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DOES MEDIAN FILTERING TRULY PRESERVE EDGES
BETTER THAN LINEAR FILTERING?

BY ERY ARIAS-CASTRO AND DAVID L. DONOHO

University of California, San Diego and Stanford University

Image processing researchers commonly assert that “median filtering is
better than linear filtering for removing noise in the presence of edges.” Us-
ing a straightforward large-n decision-theory framework, this folk-theorem is
seen to be false in general. We show that median filtering and linear filter-
ing have similar asymptotic worst-case mean-squared error (MSE) when the
signal-to-noise ratio (SNR) is of order 1, which corresponds to the case of
constant per-pixel noise level in a digital signal. To see dramatic benefits of
median smoothing in an asymptotic setting, the per-pixel noise level should
tend to zero (i.e., SNR should grow very large).

We show that a two-stage median filtering using two very different win-
dow widths can dramatically outperform traditional linear and median filter-
ing in settings where the underlying object has edges. In this two-stage pro-
cedure, the first pass, at a fine scale, aims at increasing the SNR. The second
pass, at a coarser scale, correctly exploits the nonlinearity of the median.

Image processing methods based on nonlinear partial differential equa-
tions (PDEs) are often said to improve on linear filtering in the presence
of edges. Such methods seem difficult to analyze rigorously in a decision-
theoretic framework. A popular example is mean curvature motion (MCM),
which is formally a kind of iterated median filtering. Our results on iterated
median filtering suggest that some PDE-based methods are candidates to rig-
orously outperform linear filtering in an asymptotic framework.

1. Introduction.

1.1. Two folk theorems. Linear filtering is fundamental for signal processing,
where often it is used to suppress noise while preserving slowly varying signal. In
image processing, noise suppression is also an important task; however, there have
been continuing objections to linear filtering of images since at least the 1970s,
owing to the fact that images have edges.

In its simplest form, linear filtering consists of taking the average over a sliding
window of fixed size. Indeed, linear filtering with fixed window size h “blurs out”
the edges, causing a bias of order O(1) in a region of width h around edges. This
blurring can be visually annoying and can dominate the mean-squared error.
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Median filtering—taking the median over a sliding window of fixed size—was
discussed already in the 1970s as a potential improvement on linear filtering in the
“edgy” case, with early work of Matheron and Serra on morphological filters [24,
33] in image analysis and (in the case of 1-d signals) by Tukey and collaborators
[22, 37, 38].

To this day simple median filtering is commonly said to improve on linear fil-
tering in “edgy” settings [2, 8, 14, 16, 36]—such a claim currently appears in the
Wikipedia article on median filtering [1]. Formally, we have the

MEDIAN FOLK THEOREM. Median filtering outperforms linear filtering for
suppressing noise in images with edges.

Since the late 1980s, concern for the drawbacks of linear filtering of images
with edges has led to increasingly sophisticated proposals. In particular, inspired
by seminal work of Mumford and Shah [26] and Perona and Malik [27], a whole
community in applied mathematics has arisen around the use of nonlinear partial-
differential equations (PDEs) for image processing—including noise suppression
[25, 31, 34].

A commonly heard claim at conferences in image processing and in applied
mathematics boils down to the following:

PDE FOLK THEOREM. PDE-based methods outperform linear filtering for
suppressing noise in images with edges.

1.2. A challenge to asymptotic decision-theory. While these folk theorems
have many believers, they implicitly pose a challenge to mathematical statisticians.

Linear filtering of the type used in signal and image processing has also been of
interest to mathematical statisticians in implicit form for several decades. Indeed,
much of nonparametric regression, probability density estimation and spectral den-
sity estimation is in some sense carried out with kernel methods—a kind of “linear
filter”—and there is extensive literature documenting the optimality of such linear
procedures in certain cases. In many cases, the correspondence of the underlying
bias-variance analysis with the kind of analyses being done in signal processing is
quite evident.

During the last two decades, mathematical statisticians have succeeded in show-
ing that for models of images with edges, nonlinear methods can indeed outper-
form linear ones in a minimax sense [5, 10, 11]. However, the nonlinear methods
which have been analyzed fully rigorously in a decision-theoretic framework are
somewhat different than the median and PDE cases above; examples include meth-
ods of wavelet shrinkage and other harmonic analysis techniques [5, 9–11].

So within the decision-theoretic framework it is rigorously possible to do better
than linear filtering, but by methods somewhat different than those covered by the
folk theorems above.
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The great popularity of median- and PDE-based nonlinear filtering prompted us
to evaluate their performance by a rigorous approach within the decision-theoretic
framework of mathematical statistics. Three conclusions emerge:

• The Median-filtering folk theorem is false in general.
• In an apparently meaningless special case—where the noise level per pixel is

negligible—the Median-filtering folk theorem is true.
• A modified notion of median filtering—applying two passes in a multiscale

fashion—does improve on linear filtering, as we show here.

Before explaining these conclusions in more detail, we make a few remarks.

• Tukey’s emphasis with median filters was always on iterating median filters
sequentially applying medians over windows of different widths at different
stages, as we do here. We believe that Tukey’s intuition about the benefits of
median filtering actually applied to this iterated form; but this intuition was ei-
ther never formalized in print or has been forgotten with time.

• The iterated median scheme we are able to analyze in this paper simply involves
two passes of medians at two very different scales.

Finally, we believe our results are part of a bigger picture:

• There is a formal connection between certain nonlinear PDEs used for image
processing (i.e., Mean Curvature Motion and related PDEs) and iterated medi-
ans.

• Nonlinear PDE-based methods in the form usually proposed by applied math-
ematicians seem quite difficult to analyze within the decision-theoretic frame-
work; this seems a looming challenge for mathematical statisticians.

• Our iterated median scheme seems related to such PDE-based methods. It is
perhaps less elegant than full nonlinear PDEs but is rigorously analyzed here.

• Because of results reported here, we now suspect some subset of the PDE folk
theorem may well be true.

1.3. The framework. We describe the framework below in any dimension d;
however, this paper focuses on dimensions d = 1 (signal processing) and d = 2
(image processing).

Consider the classical problem of recovering a function f : [0,1]d �→ [0,1]
from equispaced samples corrupted by additive white noise. Here we observe
Yn = (Yn(i)) defined by

Yn(i) = f (i/n) + σZn(i), i ∈ I
d
n,(1.1)

where In = {1, . . . , n}, d is the dimension of the problem (here, d = 1 or 2), σ > 0
is the noise level and Zn is white noise with distribution � . Only Yn, σ and �

are known. Though unknown, f is restricted to belong to some class F of func-
tions over [0,1]d with values in [0,1]; several such F will be explicitly defined in
Sections 2, 3 and 4.
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By linear filtering we mean the following variant of moving average. Fix a win-
dow size h ≥ 0 and put

Lh[Yn](i) = Average{Yn(j) : j ∈ W [n,h](i)};
here W [n,h](i) denotes the discrete window of radius nh centered at i ∈ I

d
n:

W [n,h](i) = {j ∈ I
d
n :‖j − i‖ ≤ nh}.

Similarly, by median filtering we mean

Mh[Yn](i) = Median{Yn(j) : j ∈ W [n,h](i)}.
(More general linear and median filters with general kernels add no dramatically
new phenomena in settings of interest to us, i.e., where signals are discontinuous,
so we ignore them.)

Following a traditional approach in mathematical statistics [21], the perfor-
mance of an estimator T [Yn] is measured according to its worst-case risk over
the functional class of interest F with respect to mean-squared error (MSE):

Rn(T ;F ) = sup
f ∈F

Rn(T ;f ),

where

Rn(T ;f ) = 1

nd

∑
i∈Idn

E
[(

T [Yn](i) − f (i/n)
)2]

.

We consider for F certain classes of piecewise Lipschitz functions. When the
noise distribution � is sufficiently nice—Gaussian, for example—we show that
linear filtering and median filtering have worst-case risks with the same rates of
convergence to zero as n → ∞. This contradicts the Median folk theorem.

Our conclusion does not rely on misbehavior at any farfetched function f ∈ F .
In dimension d = 1, linear filtering and median filtering exhibit the same worst-
case rate of convergence already at the simple step function f (x) = 1{x>1/2}—the
simplest model of an edge.

1.4. The underlying phenomenon. The misbehavior of median filtering can be
traced to the fact that, for a signal-to-noise ratio of order 1 (specifically, for σ = 1),
its bias is of order 1 in a region of width h near edges; this behavior is virtually
identical to that of linear filtering. Figure 1 illustrates this situation in panel (d).

However, the figure also illustrates, in panels (a), (b), (c), another phenomenon:
for very low noise levels σ , that is, very high signal-to-noise ratios, the bias of
the median behaves dramatically differently than the bias of linear filtering. In
particular, the bias is not large over an interval comparable to the window width,
but only over a much smaller interval. In fact, as σ → 0, the bias vanishes away
from the edge. We call this the:
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FIG. 1. The dash-dotted (black) line represents the noiseless object f = 1[1/2,1]; the dashed
(green) line represents the expected value of linear filtering; the solid (blue) line represents the ex-
pected value of median filtering. The noise is Gaussian, the smoothing window size is h = 0.125 and
the sample size n = 512. Only at very small σ is the bias of the median qualitatively superior to the
bias of linear filtering.

TRUE HOPE OF MEDIAN FILTERING. At very low noise levels, median filter-
ing can dramatically outperform linear filtering.

At first glance this seems utterly useless: why should we care to remove noise
when there is almost no noise? On reflection, a useful idea emerges. Suppose we
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filter in stages, at the first stage using a relatively narrow window width—much
narrower than we would ordinarily use in a one-stage process—and at the second
stage using a somewhat wider window width. The result may well achieve the
noise reduction of the combined two-stage smoothing with much smaller bias near
edges.

HEURISTIC OF ITERATED MEDIAN FILTERING. Iterated median filtering, in
which the data are first median-filtered lightly, at a fine scale, followed by a coarse-
scale median filter, may outperform linear filtering.

Note that the same idea, applied to linear filtering, would achieve little. The
composition of two linear filters can always be achieved by a single linear filter
with appropriate kernel. And such weights do not change the qualitative effect of
edges.

1.5. Results of this paper. Table 1 compiles the worst-case risk rates for linear
filtering, median filtering and two-scale median filtering over piecewise Lipschitz
function classes. The last line displays the minimax rates for Lipschitz functions
without discontinuities. Note that the rates would be the same for classes of func-
tions with higher degree of smoothness away from the edges—indeed, the three
filtering methods considered here have worst-case risk of same order of magni-
tude as their MSE for a simple step function such as f (x) = 1{x>1/2} in dimension
d = 1.

Notice also that, in dimension d = 1 our two-scale median filtering achieves
the minimax rate for edge-free Lipschitz function classes. This is not the case in
dimension d = 2, where other methods are superior [5, 21].

TABLE 1
Summary of results. Rates of convergence to zero of worst-case MSE, and of

optimal window width, for different methods in dimensions d = 1, 2

Dimension d = 1 d = 2

Technique Rate Window width Rate Window width

Linear filter n−1/2 n−1/2 n−2/3 n−2/3

Median filter n−1/2 n−1/2 n−2/3 n−2/3

Two-scale median filter n−2/3 n−2/3, n−1/3 n−6/7 n−6/7, n−4/7

Edge-free optimal n−2/3 n−1

In each case, the underlying class of functions has Lipschitz smoothness away from edges. Results
compiled from theorems below. Note: here n is the signal width in pixels, not the sample size. The
sample size is nd in dimension d .
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1.6. Iterated medians. As mentioned above, in the late 1960s Tukey already
proposed the use of iterated medians, although the motivations remained unclear
to many at the time. In his proposals, different scales were involved at different
iterations, although the scales were relatively similar from the current viewpoint.

Significantly, iterated median filtering converges in some sense to Mean Curva-
ture Motion (MCM), a popular PDE-based technique. In fact, there is a wider link
connecting PDE-based methods and iterative filtering; in particular, iterated linear
filtering converges to the Heat equation. See, for example, [7, 8, 15]. Although
MCM is highly nonlinear and hard to analyze, the heuristic above gives a hint that
MCM might improve on linear filtering.

1.7. Prior literature. Several papers analyze the performance of median filter-
ing numerically using simulations. For example, in [17], the authors derive exact
formulas for the distribution of the result of applying median filtering to a simple
noisy edge like f0, and use computer-intensive simulations to provide numerical
values. A similar approach is found in [19].

Closer to the present paper, [20] compares linear filtering and median filtering in
the context of smooth functions and shows that they have minimax rates of same
order of magnitude. We will show here that the same holds for functions with
discontinuities.

An extensive, but unrelated, body of literature explores the median’s ability
to suppress outliers, for example, [13] and also [28], which consider the case of
smoothing a one-dimensional signal corrupted with impulsive noise. Using a sim-
ilar framework, Donoho and Yu [12] study a pyramidal median transform.

1.8. Contents. In Sections 2 and 3, we consider one-dimensional and two-
dimensional signals, respectively, in the constant-noise level case. In Section 4 we
consider per-pixel noise level tending to 0. In Section 5, we introduce a two-scale
median filtering and formulate results quantifying its performance. The proofs are
postponed to the latter sections.

Though our results can be generalized to higher-dimensional signals and other
smoothness classes, and can accommodate more sophisticated kernels, we choose
not to pursue such extensions and generalizations here.

1.9. Notation. Below, we denote comparable asymptotic behavior of se-
quences (an), (bn) ∈ R

N using an 	 bn, meaning that the ratio an/bn is bounded
away from 0 and ∞ as n becomes large.

2. Linear filtering and median filtering in dimension 1. Consider the
model (1.1) introduced in the Introduction for the case of dimension 1 (d = 1).
We now explicitly define the smoothness class of interest.
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DEFINITION 2.1. The local Lipschitz constant of the function f at x is

Lipx(f ) = lim sup
ε→0

sup
|y−x|≤ε,y 
=x

|f (y) − f (x)|
|y − x| .

A function f : [0,1] �→ R will be called essentially local Lipschitz if the essential
supremum of the local Lipschitz constant on [0,1] is finite.

The function x1{x>1/2}(x) is essentially local Lipschitz but not Lipschitz; it
has a local Lipschitz constant ≤ 1 almost everywhere on [0,1], but jumps across
the line x = 1/2. More generally, piecewise polynomials without continuity con-
straints at piece boundaries are essentially local Lipschitz and yet neither Lipschitz
nor continuous.

DEFINITION 2.2. Fix N ≥ 1 and β > 0. The class of punctuated-Lipschitz
functions PLIP = PLIP(β,N) is the collection of functions f : [0,1] �→ [0,1] with
local Lipschitz constant bounded by β on the complement of some finite set
(xi)

N
i=1 ⊂ (0,1).

THEOREM 2.1. Assume � has mean 0 and finite variance. Then,

inf
h>0

Rn(Lh; PLIP) 	 n−1/2, n → ∞.

This result can be proven using standard bias-variance trade-off ideas, and needs
only simple technical ingredients such as uniform bounds on functions and deriva-
tives. We explain in Section 7 that it can be inferred from existing results, but then
proceed to give a proof; this proof sets up a bias-variance trade-off framework
suitable for several less elementary situations which come later.

To analyze the behavior of median filtering, we must obtain uniform bounds
on the stochastic behavior of empirical quantiles; these are laid out in Section 15
below. To enable such bounds, we make the following assumptions on the noise
distribution �:

[Shape] � has density ψ with respect to the Lebesgue measure on R, with ψ

unimodal, continuous and symmetric about 0.
[Decay] ζ(�) := sup{s > 0 :ψ(x)(|x| + 1)s is bounded} > 1.

Note that the normal, double-exponential, Cauchy and uniform distributions
centered at 0 all satisfy both [Shape] and [Decay]. These conditions permit an ef-
ficient proof of the following result—see Section 8; the conditions could probably
be relaxed considerably, leading to a more difficult proof.

THEOREM 2.2. Assume � satisfies [Shape] and [Decay]. Then,

inf
h>0

Rn(Mh; PLIP) 	 n−1/2, n → ∞.
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For piecewise Lipschitz functions corrupted with white additive Gaussian noise
(say) having constant per-pixel noise level, Theorems 2.1 and 2.2 show that linear
filtering and median filtering have risks of same order of magnitude Rn 	 n−1/2—
the same holds for any noise distribution � with finite variance satisfying [Shape]
and [Decay]. In that sense, the Median folk theorem is contradicted.

The proof shows that the optimal order of magnitude for the width hn of the
median smoothing window obeys hn 	 n−1/2—again the same as in linear filter-
ing.

3. Linear filtering and median filtering in dimension 2. Consider mod-
el (1.1) of the Introduction in the case of dimension 2 (d = 2); our “signals” are
now digital images. Our smoothness class here is a class of cartoon images, which
are piecewise functions that are smooth except for discontinuities along smooth
curves—see also [6, 9, 21].

Just as in d = 1, we have the notion of local Lipschitz constant. In d = 2, the
function x1{x>1/2}(x, y) is essentially local Lipschitz but not Lipschitz; this has a
local Lipschitz constant bounded by 1 almost everywhere, but the function jumps
as we cross the line x = 1/2. More generally, cartoon images have the same char-
acter: essentially local Lipschitz and yet neither Lipschitz nor continuous. Such
cartoon images, of course, have jumps along collections of regular curves; we for-
malize such collections as follows.

DEFINITION 3.1. A finite collection of rectifiable planar curves will be called
a complex. Fix λ > 0 and let 	 = 	(λ) denote the class of rectifiable curves in
[0,1]2 with length at most λ. Let C(N,λ) denote the collection of complexes
composed of at most N curves from 	(λ).

DEFINITION 3.2. Fix N ≥ 1 and β > 0. The class of curve-punctuated Lip-
schitz functions CPLIP = CPLIP(λ,β,N) is the collection of functions f : [0,

1]2 �→ [0,1] having local Lipschitz constant bounded by β on the complement
of a C(N,λ)-complex.

Informally, such functions are “locally Lipschitz away from edges” and indeed
can be viewed as models of “cartoons.” We prove the next two results in Sec-
tions 10 and 11, respectively.

THEOREM 3.1. Assume � has mean 0 and variance 1. Then

inf
h>0

Rn(Lh; CPLIP) 	 n−2/3, n → ∞.

THEOREM 3.2. Assume � satisfies [Shape] and [Decay]. Then,

inf
h>0

Rn(Mh; CPLIP) 	 n−2/3, n → ∞.
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The situation parallels the one-dimensional case. In words, for cartoon images
corrupted with white additive noise with constant per-pixel noise level, linear fil-
tering and median filtering have risks of same order of magnitude Rn 	 n−2/3.
Again, the Median folk theorem is contradicted.

The proofs show that the width of the optimal smoothing window for either type
of smoothing is 	 n−2/3.

4. Linear filtering and median filtering with negligible per-pixel noise level.
The analysis so far assumes that the noise level is comparable to the signal level.

For very low-noise-per-pixel level and discontinuities well-separated from the
boundary and each other, the situation is completely different: the Median folk
theorem holds true.

Preliminary remark. We will see in Sections 9 and 12 that, both in dimen-
sions d = 1 and d = 2, linear filtering does not improve on no-smoothing if
σnn

1/2 = O(1), while median filtering improves on no-smoothing if σnn → ∞.
In Theorems 4.1 and 4.2 below we therefore exclude the situation σnn = O(1).

DEFINITION 4.1. The finite point set (xi)
N
i=1 ⊂ [0,1] is called well-separated

with separation constant η > 0 if (i) each point is at least η-separated from the
boundary {0,1}:

min(xi,1 − xi) ≥ η ∀i

and (ii) each point is at least η-separated from every other point:

|xj − xi | ≥ η ∀i, j.

DEFINITION 4.2. Let SEP-PLIP = SEP-PLIP(η,β,N) denote the class of
functions in PLIP(β,N) which have local Lipschitz constant ≤ β on the com-
plement of some η-well-separated set (xi)

N
i=1.

THEOREM 4.1. Let � satisfy [Shape] and [Decay] and let the per-pixel noise
level tend to zero with increasing sample size, σ = σn → 0 as n → ∞, with
σnn → ∞. Then,

inf
h>0

Rn(Mh; SEP-PLIP) = o

(
inf
h>0

Rn(Lh; SEP-PLIP)

)
, n → ∞.

The proof is in Section 9, where we provide more explicit bounds for the risks of
linear and median filtering.

In dimension d = 2, we again have that for negligible per-pixel noise level the
Median folk theorem holds true. To show this, we need the hypothesis that the
discontinuity curves are well-separated from the boundary, and from each other.
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DEFINITION 4.3 (Well-separated complex). Let d(A,B) denote Haussdorff
distance between compact sets A and B . A complex C = (γi) of rectifiable curves
in [0,1]2 is said to be well-separated with separation parameter η > 0, if (i) the
curves are separated from the boundary of the square:

d(γi, BDRY[0,1]2) ≥ η ∀i

and (ii) the curves are separated from each other:

d(γi, γj ) ≥ η ∀i, j.

We also need that the curves are well-separated from themselves (i.e., do not
loop back on themselves). Formally, we need the condition

DEFINITION 4.4 (C2 Chord-arc curves). Fix parameters λ, κ, θ . Let 	2 =
	2(λ, κ, θ) be the collection of planar C2 curves γ with curvature bounded by κ

and chord-arc ratio bounded by θ :

∀s < t
t − s

|γ (t) − γ (s)| ≤ θ and
length(γ ) − t + s

|γ (t) − γ (s)| ≤ θ.

Related classes of curves appear in, for example, Section 5.3 of [21]. Note that
curves with bounded chord-arc ratio appear in harmonic analysis related to poten-
tial theory, for example, [32].

DEFINITION 4.5. Let SEP-CPLIP = SEP-CPLIP(λ, θ, κ, η,β,N) be the col-
lection of curve-punctuated Lipschitz functions with local Lipschitz constant
bounded by β on the complement of an η-well-separated C(N,λ)-complex of κ, θ

chord-arc curves.

For an example, let f = 1D , where D is the disk of radius 1/4 centered at
(1/2,1/2). Then the exceptional complex C = {γ1}, where

γ1(θ) = (1
2 , 1

2)′ + 1
4(cos(θ), sin(θ))′, θ ∈ [0,2π).

For this example, f ∈ SEP-CPLIP with parameters

N ≥ 1, λ ≥ π

2
, β ≥ 0, θ ≥ π

2
, κ ≥ 4, η ≤ 1

4 .

As this example shows, we may choose parameters so that the classes 	 and
SEP-CPLIP are nonempty. In the sequel, we assume this has been done, so that
SEP-CPLIP contains the f just given.

THEOREM 4.2. Assume � satisfies [Shape] and [Decay] and that the per-
pixel noise level tends to zero with increasing sample size, σ = σn → 0 as n → ∞,
with σnn → ∞. Then,

inf
h>0

Rn(Mh; SEP-CPLIP) = o

(
inf
h>0

Rn(Lh; SEP-CPLIP)

)
, n → ∞.

The proof is in Section 12.
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5. Iterated and two-scale median filtering. Iterated (or repeated) median fil-
tering applies a series of median filters Mh1,...,hm[Yn] ≡ Mhm ◦ · · · ◦ Mh1[Yn]. That
is, median filtering with window size h1 is first applied, then median filtering with
window size h2 is applied to the resulting signal, and so on. In the 1970s Tukey
advocated such compositions of medians in connection with d = 1 signals, for ex-
ample, applying medians of lengths 3, 5, and 7 in sequence—possibly, along with
other operations, including linear filtering. Here we are interested in much longer
windows than Tukey, in fact in windows that grow large as n increases.

Tukey also advocated the iteration of medians until convergence—his so-called
“3R” median filter applies running medians of three repeatedly until no change
occurs. The mathematical study of repeated medians Mh1,...,hm is a challenging
endeavor, however, because of the strong dependency that median filtering intro-
duces with every pass, though [3, 4] attempt to carry out just such studies, in the
situation where there is only noise and no signal. See also Rousseeuw and Bas-
sett [29].

Here, inspired by the intuition supplied in Figure 1 and by the results of the
previous section, we consider two-scale median filtering. The first pass aims at
increasing the signal-to-noise ratio, so the second pass can exploit the promising
characteristics of median filtering at high signal-to-noise ratio.

We describe the process in dimension d . For h > 0, consider the squares

Bh
k = [

k1nh + 1, (k1 + 1)nh
) × · · · × [

kdnh + 1, (kd + 1)nh
)
,

where k = (k1, . . . , kd) ∈ N
d with 0 ≤ kj < 1/h. Fix 0 < h1 < h2 < 1 and define

Mh1,h2[Yn] as follows:

1. For k = (k1, . . . , kd) ∈ N
d with 0 ≤ kj < 1/h1, define

Yh1
n (k) = Median{Yn(i) : i ∈ B

h1
k };

thus Y
h1
n is a coarsened version of Yn.

2. For i ∈ B
h1
k , define

Mh1,h2[Yn](i) = Mh2[Yh1
n ](k).

In words, we apply median filtering to the coarse-scale version Y
h1
n and get back

the fine-scale version by crude piecewise interpolation. The following results, for
d = 1,2, respectively, are proven in Sections 13 and 14.

THEOREM 5.1. Assume � satisfies [Shape] and [Decay]. Then,

inf
0<h1<h2

Rn(M
h1,h2; SEP-PLIP) 	 n−2/3, n → ∞.

THEOREM 5.2. Assume � satisfies [Shape] and [Decay]. Then,

inf
0<h1<h2

Rn(M
h1,h2; SEP-CPLIP) 	 n−6/7, n → ∞.
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Compare Theorems 5.1 and 5.2 with Theorems 2.2 and 3.2, respectively. In
dimension d = 1, the rate improves from O(n−1/2) to O(n−2/3); in dimension
d = 2, from O(n−2/3) to O(n−6/7). Hence, with carefully chosen window sizes,
our two-scale median filtering outperforms linear filtering. The optimal choices are
h1 	 n−2/3 and h2 	 n−1/3 for d = 1; h1 	 n−6/7 and h2 	 n−4/7 for d = 2.

Though this falls short of proving that indefinitely iterated median filtering of
the sort envisioned by Tukey dramatically improves on linear filtering or that the
PDE folk theorem is true for Mean Curvature Motion, it certainly suggests hy-
potheses for future research in those directions.

6. Tools for analysis of medians. Before proceeding step-by-step with proofs
of the theorems announced above, we isolate some special facts about medians
which are used frequently and which ultimately drive our analysis.

6.1. Elementary properties. Let Medn(·) denote the empirical median of n

numbers. We make the following obvious but essential observations:

• Monotonicity. If xi ≤ yi , i = 1, . . . , n,

Medn(x1, . . . , xn) ≤ Medn(y1, . . . , yn).(6.1)

• Lipschitz mapping.

|Medn(x1, . . . , xn) − Medn(y1, . . . , yn)| ≤ n
max
i=1

|xi − yi |.(6.2)

6.2. Bias bounds. Since Huber [18] the median is known to be optimally ro-
bust against bias due to data contamination. Such robustness is essential to our
analysis of the behavior of median filtering near edges. In effect, data contributed
by the “other side” of an edge act as contamination that the median can optimally
resist.

Consider now a composite dataset of n + m points made from xi , i = 1, . . . , n,
yi , i = 1, . . . ,m. Think of the y’s as “bad” contamination of the “good” xi which
may potentially corrupt the value of the median. How much damage can the y’s
do? Equation (6.1) yields the mixture bounds

Medn+m(x1, . . . , xn,−∞, . . . ,−∞) ≤ Medn+m(x1, . . . , xn, y1, . . . , ym)
(6.3)

≤ Medn+m(x1, . . . , xn,∞, . . . ,∞).

Observe that if m < n, then the median of the combined sample cannot be larger
than the maximum of the x’s nor can it be smaller than the minimum of the x’s:

Medn+m(x1, . . . , xn,−∞, . . . ,−∞) ≥ min(x1, . . . , xn)

and

Medn+m(x1, . . . , xn,∞, . . . ,∞) ≤ max(x1, . . . , xn).
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Generalizing this observation leads to bias bounds employing the empirical
quantiles of x1, . . . , xn. Let Fn(t) = n−1#{i :xi ≤ t} be the usual cumulative dis-
tribution function of the numbers (xi), and let F−1

n denote the empirical quantile
function. Set ε = m/(m + n) and suppose ε ∈ (0,1/2). As in [18], we bound the
median of the combined sample by the quantiles of the “good” data only:

F−1
n

(
1/2 − ε

1 − ε

)
≤ Medn+m(x1, . . . , xn, y1, . . . , ym) ≤ F−1

n

(
1/2

1 − ε

)
.(6.4)

This inequality will be helpful later, when the combined sample corresponds to all
the data within a window of the median filter, the “good” data correspond to the
part of the window on the “right” side of an edge, and the “bad” data correspond
to the part of the window on the “wrong” side of the edge.

6.3. Variance bounds for uncontaminated data. The stochastic properties of
the median are also crucial in our analysis; in particular we need bounds on
the variance of the median of “uncontaminated” samples, that is, of the samples

(Zi)
m
i=1, Zi

i.i.d.∼ � . The following bounds on the variance of empirical medians
behave similarly to expressions for variances of empirical averages.

LEMMA 6.1. Suppose � satisfies [Shape] and [Decay]. Then, there are con-
stants C1,C2 depending only on ζ(�), such that

C1

m
≤ E[Medm(Z1, . . . ,Zm)2] ≤ C2

m
, m = 1,2, . . . .

PROOF. In Section 15, we prove Lemma 15.1 which states that [Shape] and
[Decay] imply a condition due to David Mason, allowing us to apply Proposition 2
in [23]. �

We also need to analyze the properties of repeated medians (medians of medi-
ans). Borrowing ideas of Rousseeuw and Bassett [29], we prove the following in
Section 15.

LEMMA 6.2. Assume � satisfies [Shape] and [Decay], and consider Z1, . . . ,

Zm a sample from � . Let �m denote the distribution of m1/2 Median{Z1, . . . ,Zm}.
Then, for all m, �m satisfies [Shape] and [Decay]. More precisely, there is a con-
stant C such that, for m large enough, ψm(x)(1 + |x|)4 ≤ C for all x.

6.4. Variance of empirical quantiles, uncontaminated data. Because of the
bias bound (6.4) it will be important to control not only the empirical median, but
also other empirical quantiles besides p = 1

2 .
Let Zm,p denote the empirical p-quantile of Z1, . . . ,Zm, a sample from � . That

is, with Z(1), . . . ,Z(m) denoting order statistics of the sample, and 0 < p < 1,

Zm,p ≡ Z(1+�mp�).
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LEMMA 6.3. Fix ζ > 1. Let � satisfy [Shape] and [Decay]. Define

α =

⎧⎪⎪⎨
⎪⎪⎩

5ζ − 3

4ζ − 4
, if ζ > 3,

ζ

ζ − 1
, if ζ ≤ 3.

(6.5)

There is a constant C > 0 such that, for all sufficiently large positive integer m and
p ∈ (2α/m,1 − 2α/m),

E[Z2
m,p] ≤ C

(
p(1 − p)

)−2α+2
.

PROOF. Again noting Lemma 15.1, we are entitled to apply Proposition 2
in [23]. We then invoke Lemma 15.2. �

In words, provided that we do not consider quantiles p very close to the ex-
tremes 0 and 1, the variance is well-controlled. The rate at which the variance
blows up as p → 0 or 1 is ultimately determined by the value of ζ > 1 and will be
of crucial significance for some bounds below.

6.5. MSE lower bound for contaminated data. As a final key ingredient in our
analysis, we develop a simple lower bound on the mean-square displacement of
the empirical median of contaminated data. Let

μ̂n,m,� ∼ Medn+m(Z1, . . . ,Zn,Zn+1 + �, . . . ,Zn+m + �).

In words this is the empirical median of n + m values, the first n of which are
“good” data with median 0, and the last m of which are contaminated, having
median �. For � > 0 and ε ∈ (0,1), define the mixture CDF

Fε,�(·) = (1 − ε)�(·) + (1 − ε)�(· − �).(6.6)

Let μ = μ(ε,�) be the corresponding population median:

μ = F−1
ε,�

(1
2

)
.

Actually, μ(ε,�) is almost the population median of the empirical median μ̂n,m,�.
More precisely, we have the following lemma.

LEMMA 6.4. For ε = m/(n + m),

P {μ̂n,m,� ≥ μ(ε,�)} ≥ 1/2.

PROOF. For all a ∈ R

P{μ̂n,m,� < a} = P

{
n∑

j=1

{Zj < a} +
n+m∑

j=n+1

{Zj < a − �} ≥ (n + m)/2

}
.
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Applying a result of Hoeffding [35], page 805, Inequality 1, we get that, for a ≤
μ(ε,�), the right-hand side is bounded by

P
{
Bin

(
n + m,Fε,�(a)

) ≥ (n + m)/2
} ≤ 1/2. �

For each fixed � > 0, increasing contamination only increases the population
median:

μ(ε,�) is an increasing function of ε ∈ (0,1/2).(6.7)

Combining the last two observations, we have the MSE lower bound

Eμ̂2
n,m,� ≥ μ(ε0,�)2/2, ε0 < m/(n + m).(6.8)

7. Proof of Theorem 2.1. We now turn to proofs of our main results. In what
follows, C stands for a generic positive constant that depends only on the relevant
function class and the distribution �; its value may change from appearance to
appearance. Also, to simplify the notation we use W(i) ≡ W [n,h](i), Lh(i) ≡
Lh[Yn](i) and so on. We also write F1 in place of PLIP.

7.1. Upper bound. Fix f ∈ F1. Let x1, . . . , xN ∈ (0,1) denote the points
where f is allowed to be discontinuous. Here and throughout the rest of the paper
we assume that h ≥ 1/n. Indeed, if to the contrary h < 1/n, then for all i ∈ In,
W(i) = {i} and so Rn(Lh;f ) = σ 2 	 1.

We will demonstrate that

R(Lh;F1) ≤ C

(
h + 1

nh

)
.(7.1)

Minimizing the right-hand side as a function of h ≥ 1/n gives hn = n−1/2, which
implies our desired upper bound:

R(Lh;F1) ≤ Cn−1/2.(7.2)

This upper bound may also be obtained from existing results, because F1 is
included in a total-variation ball. Indeed,

‖f ‖BV ≤ 2β + N,

so, in an obvious notation F1 ⊂ BV (2β +N). From standard results on estimation
of functions of bounded variation in white noise—[10, 21]—we know that

inf
h>0

R(Lh;BV (ν)) ≤ ν · n−1/2,

which implies (7.2). Nevertheless, we spell out here an argument based on bias-
variance trade-off, because this sort of trade-off will be used again repeatedly be-
low.
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Write the mean-squared error as squared bias plus variance: Rn(Lh;f ) = B2 +
V , where

B2 = 1

n

n∑
i=1

(
E[Lh(i)] − f (i/n)

)2 and V = 1

n

n∑
i=1

var[Lh(i)].

For the variance, since the {Yn(j) : j ∈ In} are pairwise uncorrelated and their
variance is equal to σ 2, we have

var[Lh(i)] = σ 2

#W(i)
≤ σ 2

nh
.

Therefore,

V ≤ σ 2

nh
.(7.3)

For the bias, recall that E[Yn(j)] = f (j/n) for all j ∈ In, so

E[Lh(i)] = 1

#W(i)

∑
j∈W(i)

f (j/n).

Now consider separately cases where i is “near to” and “far from” the discontinu-
ity. Specifically, define:

• Near: � = {i ∈ In : mins |i/n − xs | ≤ h}—in words, � is the set of points where
the smoothing window does meet the discontinuity.

• Far: �c = {i ∈ In : mins |i/n − xs | > h}—�c is the set of points where the
smoothing window does not meet the discontinuity.

Near the discontinuity, use the fact that as f takes values in [0,1],
|E[Lh(i)] − f (i/n)| ≤ 1.(7.4)

Far from the discontinuity, we apply a sharper estimate that we now develop.
Let i ∈ �c and consider j ∈ W(i). The local Lipschitz constant bound β gives

|f (j/n) − f (i/n)| ≤ h sup
x∈[i/n,j/n]

Lx(f ) ≤ βh,(7.5)

which implies

|E[Lh(i)] − f (i/n)| ≤ βh, i ∈ �c.(7.6)

Combining (7.4) and (7.6), we bound the squared bias by

B2 ≤ #�c

n
β2h2 + #�

n
.(7.7)

The number of “near” terms obeys 0 ≤ #� ≤ N(2nh + 1), and of course the frac-
tion of “far” terms obeys #�c/n ≤ 1, so we get

B2 ≤ β2h2 + 2Nh + N/n ≤ Ch,(7.8)

since h ≥ 1/n; we may take C = (β2 + 3N).
Hence, R(Lh;f ) ≤ C(h+1/(nh)), and this bound does not depend on f ∈ F1,

so (7.1) follows.
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7.2. Lower bound. Let f be the indicator function of the interval [1/2,1].
Then f ∈ F1 for all N ≥ 1 and β > 0.

For the variance, since #W(i) ≤ 3nh, we have

V ≥ σ 2

3nh
.

For the squared bias, we show that the pointwise bias is large near the disconti-
nuity. For example, take n/2 − nh/2 ≤ i < n/2, so that f (i/n) = 0 and therefore

|E[Lh(i)] − f (i/n)| = E[Lh(i)] = #{j ∈ W(i) : j/n ≥ 1/2}
#W(i)

.

Since #{j ∈ W(i) : j/n ≥ 1/2} ≥ nh/2 and #W(i) ≤ 3nh, the pointwise bias ex-
ceeds 1/6:

|E[Lh(i)] − f (i/n)| ≥ nh/2

3nh
≥ 1/6.

Therefore,

B2 ≥ #{i ∈ In :n/2 − nh/2 ≤ i < n/2}
n

(1/6)2 ≥ Ch,

where C = 1/72 will do.
Combining bias and variance bounds, we have for any choice of radius h,

Rn(Lh;f ) ≥ C

(
h + 1

nh

)
≥ Cn−1/2.

8. Proof of Theorem 2.2. Now we analyze median filtering. The proof par-
allels that for Theorem 2.1 and uses the results of Section 6. Here too, we use
abbreviated notation.

8.1. Upper bound. Fix f ∈ F1. Let x1, . . . , xN ∈ (0,1) be the points where f

may be discontinuous. Without loss of generality, we again let h ≥ 1/n.
We will show that

Rn(Mh;F1) ≤ C

(
h + 1

nh

)
.(8.1)

As in the proof of Theorem 2.1, picking hn = n−1/2 in (8.1) implies our desired
upper bound, namely:

inf
h>0

Rn(Mh;F1) ≤ Cn−1/2.

To get started, we invoke the monotonicity and Lipschitz properties of the me-
dian (6.1)–(6.2), yielding

|Mh(i) − f (i/n)| ≤ max
j∈W(i)

|f (j/n) − f (i/n)| + σ |Ẑ(i)|,
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where Ẑ(i) = Median{Zn(j) : j ∈ W(i)}.
Near the discontinuity, we again observe that since f takes values in [0,1], we

have

max
j∈W(i)

|f (j/n) − f (i/n)| ≤ 1

for all i ∈ In, and so

|Mh(i) − f (i/n)| ≤ 1 + σ |Ẑ(i)| ∀i ∈ In.(8.2)

Now consider the set �c = {i ∈ In : mins |i/n − xs | > h} far from the disconti-
nuity. Using (7.5), we get

|Mh(i) − f (i/n)| ≤ βh + σ |Ẑ(i)| ∀i ∈ �c.(8.3)

Using (8.2) and (8.3), we get

Rn(Mh;f ) ≤ #�c

n
β2h2 + #�

n
+ 1

n

n∑
i=1

E[Ẑ(i)2].(8.4)

The term on the far right is a variance term, which can be handled using
Lemma 6.1 at sample size m = #W(i) ≥ nh, yielding variance V ≤ C/(nh). The
bias terms involve #� and #�c and are completely analogous to the case of linear
filtering and are handled just as at (7.8), using 0 ≤ #� ≤ N(2nh + 1). We obtain
Rn(Mh;f ) ≤ C(h+1/(nh)). Since this does not depend on f ∈ F1, (8.1) follows.

8.2. Lower bound. Let f be the indicator function of the interval [1/2,1].
Surely, f ∈ F1 for any N ≥ 1 and β > 0.

For i ∈ �c

|Mh(i) − f (i/n)| = σ |Ẑ(i)|,
so that, by Lemma 6.1,

E
[(

Mh(i) − f (i/n)
)2] ≥ C

1

nh
.(8.5)

Therefore,

1

n

∑
i∈�c

E
[(

Mh(i) − f (i/n)
)2] ≥ C

1

nh
.

For i ∈ �, we view the window as consisting of a mixture of “good” data, on
the same side of the discontinuity as i together with “bad” data, on the other side.
Thus

|Mh(i) − f (i/n)| = σ |Kn(i)|,
where, with w(i) = #W(i) 	 nh, and

ρ(i) = #{j : j ∈ W(i) and on the same side of the discontinuity}
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we have

Kn(i) ∼ Median
{
Z1, . . . ,Zρ(i)w(i),Z1+ρ(i)w(i) + 1/σ, . . . ,Zw(i) + 1/σ

}
.

This is exactly a median of contaminated data as discussed in Section 6.5, with
� = 1/σ , m + n = w(i), n = ρ(i)w(i) and ε = 1 − ρ(i). Invoking Lemma 6.4
with μi = μ(1 − ρ(i),1/σ), applying (6.8) for ε0 = 1/5 and setting C =
σ 2μ2(1/5,1/σ)/2, we have

E
[(

Mh(i) − f (i/n)
)2] ≥ C ∀i such that ρ(i) ≤ 4/5.(8.6)

Since #{i :ρ(i) ≤ 4/5} 	 nh, we get

1

n

∑
i∈�

E
[(

Mh(i) − f (i/n)
)2] ≥ Ch.

Combining pieces, we get for any choice of h

Rn(Mh;f ) ≥ C

(
h + 1

nh

)
≥ C · n−1/2,

which matches the upper bound.

9. Proof of Theorem 4.1. We turn to the setting of Section 4: asymptotically
negligible noise per pixel: σ = σn = o(1).

9.1. Linear filtering. By just carrying the variance term in Section 7 and com-
paring with the no-smoothing rate, we immediately see that

R(Lh; SEP-PLIP) 	 σnn
−1/2 ∧ σ 2

n .

Hence, linear filtering improves on no-smoothing if, and only if, σnn
1/2 → ∞.

9.2. Upper bound for median filtering. We refine the argument from Section 8
in the case where the discontinuities are well-separated. Let F +

1 = SEP-PLIP as
defined in Section 5. Note that (9.7) will be used in the proof of Theorem 5.1.

Assuming n > 2/η, choose h ∈ [1/n,η/2). Since median filtering is local and
the discontinuities are η-separated, we may assume that f only has N = 1 discon-
tinuity point x1.

Far from the discontinuity, at i ∈ �c, we use (8.2) and Lemma 6.1 to get

E
[(

Mh(i) − f (i/n)
)2] ≤ C

(
h2 + σ 2

n

nh

)
, i ∈ �c;(9.1)

note that σn is now nonconstant.
Near the discontinuity, we now take more seriously the viewpoint that the win-

dow contains “good” data (on the same side of the discontinuity) and “bad” data
(on the other side) and we bound the MSE more carefully than before.
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So take i ∈ �. Define the “good” subset G(i)—the subset of the window on the
same side of the discontinuity as i—by

G(i) =
{

W(i) ∩ [nx1, n], i/n > x1,
W(i) ∩ [1, nx1), i/n < x1.

(9.2)

Let ρ(i) = #G(i)/#W(i) and ε(i) = 1 − ρ(i). The window W(i) provides an
ε-contaminated sample in the sense of Huber [18].

By the contamination bias bound (6.4), Mh(i) lies between the 1/2−ε
1−ε

=
(2ρ(i) − 1)/(2ρ(i)) and 1

2(1−ε)
= 1/(2ρ(i)) quantiles of {Yn(j) : j ∈ G(i)}. Also,

as in (7.5), we have

|f (j/n) − f (i/n)| ≤ βh ∀j ∈ G(i),

so the quantiles of these “good data” {Yn(j) : j ∈ G(i)} are small perturbations
of the quantiles of corresponding zero-median data {Zn(j) : j ∈ G(i)}. Let Qn(i)

denote the maximum absolute value of the empirical (2ρ(i) − 1)/(2ρ(i)) and
1/(2ρ(i)) quantiles of {Zn(j) : j ∈ G(i)}. By (6.2) and (6.4)

|Mh(i) − f (i/n)| ≤ βh + σnQn(i).(9.3)

We combine (9.3) with (8.2) and Lemma 6.1 to get

E
[(

Mh(i) − f (i/n)
)2] ≤ CE

[(
1 + σ 2

n Ẑ(i)2) ∧ (
β2h2 + σ 2

nQn(i)
2)]

≤ C
(
1 + σ 2

n E[Ẑ(i)2]) ∧ (
β2h2 + σ 2

n E[Qn(i)
2])

≤ C
(
h2 + 1 ∧ σ 2

n E[Qn(i)
2]),

where for the last inequality we used Lemma 6.1 together with h ≥ 1/n, and the
fact that a ∧ (b + c) ≤ (a ∧ b) + c for any a, b, c ≥ 0.

Recalling Section 6.4, let Zm,p denote the empirical p-quantile of Z1, . . . ,Zm,
a sample from � . Because � is symmetric about 0, |Qn(i)| is stochastically ma-
jorized by 2|Zm(i),p(i)|, with m(i) = #G(i) = ρ(i)#W(i) and p(i) = 1/(2ρ(i)).
Hence

E[Qn(i)
2] ≤ 4E

[
Z2

m(i),p(i)

]
.(9.4)

Using (9.4) and Lemma 6.3, we obtain, for i ∈ �,

E
[(

Mh(i) − f (i/n)
)2] ≤ C

(
h2 + 1 ∧ σ 2

n

(
p(i)

(
1 − p(i)

))−2α+2)
.

Therefore,

Rn(Mh;f ) ≤ C

(
h2 + σ 2

n

nh
+ 1

n

∑
i∈�

1 ∧ σ 2
n

(
p(i)

(
1 − p(i)

))−2α+2
)
.(9.5)

We focus on the last term on the right-hand side.
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Let δ(i) = |i/n − x1|; since i ∈ �, δ(i) ≤ h. We have

ρ(i) = [nδ(i)] + [nh] + 1

2[nh] + 1
≥ 1

2
+ C

δ(i)

h
.

So there is a constant C > 0 such that

p(i) ≤ 1 − Cδ(i)/h ∀i ∈ �.(9.6)

Note that we always have p(i) ≥ 1/2.
Therefore

1

n

∑
i∈�

1 ∧ σ 2
n

(
p(i)

(
1 − p(i)

))−2α+2 ≤ C
1

n

∑
i∈�

1 ∧ σ 2
n

(
δ(i)/h

)−2α+2

≤ Ch
1

nh

nh∑
i=1

1 ∧ σ 2
n

(
i/(nh)

)−2α+2

≤ Ch

∫ 1

0
1 ∧ σ 2

n s−2α+2 ds = Chνn

with

νn =
⎧⎪⎨
⎪⎩

σ 2
n , if ζ > 3,

σ 2
n log(1/σn), if ζ = 3,

σ
ζ−1
n , if ζ < 3.

Combining pieces gives

Rn(Mh;f ) ≤ C

(
h2 + σ 2

n

nh
+ hνn

)
.(9.7)

Optimizing the right-hand side over h, we get

Rn(Mh;f ) ≤ C(ν1/2
n ∨ σ 1/3

n n−1/6) · σnn
−1/2 = o(σnn

−1/2).

This bound improves on no-smoothing if σnn → ∞.

9.3. Lower bound for median filtering. A lower bound is not needed to prove
Theorem 4.1. However, we will use the following lower bound in the proof of
Theorem 5.1.

Let f be the indicator function of the interval [1/2,1]. A lower bound is ob-
tained by using the arguments in Section 8.2, but this time carrying σn along and
noticing that μ(ε,�) is increasing in �. One gets

Rn(Mh;f ) ≥ C

(
hσ 2

n + σ 2
n

nh

)
.(9.8)

This bound matches the upper bound, for example, when ζ > 3 and σnn
1/4 → ∞.

This is the setting that will arise in Section 13.
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10. Proof of Theorem 3.1. We consider two-dimensional linear filtering. The
structure of the argument parallels the one-dimensional case presented in Sec-
tion 7. The main difference involves counting points near to discontinuities.

10.1. Upper bound. We also write F2 in place of CPLIP. Fix f ∈ F2. We call
γ1, . . . , γN ∈ 	 the curves where f may be discontinuous.

As before, we write MSE = B2 + V .
Again, we may assume h ≥ 1/n. Since #W(i) ≥ (nh)2, we have V ≤ 1/(nh)2.
In the two-dimensional case, we define proximity to singularity as follows.

Write d(A,B) for Haussdorff distance between subsets A and B of the unit square:

• Far: Let �c = {i ∈ I
2
n : mins d(i/n, γs) > h}.

• Near: Let � = {i ∈ I
2
n : mins d(i/n, γs) ≤ h}.

Using the exact same arguments as in Section 7, we obtain the equivalent
of (7.7):

B2 ≤ #�c

n2 β2h2 + #�

n2 ≤ β2h2 + #�

n2 .

Lemma 16.1 provides an estimate for #� which, when used in the above expres-
sion, implies B2 ≤ Ch.

Thus, Rn(Lh;f ) ≤ C(h + 1/(nh)2). The right-hand side does not depend on
f ∈ F2, so

Rn(Lh;F2) ≤ C

(
h + 1

(nh)2

)
.

Minimizing the right-hand side over h ≥ 1/n gives h = n−2/3, yielding R(Lh;
F2) ≤ Cn−2/3.

10.2. Lower bound. Fix 0 < ζ < (1/2) ∧ (λ/4) and let f be the indicator
function of the axis-aligned square of sidelength ζ centered at (1/2,1/2), namely
f = 1S where S = [1/2 − ζ/2,1/2 + ζ/2] × [1/2 − ζ/2,1/2 + ζ/2]. Certainly,
f ∈ F2.

Again, the variance V ≥ 1/(3nh)2. For the squared bias B2, we show that the
pointwise bias is of order 1 near the discontinuity. For example, take i ∈ I

2
n such

that

i/n ∈ [1/2 − ζ/2 − h/2,1/2 − ζ/2] × [1/2 − ζ/2,1/2 + ζ/2],
so that f (i/n) = 0 and therefore the bias obeys

|E[Lh(i)] − f (i/n)| = E[Lh(i)] = #{j ∈ W(i) : j ∈ nS}
#W(i)

.

For such i, #{W(i) ∩ nS} is of order (nh)2, since the intersection of the disc of
radius h centered at i/n with S contains a square of sidelength Ch. Therefore, the
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bias is of order 1 for such i, and there are order n2h such i. Hence the squared
bias B2 is at least of order h.

Combining pieces, we get for all h,

Rn(Lh;f ) ≥ C ·
(
h + 1

(nh)2

)
≥ C · n−2/3.

11. Proof of Theorem 3.2. The structure of the proof is identical to the case
of one-dimensional signals presented in Section 8. In the details, the only signif-
icant difference is on computing the number of points away from discontinuities.
We use the same definitions � and �c as in Section 8.

11.1. Upper bound. Fix f ∈ F2. We call γ1, . . . , γN ∈ 	 the curves where f

may be discontinuous. Again, we may assume h ≥ 1/n.
Define �c = {i ∈ I

2
n : mins d(i/n, γs) > h}. Using the exact same arguments as

in Section 8, we obtain the equivalent of (8.4):

Rn(Mh;f ) ≤ #�c

n2 β2h2 + #�

n2 + 1

n2

∑
i∈I2

n

E[Ẑ(i)2].

Lemma 16.1 provides an estimate for #� which, when used in the above expres-
sion, leads to Rn(Lh;f ) ≤ C(h + 1/(nh)2). From there we conclude as in Sec-
tion 10.1.

11.2. Lower bound. Let f ∈ F2 be the indicator function of a disc D.
For i ∈ �c, the equivalent of (8.5) holds and together with Lemma 16.1 implies

1

n2

∑
i∈�c

E
[(

Mh(i) − f (i/n)
)2] ≥ C

1

(nh)2 .

The equivalent of (8.6) holds as well and implies

1

n2

∑
i∈�

E
[(

Mh(i) − f (i/n)
)2] ≥ C

1

n2 #{i :ρ(i) ≤ 4/5}.

We now show that, for i/n ∈ Dc such that δ(i) ≥ 1/n, ρ(i) ≤ 1/2 + Cδ(i)/h.
Let y ∈ ∂D be the closest point to i/n and L the tangent to ∂D at y. L divides
B(i/n,h) into two parts A and B(i/n,h) ∩ Ac, where i/n ∈ A. We have A =
A0 ∪ H , where H is the open half disc with diameter parallel to L that does not
intersect ∂D. We have G(i) = I

2
n ∩ nA, so that #G(i) ≤ #W(i)/2 + #(I2

n ∩ nA0).
A0 is contained within a rectangular region R with dimensions δ(i) by 2h and for
any rectangular region, |R| ≤ C|R|n2 + O(nh). Hence, since nδ(i) ≥ 1,

#(I2
n ∩ nA0) ≤ #(I2

n ∩ nR) ≤ Chδ(i)n2.

Therefore, ρ(i) ≤ 1/2 + Cδ(i)/h.
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We thus have

#{i :ρ(i) ≤ 4/5} ≥ #{i : 1/n ≤ δ(i) ≤ Ch}.
Let K = |{x :d(x, ∂D) ≤ Ch}|. We have nh � 1 so that

K ⊂ ⋃
i/n∈R

B(i/n,2/n),

which implies |K| ≤ C#{i : δ(i) ≤ Ch}/n2. By elementary calculus, |K| ≥ Ch, so

#{i :ρ(i) ≤ 4/5} ≥ Cn2h.

We obtain for all h

Rn(Mh;f ) ≥ C

(
1

(nh)2 + h

)
≥ Cn−2/3.

12. Proof of Theorem 4.2. We consider again median filtering in the
negligible-noise-per-pixel case of Section 4, this time in the two-dimensional set-
ting.

12.1. Linear filtering. By just carrying the variance term in Section 10 and
comparing with the no-smoothing rate, we immediately see that

R(Lh; SEP-CPLIP) 	 σ 2/3
n n−2/3 ∧ σ 2

n .

Hence, linear filtering improves on no-smoothing if, and only if, σnn
1/2 → ∞.

12.2. Upper bound for median filtering. We refine our arguments in the set-
ting of asymptotically negligible noise level σ = σn = o(1) with well-separated
discontinuities. Let F +

2 = SEP-CPLIP as defined in Section 5. Note that (12.1)
will be used in the proof of Theorem 5.2.

Letting n > 2/η, choose h ∈ [1/n,η/2). Since median filtering is local and the
discontinuities are at least η apart, we may assume that N = 1, namely that f only
has one discontinuity curve γ ∈ 	+. Being a Jordan curve, γ partitions [0,1]2 into
two regions, the inside (�) and the outside (�c).

We proceed as in Section 8, introducing δ(i) = d(i/n, γ ) and

G(i) =
{

W(i) ∩ �, if i/n ∈ �,
W(i) ∩ �c, if i/n ∈ �c,

together with ρ(i) = #G(i)/#W(i) and p(i) = 1/(2ρ(i)).
Using the exact same arguments as in Section 8, we obtain the equivalent

of (9.5):

Rn(Mh;f ) ≤ C

(
h2 + σ 2

n

(nh)2 + 1

n2

∑
i∈�

1 ∧ σ 2
n

(
p(i)

(
1 − p(i)

))−2α+2
)
.
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We bound the last term on the right-hand side by

1

n2

∑
i∈�∩�c

1

1 ∧ σ 2
n

(
p(i)

(
1 − p(i)

))−2α+2 + 1

n2

∑
i∈�1

1,

where �c
1 = {i ∈ I

2
n : δ(i) > 2(C1h

2 + n−1)}, the constant C1 > 0 being given by
Lemma 16.2—the second term in this last expression represents the bias due to the
curvature of the discontinuity.

For � = 0, . . . , [nh], define

�� = {i ∈ I
2
n :� ≤ nδ(i) < � + 1}.

We use Lemma 16.4 to get

1

n2

∑
i∈�1

1 = 1

n2

2n(C1h
2+n−1)∑

�=0

#�� ≤ C
1

n

2n(C1h
2+n−1)∑

�=0

1 ≤ C(h2 ∨ n−1).

We use Lemmas 16.2 and 16.4, and replicate the computations below (9.6) to get

1

n2

∑
i∈�∩�c

1

1 ∧ σ 2
n

(
p(i)

(
1 − p(i)

))−2α+2 ≤ C
1

n2

nh∑
�=0

#�� · (
1 ∧ σ 2

n

(
�/(nh)

)−2α+2)

≤ C
1

n

nh∑
�=0

1 · (
1 ∧ σ 2

n

(
�/(nh)

)−2α+2)
≤ Chνn.

Combining inequalities,

Rn(Mh;f ) ≤ C

(
h2 + σ 2

n

(nh)2 + hνn

)
.(12.1)

Optimizing the right-hand side over h, we get

Rn(Mh;f ) ≤ C(ν2/3
n ∨ σ 1/3

n n−1/3) · σ 2/3
n n−2/3 = o(σ 2/3

n n−2/3).

This bound improves on no-smoothing if σnn → ∞.

12.3. Lower bound for median filtering. This is not needed to prove Theo-
rem 4.2. However, we will use the following lower bound in the proof of Theo-
rem 5.2.

Let f be the indicator function of a disc D such that f ∈ F +
2 . The low-noise-

per-pixel case comes again from carrying σn along, yielding

Rn(Mh;f ) ≥ C

(
hσ 2

n + σ 2
n

(nh)2

)
.(12.2)

This bound matches the upper bound, for example, when ζ > 3 and σnn
1/3 → ∞.

This is the setting that will arise in Section 14.
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13. Proof of Theorem 5.1.

13.1. Upper bound. Without loss of generality, fix σ = 1. Let 1/n ≤ h1 <

h2 < 1 to be chosen later as functions of n. We only need consider h1 � 1/n,
for otherwise the first pass does not reduce the noise level significantly. Also, for
simplicity we assume that both n1 = h−1

1 and nh1 are integers.
Fix f ∈ F +

1 . Again, we may assume that N = 1 without loss of generality. Call
x1 ∈ (0,1) the point where f is discontinuous and let

{k1} = {k :x1 ∈ (B
h1
k /n)}.

Using (6.1)–(6.2), we have

Yh1
n (k) = f (kh1) + Zh1

n (k) + V h1
n (k),

where

Zh1
n (k) = Median{Zn(i) : i ∈ B

h1
k },

|V h1
n (k)| ≤ Uh1

n (k) = max
i∈B

h1
k

|f (i/n) − f (kh1)|.

Since for k 
= k1, f is locally Lipschitz in B
h1
k , we have

|Uh1
n (k)| ≤

{
βh1, k 
= k1,
1, k = k1.

Let σ ′
n = (2nh1 + 1)−1/2 and define Z′

n(k) = Z
h1
n (k)/σ ′

n. The Z′
n(k)’s are in-

dependent and identically distributed, and by Lemma 6.2, their distribution � ′
n

satisfies [Shape] and [Decay] with ζ(� ′
n) ≥ 4 and implicit constant independent

of n. Define Y ′
n(k) = f (kh1) + σ ′

nZ
′
n(k). For i ∈ B

h1
k , we have

|Mh1,h2[Yn](i) − f (i/n)|
≤ |Mh2[Yh1

n ](k) − Mh2[Y ′
n](k)|

+ |Mh2[Y ′
n](k) − f (kh1)| + |f (kh1) − f (i/n)|

≤ |Mh2[Y ′
n](k) − f (kh1)| + 2|Uh1

n (k)|.
Hence, using the bounds on U

h1
n (k), we have

Rn(M
h1,h2;f ) = 1

n

∑
k∈In1

∑
i∈B

h1
k

E
[(

Mh1,h2[Yn](i) − f (i/n)
)2]

≤ C
1

n1

∑
k∈In1

E
[(

Mh2[Y ′
n](k) − f (k/n1)

)2] + Uh1
n (k)2

≤ C
1

n1

∑
k∈In1

E
[(

Mh2[Y ′
n](k) − f (k/n1)

)2] + Ch1.



MEDIAN VS LINEAR FILTERING 1199

Using the upper bound (9.7) on the first term, which we may use since we are back
to the original situation, we get

Rn(M
h1,h2;f ) ≤ C

(
h2

2 + (σ ′
n)

2

n1h2
+ h2(σ

′
n)

2
)

+ Ch1.

We then replace σ ′
n by its definition (2nh1 + 1)−1/2 and minimize over h1 and h2,

with h1 = n−2/3 and h2 = n−1/3, and obtain the desired upper bound valid for any
f ∈ F +

1 .

13.2. Lower bound. Fix h1 < h2. We again assume for convenience that n1 =
1/h1 and nh1 are integers. Let f be the indicator function of the interval [t,1],
where t is the middle of the unique interval of the form [kh1, (k+1)h1) containing
1/2. By the definition of f ,

#{i ∈ B
h1
k1

:f (i/n) = 0}
#B

h1
k1

∈ [1/3,2/3].

Hence, because Mh1,h2[Yn](i) = Mh1,h2[Yn](j) for all i, j ∈ B
h1
k1

,

1

n

∑
i∈B

h1
k1

E
[(

Mh1,h2[Yn](i) − f (i/n)
)2] ≥ C

nh1

n
= Ch1.

Now, because U
h1
n (k) = 0 if k 
= k1, we have

1

n

∑
i /∈B

h1
k1

E
[(

Mh1,h2[Yn](i) − f (i/n)
)2] = 1

n1

∑
k 
=k1

E
[(

Mh2[Y ′
n](k) − f (k/n1)

)2]
.

We then use (9.8), which applies the same here even though we omit k = k1.
Combining the cases k = k1 and k 
= k1, we get

Rn(M
h1,h2;f ) ≥ C

(
(σ ′

n)
2

n1h2
+ h2(σ

′
n)

2
)

+ Ch1.

We conclude by noticing that the right-hand side is larger than n−2/3 for all choices
of h1 < h2.

14. Proof of Theorem 5.2.

14.1. Upper bound. We follow the line of arguments in Section 13.
Fix f ∈ F +

2 . Again, we may assume that N = 1 without loss of generality. Call
γ ∈ 	+ the curve where f is discontinuous and let

K1 = {k :γ ∩ (B
h1
k /n) 
= ∅}.
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Here too, |Uh1
n (k)| ≤ βh1 for k /∈ K1 and |Uh1

n (k)| ≤ 1 for k ∈ K1. Also, #K1 ≤
Cn2

1h1, which comes from the fact that k ∈ K1 implies δ(k) ≤ √
2h1 and the ap-

plication of Lemma 16.1.
Using these facts and following the exact same arguments as for the one-

dimensional case, we get

Rn(M
h1,h2;f ) ≤ C

1

n2
1

∑
k∈I2

n1

E
[(

Mh2[Y ′
n](k) − f (k/n1)

)2] + Ch1.

Using the upper bound (12.1) on the first term, we get

Rn(M
h1,h2;f ) ≤ C

(
h2

2 + (σ ′
n)

2

(n1h2)2 + h2(σ
′
n)

2
)

+ Ch1.

Note that here σ ′
n 	 (nh1)

−1. We then minimize over h1 and h2, with h1 = n−6/7

and h2 = n−4/7, and obtain the desired upper bound valid for any f ∈ F +
2 .

14.2. Lower bound. The proof is completely parallel to the one-dimensional
case, this time using (12.2).

15. Variability of quantiles.

LEMMA 15.1. Assume � satisfies [Shape] and [Decay]. Then for all α1 <

ζ/(ζ − 1) < α2, there are positive constants C1,C2 such that

C1
(
p(1 − p)

)−α1 ≤ d

dp
�−1(p) ≤ C2

(
p(1 − p)

)−α2 ∀p ∈ (0,1).

Moreover, if ψ(x)xζ 	 1, then

d

dp
�−1(p) 	 (

p(1 − p)
)−α

,

where α = ζ/(ζ − 1).

PROOF. Let 1 < s < ζ < t such that α1 < s/(t −1) < t/(s −1) < α2. We have

A2(1 + |x|)−t ≤ ψ(x) ≤ A1(1 + |x|)−s ∀x ∈ R.

By integration, we also have

B2(1 + |x|)−t+1 ≤ 1 − �(x) ≤ B1(1 + |x|)−s+1 ∀x ≥ 0.

Therefore,

C−1
2

(
1 − �(x)

)t/(s−1) ≤ ψ(x) ≤ C−1
1

(
1 − �(x)

)s/(t−1) ∀x ≥ 0.

By symmetry, we thus have

C−1
2

(
�(x)

(
1−�(x)

))t/(s−1) ≤ ψ(x) ≤ C−1
1

(
�(x)

(
1−�(x)

))s/(t−1) ∀x ∈ R.
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This is equivalent to

C1
(
p(1 − p)

)−s/(t−1) ≤ d

dp
�−1(p) ≤ C2

(
p(1 − p)

)−t/(s−1) ∀p ∈ (0,1).

For the last statement, follow the same steps. �

LEMMA 15.2. Let � satisfy [Shape] and [Decay]. Then for all α1 < ζ/(ζ −
1) < α2, there are positive constants C1,C2 such that

C1
(
p(1 − p)

)−α1+1 ≤ �−1(p) ≤ C2
(
p(1 − p)

)−α2+1 ∀p ∈ (0,1).

Moreover, if ψ(x)xζ 	 1, then

�−1(p) 	 (
p(1 − p)

)−α+1
,

where α = ζ/(ζ − 1).

PROOF. Integrate the result in Lemma 15.1. �

15.1. Proof of Lemma 6.2. PROOF. Assume � is odd for simplicity and let
� = 2m + 1. We have

�2m+1(x) = (Bm ◦ �)
(
x/

√
2m + 1

)
,

where (see, e.g., [30]) Bm is the β-distribution with parameters (m,m):

Bm(y) = (2m + 1)!
(m!)2

∫ y

0

(
u(1 − u)

)m
du.

Given that � has a continuous density ψ and Bm is continuously differentiable,
�2m+1 has a continuous density given by

ψ2m+1(x) = 1√
2m + 1

ψ
(
x/

√
2m + 1

) · (B ′
m ◦ �)

(
x/

√
2m + 1

)
.

Moreover, since ψ is unimodal and symmetric about 0 and B ′
m is unimodal

and symmetric about 1/2, ψ2m+1 is unimodal and symmetric about 0. There-
fore, �2m+1 satisfies [Shape]. �2m+1 also satisfies [Decay] since ψ2m+1(x) ≤
Cmψ(x/

√
2m + 1).

We now show that there is a constant C such that, for m large enough,
ψ2m+1(x)(1 + |x|)4 ≤ C for all x. It is enough to consider x > 0, which we do.
Fix s ∈ (1, ζ ). Using Stirling’s formula and the fact that ψ is bounded, we find C

such that

ψ2m+1(x) ≤ C
(
4�

(
x/

√
2m + 1

)(
1 − �

(
x/

√
2m + 1

)))m
.
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In particular, ψ2m+1(x) ≤ C for all x. Since �(x)(1 + x)s−1 → 0 as x → ∞,
there is x0 > 0 such that 1 − �(x) ≤ (1 + x)−s+1/4 for x ≥ x0. Now, for x ≤ x0,
(1 + x)4ψ2m+1(x) ≤ C(1 + x0)

4; for x > x0,

(1 + x)4ψ2m+1(x) ≤ C
(1 + x)4

(1 + x/
√

2m + 1)(s−1)m
.

By elementary calculus, as soon as (s − 1)m ≥ 4
√

2m + 1, which happens when
m is large enough, the right-hand side is bounded by its value at x0, which is also
bounded by C(1 + x0)

4. �

16. Some properties of planar curves. This section borrows notation from
Sections 10 and 11.

LEMMA 16.1. For γ ∈ 	2(λ) and h ≥ 1/n, #� ≤ Cn2h, C = 20(λ + 1).

PROOF. Assume γ is parametrized by arclength. Let sk = h/2 + kh, for
k = 1, . . . , [length(γ )/h]. By the triangle inequality, for each x ∈ [0,1]2 in the
h-neighborhood of γ , there is k = 1, . . . , [length(γ )/h] such that x and γ (sk) are
within distance 2h. Each ball centered at γ (sk) and of radius 2h, h ≥ n−1, contains
at most 20n2h2 gridpoints. Therefore, the h-neighborhood of γ contains at most
[length(γ )/h] · Cn2h2 ≤ C(λ + 1)n2h gridpoints. �

LEMMA 16.2. There are constants h0,C1,C > 0 such that, if h < h0, then
for all i ∈ � satisfying δ(i) > 2(C1h

2 + n−1), p(i) ≤ 1 − Cδ(i)/h.

PROOF. Let h0 be defined as in Lemma 16.3 and assume h < h0. Take x so
that γ ∩ B(x,h) 
= ∅, where B(x,h) is the disc of radius h centered at x. By
Lemma 16.3, there are arclengths s1 < s2 such that

γ ∩ B(x,h) = {γ (s) : s1 < s < s2}.
A Taylor expansion of degree 2 gives

|γ (t) − γ (s) − (t − s)γ ′(s)| ≤ κ/2(t − s)2 ∀s, t ∈ [0, length(γ )].
Together with the triangle inequality and the fact that |γ ′(s)| = 1 for all s and
|γ (s2) − γ (s1)| ≤ 2h, this implies

s2 − s1 ≤ κ/2(s2 − s1)
2 + 2h.

Therefore, there is C > 0 such that s2 − s1 ≤ Ch. Applying this Taylor expansion
twice also implies∣∣∣∣γ (s) − γ (s1) − (s − s1)

γ (s2) − γ (s1)

s2 − s1

∣∣∣∣ ≤ κ(s2 − s1)
2 ∀s ∈ [s1, s2],
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which now becomes∣∣∣∣γ (s) − γ (s1) − (s − s1)
γ (s2) − γ (s1)

s2 − s1

∣∣∣∣ ≤ C1h
2 ∀s ∈ [s1, s2]

for some constant C1 > 0. This means that, for all s ∈ [s1, s2], γ (s) is within dis-
tance C1h

2 from the segment joining γ (s1) and γ (s2). Let L be the line parallel
to, and at distance C1h

2 from [γ (s1), γ (s2)], that is, closest to x. The line L di-
vides B(x,h) into two parts A and B(x,h) ∩ Ac, where x ∈ A. Since we have
d(x,L) ≥ d(x, γ ) − d(L,γ ) = d(x, γ ) − C1h

2, if d(x, γ ) > C1h
2, A ∩ γ = ∅

and A contains the closed half disc with diameter parallel to L that contains x.
Now, let x be of the form i/n with i ∈ I

2
n with 2C1h

2 + 2n−1 ≤ δ(i) < h/2.
Without loss of generality, assume that nh ≥ 2.

By symmetry, all open half discs of B(i/n,h) contain the same number of grid-
points, so that any closed half disc of B(i/n,h) contains more than half of the
gridpoints within B(i/n,h). Let A = A0 ∪H , where H is the closed half disc with
diameter parallel to L that does not intersect γ . We have G(i) = I

2
n ∩ nA, so that

#G(i) ≥ #W(i)/2 + #(I2
n ∩ nA0). A0 contains a rectangular region R with dimen-

sions d(i/n,L) by 2
√

h2 − d(i/n,L)2, with d(i/n,L) = δ(i) − C1h
2 ≥ 2/n and

2
√

h2 − d(i/n,L)2 ≥ √
3h ≥ 2/n. For such a rectangular region, with sidelengths

of at least 2/n,

R ⊂ ⋃
i/n∈R

B(i/n,2/n),

so that

#(I2
n ∩ nA0) ≥ #(I2

n ∩ nR) ≥ C|R|n2 ≥ Chδ(i)n2.

It follows that ρ(i) ≥ 1/2 + Cδ(i)/h, which in turn implies p(i) ≤ 1 − Cδ(i)/h.
We proved this for i such that δ(i) < h/2; however, this obviously extends to i such
that δ(i) < h with possibly a different constant C. �

LEMMA 16.3. There is a constant h0 > 0 such that the following holds for all
γ ∈ 	+. If h < h0 and x ∈ [0,1]2 are such that γ ∩ B(x,h) 
= ∅, then there are
arclengths s1 < s2 such that γ ∩ B(x,h) = {γ (s) : s1 < s < s2}.

PROOF. We assume γ is parametrized by arclength and consider arclengths
modulo length(γ ).

Take x ∈ [0,1]2 and h > 0 such that γ ∩ B(x,h) 
= ∅. If γ ⊂ B(x,h), then γ

has maximum curvature bounded below by h−1. We arrive at the same conclu-
sion if γ ∩ ∂B(x,h) has infinite cardinality, for then γ ∩ ∂B(x,h) would have at
least one accumulation point (since it is compact) at which the curvature would
be exactly h−1. Suppose h < κ−1 so that γ is not included in B(x,h) and
γ ∩ ∂B(x,h) is nonempty and finite. Consider the set of arclengths s with the
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property that there exists ε0 > 0 such that, for all 0 < ε < ε0, γ (s − ε) ∈ B(x,h)

and γ (s + ε) /∈ B(x,h); this set is discrete, and therefore of the form {0 ≤ s1 <

· · · < sm < length(γ )}. Note that because γ is closed, m is even.
Define sm+1 = length(γ ). We may assume that s1 = 0 and γ (s) ∈ B(x,h) for

all s ∈ [s1, s2]. Then, for all k = 1, . . . ,m/2, γ (s) /∈ B(x,h) for all s ∈ (s2k, s2k+1).
Because γ ∈ 	+, we have, for all k = 1, . . . ,m/2,

s2k+1 − s2k

|γ (s2k+1) − γ (s2k)| ≤ θ and
length(γ ) − s2k+1 + s2k

|γ (s2k+1) − γ (s2k)| ≤ θ.

Suppose m > 2, so that m ≥ 4. If s3 − s2 ≤ length(γ ) − s3 + s2, then s3 − s2 ≤
θ |γ (s3) − γ (s2)| ≤ 2θh. Otherwise s3 − s2 > length(γ ) − s3 + s2, and since
s1 < s2 < s3 < sm, this implies that length(γ ) − sm + s1 ≤ sm − s1 and so
length(γ ) − sm + s1 ≤ θ |γ (sm) − γ (s1)| ≤ 2θh. This is in turn equivalent to
sm+1 − sm ≤ θ |γ (sm+1) − γ (sm)| ≤ 2θh. In both cases, there is k = 1, . . . ,m/2
such that s2k+1 − s2k ≤ |γ (s2k+1) − γ (s2k)| ≤ 2θh. Fix such a k. Let a be the an-
gle between γ ′(s2k) and γ ′(s2k+1) and let b be the angle between [x, γ (s2k)] and
[x, γ (s2k+1)]. We have

cos(a) = 〈γ ′(s2k), γ
′(s2k+1)〉 = 1 − |γ ′(s2k) − γ ′(s2k+1)|2

2

with |γ ′(s2k) − γ ′(s2k+1)| ≤ κ(s2k+1 − s2k) ≤ 2κ/θh. Suppose h < (
√

2κθ)−1, so
that a ≤ C1(s2k+1 − s2k), where C1 = C1(κ, θ). We also have

sin(b/2) = |γ (s2k) − γ (s2k+1)|
2h

≥ s2k+1 − s2k

2θh
,

so that b ≥ C2(s2k+1 − s2k)/h, where C2 = C2(κ, θ). Now, because γ ′(s2k) is ei-
ther tangent or pointing outward and γ ′(s2k+1) is either tangent or pointing inward
with respect to B(x,h), we have a ≥ b, if they are both tangent to B(x,h), a = b.
Therefore, h ≥ C2/C1.

We thus let h0 = h0(κ, θ) be the minimum over all the constraints on h and
C2/C1. �

LEMMA 16.4. There is a constant C > 0 such that, for all h > 0 and � =
0, . . . , nh,

#�� ≤ Cn.

PROOF. For i ∈ ��, B(i/n,1/(2n)) ⊂ T , where T = {x :� − 1 ≤ nd(x, γ ) <

� + 2}. Since those balls do not intersect, we have #��C1/n2 ≤ |T |, C1 = π/4.
As in the proof of Lemma 16.1, assume γ is parametrized by arclength. Let

sk = 1/(2n) + k/n, for k = 1, . . . , [n length(γ )]. Let �n(s) be the normal vector to
γ at γ (s) pointing out. Define x±

k = γ (sk) ± (�/n)�n(sk). Take x ∈ T , say outside
of γ ; it is of the form γ (s)+ a�n(s), with a ∈ [(�− 1)/n, (�+ 2)/n]. Let k be such
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that |s − sk| ≤ 1/n. By the triangle inequality, we have

|x − x+
k | ≤ |γ (s) − γ (sk)| + |a − �/n| + |�n(s) − �n(sk)|

≤ |s − sk|(1 + κ) + |a − �/n|
≤ C2/n, C2 = 3 + κ;

here we used |�n(s) − �n(sk)| = |γ ′(s) − γ ′(sk)| ≤ κ|s − sk|. Therefore, T ⊂⋃
k B(x±

k ,C2/n), so that |T | ≤ n · length(γ ) · C2/n2 ≤ C2 · length(γ )/n.
In the end, we have #�� ≤ C1|T |n2 ≤ C1 · C2 · length(γ ) · n. �
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