 23(d−1)
d∑

j=1

ξ4
n,i,j θn,i,j

V 2
n,j

.

Hence,

E(‖�d(X̃n,i)‖4∞) ≤ 23(d−1)
d∑

j=1

E

(ξ4
n,i,j θn,i,j

V 2
n,j

)

and the lemma will follow if we show

lim
n→∞

n∑
i=1

E

(ξ4
n,i,j θn,i,j

V 2
n,j

)
= 0(7.20)

for j = 1, . . . , d and all d ≥ 1. Now E(
ξ4
n,i,j θn,i,j

V 2
n,j

) ≤ (E(ξ8
n,i,j ))

1/2(E(
θn,i,j

V 4
n,j

))1/2,

and using (2.1) with r = 2 we have E(ξ8
n,i,j ) ≤ 24cn,j /k4

n,j . Applying (2.29) and
that cn,j ≥ 1 for all n ≥ 1, j ≥ 1 we therefore have, uniformly in n and j , that
E(ξ8

n,i,j ) < ∞. Moreover, since P(min1≤i≤n Nn,i < d) = o(1/n2), one can show
that

E

(
θn,i,j

V 4
n,j

)
= pE

(
1

(1 + ∑n
i=2 Xi)4

)
+ o(1/n2).

Therefore, let

An =
n∑

k=0

1

(1 + k)4 P

(
n∑

i=1

Xi = k

)

and we want an appropriate upper bound on An−1. Now An ≤ Bn + 2 exp{−2n/

(L(n))2}, where

Bn = ∑
{k : |k/n−p|≤1/L(n)}

1

(1 + k)4 P

(
n∑

i=1

Xi = k

)

and the exponential term follows from an immediate application of Theorem 1
in [12]. Now

Bn ≤ 1

(np)4[1 + 1/(np) − 1/(pL(n))]4 ≤ 2

(np)4

for all n sufficiently large. Therefore, for all n ≥ n0, we have

An−1 ≤ 2

((n − 1)p)4 + 2 exp
{
− 2(n − 1)

(L(n − 1))2

}
,
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which implies

E

(
θn,i,j

V 4
n,j

)
= E

(
I (j ≤ Nn,i)Rn,i,j

V 4
n,j

)
≤ 2

((n − 1)p)4 + o(1/n2)

uniformly in i ≥ 1, j ≥ 1. Thus, uniformly in i, j ≥ 1, we have

E

(ξ4
n,i,j θn,i,j

V 2
n,j

)
≤ (E(ξ8

n,i,j ))
1/2

(
E

(
θn,i,j

V 4
n,j

))1/2

= o(1/n),

which implies (7.20). Thus, (7.19) holds by the inequality prior to (7.20), and
Lemma 7.5 is proven for random Vn,j . If the Vn,j are replaced by n in S̃n,n, then
the proof is even easier and details are left to the reader. Hence, Lemma 7.5 holds
for both normalizations. �

The next lemma completes the proof of Theorem 2.4.

LEMMA 7.6. The functions �(1, ·, ·) and �(2, ·, ·) defined by (2.26)–(2.28),
are covariances of centered Gaussian measures γ1 and γ2, respectively, on c0.
Furthermore, if the Vn,j are random, then S̃n,n converges weakly to γ1 on c0, and
if the Vn,j are replaced by n, then S̃n,n converges weakly to γ2 on c0. In addition,
for each f ∈ c∗

0 and k = 1,2, we have

∫
c0

f 2(x) dγk(x) =
∞∑

u=1

∞∑
v=1

�(k,u, v)f (eu)f (ev).

PROOF. First, assume the Vn,j are random. Then since (7.19) is verified, we
also see for all d ≥ 1 and f ∈ c∗

0,d that

lim
n→∞

n∑
i=1

E(f 4(X̃n,i)) = 0.

Hence, by (7.5) and Lyapunov’s central limit theorem, we have that f (S̃n,n) con-
verges in distribution to a mean zero Gaussian random variable with variance given
by (7.18) for all d ≥ 1 and f ∈ c∗

0,d . If μ is a probability measure on the Borel sub-
sets of c0, and for all k ≥ 1, d ≥ 1, f1, . . . , fk ∈ c∗

0,d , and A is an arbitrary Borel
set of Rk , then the probability distributions

Ff1,...,fk (A) = μ
({x ∈ c0 : (f1(x), . . . , fk(x)) ∈ A})

are the finite-dimensional distributions of μ on c0 induced by
⋃

d≥1 c∗
0,d , and they

uniquely determine μ on the Borel subsets of c0. In view of the tightness obtained
in Lemma 7.1, we thus have that S̃n,n converges weakly to a unique probability
on the Borel subsets of c0, which for the moment we call μ. What remains is to
show that for every f ∈ c∗

0 this limiting measure makes f a centered Gaussian
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random variable with variance determined by �(1, ·, ·). Recalling that pointwise
limits of centered Gaussian random variables are again centered Gaussian variables
with limiting variances the limits of the variances, and that

⋃
d≥1 c∗

0,d is weak star
dense in c∗

0, it follows that μ is a centered Gaussian measure on c0. Furthermore,
if f ∈ c∗

0 and fd(x) = f (�d(x)),x ∈ c0, then for random Vn,j we have

∫
c0

f 2(x) dμ(x) = lim
d→∞

∫
c0

f 2
d (x) dμ(x) = lim

d→∞

d∑
u=1

d∑
v=1

�(1, u, v)f (eu)f (ev).

Since supi≥1 E(ξ2
n,i,j ) ≤ cn,j /kn,j , we have from (2.29), (2.26)–(2.28), and

Cauchy–Schwarz that

sup
j1,j2≥1

|�(1, j1, j2)| < ∞.

Now c∗
0 = �1, and hence the dominated convergence theorem easily implies μ is

a centered Gaussian measure on c0 with covariance given by �(1, ·, ·). Moreover,
for each f ∗ ∈ c0 we have∫

c0

f 2(x) dμ(x) =
∞∑

u=1

∞∑
v=1

�(1, u, v)f (eu)f (ev).

Hence, when Vn,j is random, the centered Gaussian measure γ1 exists as indicated,
that is, its covariance is �(1, ·, ·), and μ = γ1. Similarly, when the Vn,j are replaced
by n, then γ2 exists as indicated, and μ = γ2. This last fact is easy to check by
immediate simplifications of what we have done when Vn,j is random, and the
details are left to the reader. Hence for each choice of normalizers, there is a unique
limiting Gaussian measure, and its finite-dimensional distributions are centered
Gaussian measures determined by the appropriate covariance function. Therefore,
the lemma is proved, and Theorem 2.4 is established. �
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