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GENERALIZING SIMES’ TEST AND HOCHBERG’S
STEPUP PROCEDURE1

BY SANAT K. SARKAR

Temple University

In a multiple testing problem where one is willing to tolerate a few false
rejections, procedure controlling the familywise error rate (FWER) can po-
tentially be improved in terms of its ability to detect false null hypotheses by
generalizing it to control the k-FWER, the probability of falsely rejecting at
least k null hypotheses, for some fixed k > 1. Simes’ test for testing the in-
tersection null hypothesis is generalized to control the k-FWER weakly, that
is, under the intersection null hypothesis, and Hochberg’s stepup procedure
for simultaneous testing of the individual null hypotheses is generalized to
control the k-FWER strongly, that is, under any configuration of the true and
false null hypotheses. The proposed generalizations are developed utilizing
joint null distributions of the k-dimensional subsets of the p-values, assumed
to be identical. The generalized Simes’ test is proved to control the k-FWER
weakly under the multivariate totally positive of order two (MTP2) condition
[J. Multivariate Analysis 10 (1980) 467–498] of the joint null distribution of
the p-values by generalizing the original Simes’ inequality. It is more pow-
erful to detect k or more false null hypotheses than the original Simes’ test
when the p-values are independent. A stepdown procedure strongly control-
ling the k-FWER, a version of generalized Holm’s procedure that is different
from and more powerful than [Ann. Statist. 33 (2005) 1138–1154] with in-
dependent p-values, is derived before proposing the generalized Hochberg’s
procedure. The strong control of the k-FWER for the generalized Hochberg’s
procedure is established in situations where the generalized Simes’ test is
known to control its k-FWER weakly.

1. Introduction. Given a collection of null hypotheses and the corresponding
p-values in multiple testing, one encounters two types of problem: (i) global test-
ing of the intersection null hypothesis and (ii) simultaneous testing of the individ-
ual null hypotheses. Traditionally, one seeks to control the probability of falsely
rejecting the intersection null hypothesis, the global Type I error rate, in global
testing and the probability of rejecting at least one true null hypothesis, the family-
wise (Type I) error rate (FWER), in simultaneous testing. As a global test, Simes’
[19] test has received considerable attention. With the p-values marginally having
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uniform distributions on (0,1) under the null hypotheses, it controls the global
Type I error rate at the desired level exactly under independence [19] and con-
servatively under the multivariate totally positive of order two (MTP2) condition
of Karlin and Rinott [10] shared by commonly encountered multivariate distribu-
tions in multiple testing [15, 18]. A careful study of the proof in [15], of course,
reveals that the conservativeness of Simes’ test actually holds for a larger class
of distributions satisfying the positive regression dependence on subset (PRDS)
condition; see [1, 16] from which this conservativeness under the PRDS condition
also follows. For simultaneous testing, Hochberg’s [5] procedure has also received
considerable attention. It is a stepup procedure based on the same critical values as
those of the stepdown procedure of Holm [7] and controls the FWER in the same
situations where Simes’ test controls its global Type I error rate.

Recently, the notion of FWER has been generalized to that of the k-FWER, the
probability of rejecting at least k true null hypotheses. It is argued that in many situ-
ations, one is willing to tolerate a few false rejections but wants to control too many
of them, say k or more. In such a case, a procedure controlling the k-FWER, for
some fixed k > 1, will have a better ability to detect k or more false null hypotheses
than the corresponding FWER (k = 1) procedure. A number of such procedures
have been proposed in the literature [3, 9, 11–13, 21]. Motivated by the increas-
ing importance of the concept of k-FWER and the scope of further strengthening
some of the related procedures proposed in the literature under certain situations,
we consider developing newer k-FWER procedures in this article. More specifi-
cally, we generalize both Simes’ global and Hochberg’s simultaneous tests.

While Simes’ test is basically a global test, it corresponds to a simultaneous test
with a control of the FWER in a weak sense, that is, under the intersection null
hypothesis. Therefore, the notion of k-FWER, which has been discussed so far
primarily in the context of simultaneous testing, can be applied to Simes’ global
test as well. In other words, one could potentially improve the power of Simes’ test
to detect k or more false component null hypotheses by generalizing it to a global
test that corresponds to a simultaneous test with a weak control of the k-FWER.
This would be particularly useful in a situation where one is basically interested
in testing the intersection of a family of null hypotheses but likes to detect more
false null hypotheses than just one in the family before declaring the whole family
significant.

For the original or generalized Simes’ test, by simply saying that it controls the
FWER or k-FWER, we will mean that it does so weakly, that is, when the inter-
section null hypothesis is true. For a simultaneous test, of course, the control of the
k-FWER will be meant to be in the strong sense, that is, under any configuration
of true and false null hypotheses, unless we state otherwise.

Lehmann and Romano [12] gave two simultaneous tests that control the
k-FWER, a Bonferroni type single-step test and its Holm type stepdown improve-
ment, each based on the marginal p-values. As noted in the present article, the
stepup analog of this stepdown procedure can also control the k-FWER in the same
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situations where the original Simes’ test controls its FWER and thus provides a
generalized version of Hochberg’s stepup procedure. Romano and Shaikh [13] de-
veloped a general k-FWER stepup procedure based on the marginal p-values. Our
version of generalized Hochberg’s procedure controlling the k-FWER is, however,
different.

Based on some new results on probability distributions of ordered random vari-
ables established in this article, we notice that the notion of k-FWER allows one to
use the k-dimensional joint null distributions of the p-values. Since p-values are
often generated in multiple testing from test statistics that, under the null hypothe-
ses, have a known distributional form, constructing k-FWER procedures utilizing
these kth-order joint null distributions in an attempt to improve those relying on
the marginal p-values appears to be a worthwhile objective.

Let Pi be the p-value corresponding to the null hypothesis Hi , i = 1, . . . , n, and
P1:n ≤ · · · ≤ Pn:n be the ordered p-values with the corresponding null hypotheses
H(1), . . . ,H(n). Assume that the p-values have identical kth-order joint null distri-
butions. Then, using Gk , the common c.d.f. of the maximum of any k of the n Pi’s
under the null hypotheses, we propose the following tests:

THE GENERALIZED SIMES’ TEST. Reject H0 = ⋂n
i=1 Hi if and only if

Pi:n ≤ αmax(i,k) for at least one i = 1, . . . , n,(1.1)

where αi is given by

Gk(αi) = i(i − 1) · · · (i − k + 1)

n(n − 1) · · · (n − k + 1)
α, i = k, . . . , n.(1.2)

THE GENERALIZED HOCHBERG’S PROCEDURE. Reject H(i) for i ≤ i0 and
accept H(i) for i > i0, where

i0 = max
1≤i≤n

{
i :Pi:n ≤ αmax(i,k)

}
(1.3)

with αi given by

Gk(αi) = k(k − 1) · · ·1

(n − i + k)(n − i + k − 1) · · · (n − i + 1)
α,(1.4)

i = k, . . . , n.

With the p-values assumed to be distributed, under the null hypotheses, mar-
ginally as uniform on (0,1) and jointly with a distribution that exhibits positive
dependence in the sense of MTP2, we first generalize the original Simes’ inequal-
ity [15, 18, 19]. Restricting to exchangeable MTP2 distributions under the null hy-
potheses, we then prove that the generalized Simes’ test controls the k-FWER at α,
exactly under the independence and conservatively otherwise. Assuming identi-
cal kth-order joint null distributions, but no special dependence structure, of the
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p-values, we modify the Bonferroni type single-step procedure in [12] and then
develop its Holm type stepdown improvement. The generalized Hochberg’s pro-
cedure is then proposed as the stepup version of this generalized Holm’s stepdown
procedure. It is shown to control the k-FWER in situations where the generalized
Simes’ test controls its k-FWER.

A generalized stepwise procedure for simultaneous testing that we are refer-
ring to in this article is a regular stepwise procedure with its first k critical val-
ues being the same, for some fixed 1 ≤ k ≤ n. For instance, a generalized step-
down procedure with critical values αk ≤ · · · ≤ αn accepts any H(i) for which
i ≥ min1≤j≤n{j :Pj :n ≥ αmax{j,k}} if the minimum exists, otherwise rejects all
H(i). Similarly, a generalized stepup procedure with these critical values rejects
any H(i) for which i ≤ max1≤j≤n{j :Pj :n ≤ αmax{j,k}} if the maximum exists, oth-
erwise accepts all H(i). When all these critical values are the same, a generalized
stepwise procedure is simply a single-step procedure. In the single-step procedure
of Lehmann and Romano [12] with a control of the k-FWER at α, αi = kα/n;
whereas, in their generalized Holm procedure, αi = kα/(n + k − i).

In the next section, we provide the necessary background for understanding
some important technical aspects of this paper. In Section 3, the generalized Simes’
test is developed and the control of its k-FWER is established by generalizing the
original Simes’ inequality. We consider the probability of rejecting k or more false
null hypotheses as a measure of power, and compare our test with Simes’ original
test in terms of this. Our test is seen to be theoretically more powerful under the
independence, at least when 2 ≤ k ≤ 1/α. We conduct a numerical study by simu-
lating normally distributed data to examine the extent of power improvement of our
test over Simes’ under the independence and how it changes as the p-values be-
come more dependent. This study, whose findings are also reported in Section 3,
reveals that the generalized Simes’ test becomes more powerful with increasing
number of false null hypotheses, quite significantly under the independence and
moderately for small correlation. In Section 4, we develop our version of gen-
eralized Bonferroni single-step procedure and its Holm type stepdown improve-
ment before deriving the generalized Hochberg’s procedure. Again, the general-
ized Hochberg’s procedure is seen to be theoretically a more powerful k-FWER
procedure than the stepup version of the Lehmann–Romano stepdown procedure
when 2 ≤ k ≤ 1/α. Another numerical study is conducted to see how well it actu-
ally performs in terms of power compared to both the original Hochberg’s proce-
dure and the stepup version of the Lehmann–Romano procedure under the inde-
pendence of the p-values, and how the power performance changes with increas-
ing dependence among the p-values. The concept of average power, the expected
proportion of false null hypotheses that are correctly rejected [2], is used as a mea-
sure of power in this numerical study. The generalized Hochberg’s procedure is
applied to a real data set in Section 5. The paper concludes with some additional
remarks and discussions in Section 6. More specifically, we discuss based on fur-
ther numerical investigations how to modify our procedures when the condition
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of identical kth-order joint null distributions is not met, and how our procedures
would perform when the MTP2 condition is violated and when k is larger than 1/α.

2. Preliminaries. First, we present a lemma giving a formula for the probabil-
ity distribution involving the ordered components of any set of random variables,
not necessarily p-values. This will play a key role in developing the proposed
methods in this article by providing explicit formulas for the probabilities of k or
more rejections of null hypotheses in generalized stepup and single-step proce-
dures. Second, we recall from [10], the definition of MTP2 distribution and some
related results that will be used to establish the k-FWER control of the proposed
methods under positive dependence. Third, we give an example of distributions
satisfying the two main conditions assumed in the paper—the MTP2 condition
and the condition of identical kth-order joint null distributions.

2.1. Probability distributions of ordered random variables. Given a set of ran-
dom variables X1, . . . ,Xn, we denote the ordered components of the set XJ =
{Xi, i ∈ J } by X1:J ≤ · · · ≤ X|J |:J when J ⊂ {1, . . . , n}, and by X1:n, . . . ,Xn:n
when J = {1, . . . , n}. Let Ck = {J : J ⊆ {1, . . . , n}, |J | = k}, the collection of
subsets of {1, . . . , n} of size k, and I (A) be the indicator function of a set A.

LEMMA 2.1. Given any set of constants −∞ < ck ≤ · · · ≤ cn < cn+1 = ∞,
for a fixed 1 ≤ k ≤ n, and ai = (i

k

)
, i = k, . . . , n,

Pr

{
n⋃

i=k

(Xi:n ≤ ci)

}

= a−1
n

∑
J∈Ck

Pr{Xk:J ≤ cn}(2.1)

+ ∑
J∈Ck

n−1∑
i=k

E[ψi−k+1(XJ ){a−1
i I (Xk:J ≤ ci) − a−1

i+1I (Xk:J ≤ ci+1)}],

where

ψi(XJ ) = Pr{Xi:J c > ck+i , . . . ,Xn−k:J c > cn|XJ },
i = 1, . . . , n − k.

When k = 1, Lemma 2.1 reduces to the key result of Sarkar [15] in terms of
the marginal distributions of the Xi’s that he used to prove the conservativeness of
the original Simes’ test under positive dependence. The idea behind that proof is
generalized using the kth-order joint distributions of the Xi’s in the present proof
of Lemma 2.1 given in the Appendix.
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REMARK 2.1. It is important to note that, when Xi ’s are p-values, the left-
hand side of (2.1) is the probability of k or more rejections of null hypotheses in
a generalized stepup procedure, or, in particular, in a single-step procedure, with
the ci ’s as the critical values, and Lemma 2.1 provides an explicit formula for this
probability.

REMARK 2.2. Lemma 2.1 can be simplified under certain specific distribu-
tional structures. For instance, when (X1, . . . ,Xn) is exchangeable,

Pr

{
n⋃

i=k

(Xi:n ≤ ci)

}

= Fk(cn) +
(

n

k

) n−1∑
i=k

E

[
ψi−k+1(X1, . . . ,Xk)

{
a−1
i I

(
max

1≤i≤k
Xi ≤ ci

)

− a−1
i+1I

(
max

1≤i≤k
Xi ≤ ci+1

)}]
,

where

Fk(x) = Pr
{

max
1≤i≤k

Xi ≤ x

}
and

ψi(X1, . . . ,Xn)

= Pr
{
X

(−k)
i:n−k > ck+i , . . . ,X

(−k)
n−k:n−k > cn|X1, . . . ,Xk

}
,

i = 1, . . . , n − k, with X
(−k)
i:n−k ≤ · · · ≤ X

(−k)
n−k:n−k being the ordered components of

(Xk+1, . . . ,Xn).
For i.i.d. Xi’s,

Pr

{
n⋃

i=k

(Xi:n ≤ ci)

}

= [F1(cn)]k +
(

n

k

) n−1∑
i=k

Pr{Xi−k+1:n−k > ci+1, . . . ,Xn−k:n−k > cn}

× {a−1
i [F1(ci)]k − a−1

i+1[F1(ci+1)]k}.
Without any knowledge about the dependence structure of the Xi ’s, except that

the kth-order joint distributions are all identical, one can obtain an upper bound to
the probability Pr{⋃n

i=k(Xi:n ≤ ci)} in terms of Fk(x), the common c.d.f. of the
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maximum of any k of the Xi ’s, as follows:

Pr

{
n⋃

i=k

(Xi:n ≤ ci)

}

= a−1
n

∑
J∈Ck

Pr{Xk:J ≤ cn}

+ ∑
J∈Ck

n−1∑
i=k

{a−1
i I (Xk:J ≤ ci) − a−1

i+1I (Xk:J ≤ ci+1)}

+ ∑
J∈Ck

n−1∑
i=k

E[{1 − ψi−k+1(XJ )}
(2.2)

× {a−1
i+1I (Xk:J ≤ ci+1) − a−1

i I (Xk:J ≤ ci)}]

≤ Fk(cn) +
(

n

k

) n−1∑
i=k

{a−1
i Fk(ci) − a−1

i+1Fk(ci+1)}

+
(

n

k

) n−1∑
i=k

a−1
i+1{Fk(ci+1) − Fk(ci)}

=
(

n

k

)[
Fk(ck) +

n∑
i=k+1

a−1
i {Fk(ci) − Fk(ci−1)}

]
.

This further generalizes Lemma 3.1 in [12] that strengthens a similar inequality
in [9].

REMARK 2.3. Considering ci = ck, i = k, . . . , n, in Lemma 2.1, we get the
following

Pr{Xk:n ≤ ck}
= a−1

n

∑
J∈Ck

Pr{Xk:J ≤ ck}

+ ∑
J∈Ck

n−1∑
i=k

E
[
Pr{Xi:J c > c|XJ }{I (Xk:J ≤ ck)[a−1

i − a−1
i+1]}

]
(2.3)

≤ a−1
n

∑
J∈Ck

Pr{Xk:J ≤ ck} + ∑
J∈Ck

Pr{Xk:J ≤ ck}
n−1∑
i=k

[a−1
i − a−1

i+1]

= ∑
J∈Ck

Pr{Xk:J ≤ ck},
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a generalized version of the Bonferroni inequality that, of course, can be proved
directly using elementary probability theory.

2.2. MTP2 and related results. Let X = ∏n
i=1 Xi be a product of totally or-

dered spaces Xi , i = 1, . . . , n, with the partial ordering defined as follows: for
any x,y ∈ X, we write x ≤ y if x = (x1, . . . , xn) and y = (y1, . . . , yn) satisfy
xi ≤ yi in Xi for i = 1, . . . , n. Let x ∨ y = (max(x1, y1), . . . ,max(xn, yn)), and
x ∧ y = (min(x1, y1), . . . ,min(xn, yn)).

DEFINITION 2.1. A function f :X → [0,∞) is said to be MTP2 (TP2 when
n = 2) if for all x,y ∈ X,

f (x ∨ y)f (x ∧ y) ≥ f (x)f (y).

An n-dimensional random vector X = (X1, . . . ,Xn) or its distribution is called
MTP2 if its density is MTP2.

The following results related to MTP2, which can be found in Karlin and
Rinott [10], will be used in the next section.

RESULT 2.1. Let f (x) be MTP2 in X and g(x1), . . . , g(xn) be all increasing
(or decreasing) in X1, . . . ,Xn, respectively. Then, f (g(x1), . . . , g(xn)) is MTP2
in X.

RESULT 2.2. If f1(x) and f2(x) are both MTP2 in X, then f1(x)f2(x) is
MTP2 in X.

RESULT 2.3. If f (x) is MTP2 in X, then∫
· · ·

∫
f (x)

n∏
i=m+1

dxi

is MTP2 in
∏m

i=1 Xi .

RESULT 2.4. Let X = (X1, . . . ,Xn) be an MTP2 random vector. Then, for
any increasing (or decreasing) function ϕ on Rk, 1 ≤ k ≤ n, we have that
E{ϕ(X)|Xk+1 = xk+1, . . . ,Xn = xn} is increasing (or decreasing) in each of
xk+1, . . . , xn.

RESULT 2.5. Let X = (X1, . . . ,Xn) be an MTP2 random vector, and ϕ and ψ

be both increasing (or decreasing) on Rn. Then

E{ϕ(X)ψ(X)} ≥ E{ϕ(X)}E{ψ(X)}.
REMARK 2.4. Result 2.1 says that p-values corresponding to MTP2 test sta-

tistics are also MTP2 as long as they are defined in the same manner, each based on
either a right-tailed or a left-tailed test, and that Results 2.2–2.5 can be equivalently
stated in terms of p-values.
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2.3. Examples. Karlin and Rinott [10] gave a list of distributions, many of
which arise in multiple testing, that satisfy the MTP2 condition under the null hy-
potheses. We will, however, consider a subclass of these distributions that satisfy
the other condition in this article, namely, the identical kth-order joint null distri-
butions. We will describe these distributions in terms of test statistics, which are
X1, . . . ,Xn.

Let X1, . . . ,Xn be continuous random variables that, under the null hypotheses,
are i.i.d. conditionally given a random variable Y , with Xi |Y = y ∼ f (xi, y), i =
1, . . . , n, where f (xi, y) is TP2 in (xi, y), and Y ∼ g(y). The joint density of
X1, . . . ,Xn under the null hypotheses, which is of the form∫ n∏

i=1

f (xi, y)g(y) dy,(2.4)

is MTP2 (follows from Results 2.2 and 2.3). Let F(x) be the common marginal
(unconditional) c.d.f. of Xi under the null hypotheses. Then, assuming that a right-
tailed test based on Xi is used for testing the corresponding null hypothesis, the
joint density of the p-values Pi = 1 − F(Xi), i = 1, . . . , n, can also be expressed
in the form (2.4). Distributions like these arise often in multiple testing [15, 18].
For instance, the equicorrelated and the absolute-valued equicorrelated standard
multivariate normals that arise in many-to-one comparisons in a balanced one-way
layout, and certain types of multivariate t , F and gamma distributions.

The distribution function Gk of the maximum of any k of the n p-values for the
model in (2.4) is given by the following:

Gk(u) =
∫ [

1 − F
(
F−1(1 − u), y

)]k
g(y) dy, 0 < u < 1,

with F(x, y) being the common conditional c.d.f. of Xi given Y = y. In particular,
for the equicorrelated standard multivariate normal with the correlation ρ ≥ 0, it is
given by

Gk(u;ρ) =
∫ ∞
−∞

[
1 − �

(
�−1(1 − u) − ρ1/2y√

1 − ρ

)]k

φ(y) dy,(2.5)

where � and φ are the c.d.f. and p.d.f. of N(0,1), respectively. The following
lemma will be useful in understanding the behavior of the critical values of our
proposed tests with respect to ρ for this distribution.

LEMMA 2.2. For the distribution function in (2.5), ∂Gk(u;ρ)/∂ρ ≥ 0, ρ ≥ 0.

Although a more general result than this lemma is available in [20], we will give
a more direct and simple proof of this in the Appendix. It is easy to see from this
lemma that the αth quantile, say qα(ρ), that satisfies Gk(q;ρ) = α is a decreasing
function of ρ ≥ 0.
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3. Generalized Simes’ test. Consider testing the intersection null hypothesis
H0 = ⋂n

i=1 Hi . The original Simes’ test rejects H0 if Pi:n ≤ iα/n for at least one
i = 1, . . . , n. It corresponds to a stepup simultaneous test with a weak control of
the FWER that rejects H(i) for all i ≤ i0 and accepts H(i) for all i > i0, where
i0 = max1≤i≤n{i :Pi:n ≤ iα/n}, if the maximum exists, otherwise, accepts all H(i).
In this section, we will first obtain a generalization of Simes’ test, then present the
results of a numerical study investigating its power performance.

3.1. The test. We generalize the above stepup procedure to one that controls
the k-FWER weakly. The corresponding global test will be our generalized Simes’
test. In other words, we consider rejecting H0 if and only if Pi:n ≤ αmax(i,k) for at
least one i = 1, . . . , n, where the constants αk ≤ · · · ≤ αn are such that the prob-
ability of k or more rejections of the component null hypotheses under H0, that
is PrH0{

⋃n
i=k(Pi:n ≤ αi)}, is bounded above by α. Toward finding these critical

values, we first have the following theorem.

THEOREM 3.1. Let (P1, . . . ,Pn) have an MTP2 distribution. Then, for any
fixed 0 < αk ≤ · · · ≤ αn < 1 and 1 ≤ k ≤ n, we have

Pr

{
n⋃

i=k

(Pi:n ≤ αi)

}
≤ a−1

n

∑
J∈Ck

Pr{Pk:J ≤ αn},(3.1)

if a−1
i Pr(Pk:J ≤ αi) is nondecreasing in i = k, . . . , n, for all J ∈ Ck .

PROOF. The theorem follows from Lemma 2.1 (in terms of p-values) if we
can show that

E[ψi−k+1(PJ ){a−1
i I (Pk:J ≤ αi) − a−1

i+1I (Pk:J ≤ αi+1)}] ≤ 0,(3.2)

for all J ∈ Ck and i = k, . . . , n − 1, under the assumed conditions. Clearly, this is
true under the independence. To prove this under dependence, first consider any
fixed J ∈ Ck and i in (2.1). Let f (pJ ) be the density of PJ . Then, since αi ≤ αi+1,
we can express the left-hand side of (3.2) as

Pr{Pk:J ≤ αi+1}E[ψi−k+1(P̃J )φi(P̃J )],
with the expectation taken with respect to the random vector P̃J having the fol-
lowing density at pJ :

gi(pJ ) = f (pJ )I (pk:J ≤ αi+1)

Pr{Pk:J ≤ αi+1}(3.3)

and

φi(P̃J ) = a−1
i I (P̃k:J ≤ αi) − a−1

i+1.
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Since {Pi:J c > αk+i , . . . ,Pn−k:J c > αn} is increasing in PJ c , we see from Re-
sult 2.4 that ψi−k+1(PJ ) is increasing in PJ . The function φi(PJ ) is decreasing
in PJ . As both f (pJ ) and I (pk:J ≤ αi+1) are MTP2, Result 2.2 says that the den-
sity in (3.3) is also MTP2; that is, P̃J is MTP2. Therefore, from Result 2.5, we
have that the expectation in the left-hand side of (3.2) is less than or equal to

Pr{Pk:J ≤ αi+1}E[ψi−k+1(P̃J )]E[φi(P̃J )]
= E[ψi−k+1(P̃J )][a−1

i Pr{Pk:J ≤ αi} − a−1
i+1Pr{Pk:J ≤ αi+1}],

which is less than or equal to zero if a−1
i Pr(Pk:J ≤ ci) is nondecreasing in i. This

proves the theorem. �

REMARK 3.1. Theorem 3.1 is a generalized version of Simes’ inequality. It
reduces to Simes’ inequality when k = 1 [15, 18, 19]. It is important to note, how-
ever, that Simes’ inequality actually holds for a slightly wider class of positively
dependent multivariate distributions. Consider a class of distributions of X satis-
fying the condition: E{ϕ(X(−i))|Xi = xi} is increasing (or decreasing) in xi for
all i ∈ {1, . . . , n}, for any increasing (or decreasing) function ϕ on Rn−1, where
X(−i) = {Xj, j ∈ {1, . . . , n} − {i}}. This, referred to as the positive regression de-
pendence on subset (PRDS) condition in [1], defines a wider class than those satis-
fying the MTP2 condition (see Result 2.4). In fact, a multivariate normal with non-
negative correlations, which may not be MTP2 unless it’s covariance matrix has
an inverse with nonpositive diagonals, belongs to this larger class. The Simes’ in-
equality holds for this larger class of PRDS distributions; see, for example, [1, 16]
from which this result also follows. The generalized Simes’ inequality in Theo-
rem 3.1, however, requires the stronger MTP2 condition. In fact, a careful study of
its proof reveals that, while just Result 2.4 will suffice when k = 1, which is the
PRDS condition, when k > 1, we need both Results 2.4 and 2.5, thereby forcing
us to consider the MTP2 condition.

Now, let the p-values be MTP2 with identical kth-order joint distributions under
H0; for example, consider a situation when they are generated from test statistics
whose joint density is of the form (2.4) under H0. Let Gk(u) = PrH0{maxj∈J Pj ≤
u}, 0 < u < 1, for all J ∈ Ck . Then, the probability in the left-hand side of (3.1)
under H0 is less than or equal to Gk(αn) if a−1

i Gk(αi) = a−1
n Gk(αn), i = k, . . . , n.

Thus, this probability is less than or equal to α if the αi’s are chosen subject to:

Gk(αi) = ai

an

α = i(i − 1) · · · (i − k + 1)

n(n − 1) · · · (n − k + 1)
α, i = k, . . . , n.(3.4)

When the Pi’s are i.i.d. as uniform on (0,1) under H0, these αi’s provide an exact
value of α for this probability. Thus, we have the following:
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PROPOSITION 3.1. Let αk ≤ · · · ≤ αn be defined as in (3.4). The general-
ized Simes’ test that rejects H0 if and only if Pi:n ≤ αmax(i,k), for at least one
i = 1, . . . , n, controls the k-FWER at α, exactly when the Pi ’s are i.i.d. under H0
and conservatively when they are MTP2 with a common kth-order joint distribu-
tion under H0.

REMARK 3.2. The first k −1 critical values in the generalized Simes’ test can
be chosen arbitrarily without affecting control of the k-FWER. In particular, one
may choose these to be zero and consider rejecting H0 if and only if Pi:n ≤ αi ,
for at least one i = k, . . . , n. However, even though we are not much interested in
the power of our test at an alternative where between 1 to k − 1 of the component
null hypotheses are false, we want to keep it at a high value by choosing these
critical values as large as possible. Of course, it would be counterintuitive if we
select them in a way that will make the αi’s nonmonotone. Thus, the best choice
for these is to make them all equal to αk .

One could use the original Simes’ test or come up with a simple generalization
of it with αi = max(i, k)α/n, i = 1, . . . , n. These will also control the k-FWER,
under the weaker PRDS condition of the p-values, because of the original Simes’
inequality (see Remark 3.1). But, they do not take the full advantage of the notion
of k-FWER, as their critical values are not determined by directly controlling it.
Our generalized Simes’ test, on the other hand, directly controls the k-FWER, and
does so in the least conservative manner in the sense that its k-FWER becomes
exactly α under the independence case.

When the p-values are independent, the αi ’s in (3.4) are given by

αi =
(
α

k∏
j=1

i − k + j

n − k + j

)1/k

, i = k, . . . , n.(3.5)

If 2 ≤ k ≤ 1/α, we have

i − k + j

i
≥ j

k
≥ 1

k
≥ α ≥ (n − k + j)α

n
,(3.6)

for each 1 ≤ j < k ≤ i ≤ n, implying that

αi =
(
α

i

n

k−1∏
j=1

i − k + j

n − k + j

)1/k

≥ i

n
α, i = k, . . . , n.(3.7)

Thus, our generalized Simes’ test (with 2 ≤ k ≤ 1/α) is more powerful to detect k

or more false null hypotheses than the original Simes’ or its simple generalization
mentioned above when the p-values are independent.

To see the extent of power improvement we get by generalizing Simes’ test in a
particular testing situation, we did a numerical study involving dependent normals
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whose findings are discussed in the next subsection. As we are mainly interested
in the probability of detecting k or more false null hypotheses, we consider it as
the definition of power, and examine how our procedure performs in terms of this
compared to Simes’ test when the number of false null hypotheses is actually k or
more.

3.2. Numerical results. We consider a multiple testing situation where the un-
derlying test statistics, Xi ∼ N(µi,1), i = 1, . . . , n, are jointly distributed as mul-
tivariate normal with a known nonnegative common correlation ρ and the problem
is that of testing H0 :

⋂n
i=1{µi = 0} against H1 : ⋃n

i=1{µi > 0}. The generalized
Simes’ test is applicable in this situation (see Section 2.3).

With n = 10 and α = 0.05, we numerically computed the critical values of the
generalized Simes’ test using (1.1)–(1.2). These are listed in Table 1, 1 for ρ =
0,0.25,0.50 and 0.75, and k = 1 (original Simes’), 2 and 3. We then simulated
data to do the power analysis for each of the generalized and original Simes’ tests.
Each simulated power for the generalized Simes’ (or Simes’) test was obtained
by (i) generating ten dependent normal random variables N(µi,1), i = 1, . . . ,10,
with a common correlation ρ and with n1 of the ten µi’s being equal to 2 and
the rest 0, (ii) applying the generalized Simes’ (or Simes’) test to the generated
data using the critical values in Table 1 and (iii) repeating steps (i) and (ii) 50,000
times before observing the proportion of times at least k of the ten component null
hypotheses in H0 were rejected. The power comparisons are presented in Figure 1,
with the four panels in the bottom row representing the power graphs for k = 2,
ρ = 0,0.25,0.50 and 0.75, and those in the top row representing the graphs for
k = 3 and the same values of ρ.

The generalized Simes’ test is significantly more powerful than the original
Simes’ in detecting k or more false null hypotheses when the p-values are in-
dependent or weakly but positively dependent. As the p-values become more and
more positively dependent, the generalized Simes’ test unfortunately loses its edge
over Simes’ test. This phenomenon is, however, not surprising, as we can see from
the remark following Lemma 2.2 that as ρ increases to 1, the critical values of
the generalized Simes’ test decreases (see Table 1) and eventually become smaller
than the corresponding critical values of the original Simes’ test, thereby making
it more conservative. We repeated this numerical study with n = 20 and generated
similar power graphs. Those graphs, not presented in the paper, provided almost
same pictures as in Figure 1.

Since we do not seek to control the probability of the number of false rejections
being between 1 to k−1 under the global null hypothesis in our generalized Simes’
test, one would be curious to see how high this probability could be in a particular
situation. So, we did some additional calculations in the above simulation studies
and computed these probabilities. These are given in Table 2. As we see from
this table, this probability is not excessively large. At the maximum, it could be
50% when the p-values are independent, but, most often, when the p-values are
dependent, it is reasonably low.
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TABLE 1
The critical values αi , i = k, . . . , n, of the generalized Simes’ test with n = 10, k = 1,2,3 and α = 0.05

ρ k α1 α2 α3 α4 α5 α6 α7 α8 α9 α10

0.00 1 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500
2 0.0333 0.0577 0.0816 0.1054 0.1291 0.1527 0.1764 0.2000 0.2236
3 0.0747 0.1186 0.1609 0.2027 0.2443 0.2857 0.3271 0.3684

0.25 1 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500
2 0.0177 0.0345 0.0525 0.0716 0.0914 0.1120 0.1331 0.1548 0.1769
3 0.0297 0.0573 0.0882 0.1220 0.1581 0.1965 0.2367 0.2784

0.50 1 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500
2 0.0090 0.0198 0.0325 0.0468 0.0625 0.0793 0.0972 0.1160 0.1357
3 0.0108 0.0257 0.0449 0.0686 0.0961 0.1273 0.1619 0.1998

0.75 1 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500
2 0.0041 0.0104 0.0186 0.0284 0.0397 0.0525 0.0665 0.0817 0.0980
3 0.0033 0.0098 0.0200 0.0340 0.0519 0.0739 0.1000 0.1303
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FIG. 1. Comparison of powers of the generalized and the original Simes’ tests for testing equicor-
related multivariate normal means with α = 0.05.

4. Generalized Hochberg’s procedure. For simultaneous testing of Hi , i =
1, . . . , n, Hochberg’s [5] procedure rejects H(i) for i ≤ i0 and accept H(i) for i > i0,
where i0 = max1≤i≤n{i :Pi:n ≤ αi} with αi = α/(n − i + 1), i = 1, . . . , n. We will
generalize this in the following subsection. Later, we will discuss the results of
a numerical study comparing the performance of this generalized procedure with
other related procedures.

4.1. The procedure. Hochberg’s procedure is the stepup version of Holm’s [7]
stepdown procedure, and was initially shown in [5] to control the FWER under

TABLE 2
Probabilities of falsely rejecting between 1 to k − 1 of the
component null hypotheses in the generalized Simes’ test

with α = 0.05

ρ

n k 0.00 0.25 0.50 0.75

10 2 0.2384 0.1003 0.0337 0.0054
3 0.4905 0.1833 0.0458 0.0042

20 2 0.2273 0.0783 0.0200 0.0012
3 0.4619 0.1180 0.0182 0.0003
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the independence of the p-values using the original Simes’ inequality. The papers
[15, 18] later established the FWER control of this procedure under positive de-
pendence. We will generalize these results in this paper in terms of the k-FWER
and using the kth-order joint null distributions, assumed common, of the p-values.
The resulting k-FWER procedure is our proposed generalized Hochberg’s proce-
dure.

Toward generalizing Hochberg’s procedure, we first modify the generalized
stepdown procedure in [12] controlling the k-FWER using the kth-order joint null
distributions of the p-values, again assumed to be common, and then show that
the critical values of this modified generalized stepdown procedure can be used
in a stepup procedure that will also control the k-FWER, under some additional
assumptions on the dependence of the p-values.

In order to modify the stepdown procedure in [12], we obtain a generalized ver-
sion of the usual Bonferroni procedure and then develop its Holm type stepdown
improvement. This is given in the following theorem.

THEOREM 4.1. Let (P1, . . . ,Pn) have identical kth-order joint distributions,
with Gk being the c.d.f. of the maximum of any k of them, under the null hypothe-
ses. Let αk ≤ · · · ≤ αn be defined as Gk(αi) = α/an+k−i , i = k, . . . , n.

(i) The single-step procedure that rejects any Hi for which Pi ≤ αk controls
the k-FWER.

(ii) The generalized stepdown procedure that accepts any H(i) for which i ≥
min1≤j≤n{j :Pj :n ≥ αmax(j,k)} if the minimum exists, otherwise rejects all H(i),
controls the k-FWER at α.

PROOF. Let n0 be the number of true null hypotheses. If 0 ≤ n0 < k, then, for
any procedure, the k-FWER is zero and hence trivially controlled. So, we assume
that k ≤ n0 ≤ n and that the first n0 of the n Pi ’s correspond to the true null
hypotheses, with P1:n0 ≤ · · · ≤ Pn0:n0 being their ordered versions. Then, we get
from (2.3) that at least k of these true null hypotheses will be rejected by the single-
step procedure in (i) with the following probability

Pr{Pk:n0 ≤ αk} ≤
(

n0
k

)
Pr

{
max

1≤i≤k
Pi ≤ αk

}
=

(
n0
k

)
Gk(αk) ≤ α.

This proves (i).
To prove (ii), we can argue as in the proof of Theorem 2.2 in [12] to claim that if

the generalized stepdown procedure rejects at least k of the first n0 hypotheses then
Pk:n0 ≤ αi , where i = k, . . . , n − n0 + k. Thus, since αi ≤ αn−n0+k , the k-FWER
of this procedure is less than or equal to

Pr{Pk:n0 ≤ αn−n0+k} ≤
(

n0
k

)
Gk(αn−n0+k) =

(n0
k

)
α(n0

k

) = α. �
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REMARK 4.1. The stepdown procedure in Theorem 4.1 is our generalized ver-
sion of Holm’s procedure, which is different from that in [12]. When the p-values
are independent, the critical values of our generalized stepdown procedure are
given by:

αi =
(
α

k∏
j=1

j

n − i + j

)1/k

, i = k, . . . , n;(4.1)

whereas, those in [12] are given by:

αi = kα

n − i + k
, i = k, . . . , n.(4.2)

Note that if 0 < α ≤ 1/k, we have

j

n − i + j
≥ kα

n − i + k
, j = 1, . . . , k − 1,

for each fixed i = k, . . . , n, implying that αi in (4.1) is greater than or equal to the
corresponding αi in (4.2) if 1 ≤ k ≤ 1/α. Thus, when the p-values are indepen-
dent, our generalized stepdown procedure (with 1 ≤ k ≤ 1/α) is a more powerful
k-FWER procedure than the one in [12].

Of course, with independent p-values, alternative k-FWER procedure improv-
ing the Lehmann–Romano procedure can be obtained. The following is such a pro-
cedure that Joseph Romano pointed out in a personal communication. Consider
the generalized stepdown procedure with the critical values αi = H−1

k,n−i+k(α),
i = k, . . . , n, where

Hk,n(u) =
n∑

j=k

(
n

k

)
uj (1 − u)n−j ,

the c.d.f. of the kth-order statistic based on n i.i.d. U(0,1). However, we will not
make any attempt to compare it with the one based on (4.1).

Next, we will show that the stepup version of our generalized Holm’s stepdown
procedure also controls the k-FWER with some additional dependence condition
of the p-values under the null hypotheses.

THEOREM 4.2. Let (P1, . . . ,Pn) have an MTP2 distribution in addition to
having identical kth-order joint distributions under the null hypotheses. Consider
the generalized stepup procedure based on the critical values αk ≤ · · · ≤ αn in The-
orem 4.1, that is, reject any H(i) for which i ≤ max1≤j≤n{j :Pj :n ≤ αmax(j,k)} if the
maximum exists, otherwise accept all H(i). This procedure controls the k-FWER
at α.
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PROOF. Again, let us assume without any loss of generality that k ≤ n0 ≤ n

and that the first n0 of the n Pi’s correspond to the true null hypotheses, with
P1:n0 ≤ · · · ≤ Pn0:n0 being their ordered versions. Then, we get from [13] that the
k-FWER of the generalized stepup procedure in the theorem is less than or equal
to

Pr

{
n0⋃
i=k

(Pi:n0 ≤ αn−n0+i)

}
.(4.3)

Since
n0 − k + j

n0 − i + j
≤ i − k + j

j
, j = 1, . . . , k,

we have

an0

an0+k−i

=
k∏

j=1

n0 − k + j

n0 − i + j
≤

k∏
j=1

i − k + j

j
= ai,

implying that

Gk(αn−n0+i) = α

an0+k−i

≤ aiα

an0

,

for i = k, . . . , n. In other words, the probability in (4.3) is less than or equal to

Pr

{
n0⋃
i=k

(Pi:n0 ≤ α∗
i )

}
,(4.4)

where Gk(α
∗
i ) = aiα/an0 , i = k, . . . , n. The theorem then follows by noting that

the probability in (4.4) is bound above by α because of the generalized Simes’
inequality in Theorem 3.1. �

REMARK 4.2. The stepup procedure in Theorem 4.2 is our generalized
Hochberg’s procedure. One could obtain a different version of it by using the crit-
ical values of the generalized Holm’s procedure in [12]. It would also control the
k-FWER, of course, under the additional condition that the p-values are positively
dependent (recall Remark 3.1). This is because the k-FWER of this procedure,
which is bounded above by

Pr

{
n0⋃
i=k

(
Pi:n0 ≤ kα

n0 + k − i

)}
≤ Pr

{ n0⋃
i=k

(
Pi:n0 ≤ iα

n0

)}
(4.5)

≤ Pr

{
n0⋃
i=1

(
Pi:n0 ≤ iα

n0

)}
,

is less than or equal to α due to the original Simes’ inequality. While as a k-FWER
procedure, it is always more powerful than the original Hochberg’s procedure, ours
is even more powerful when the p-values are independent.
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FIG. 2. Comparison of average powers of the proposed generalized Hochberg’s procedure,
Lehmann–Romano version of the generalized Hochberg’s procedure and the original Hochberg’s
procedure for testing equicorrelated multivariate normal means with α = 0.05.

A question that naturally arises in trying to develop k-FWER controlling stepup
procedures is: Does the stepup procedure based on our generalized Simes’ critical
values control the k-FWER? The answer is no, which can be proved, as in [8] for
the case of k = 1, considering independent p-values and a configuration of true
and false null hypotheses for which the p-values corresponding to the false null
hypotheses are very close to zero.

We now report the findings of another numerical study that we conducted to
examine the power performance of our generalized Hochberg’s procedure with
those of the Lehmann–Romano version of the generalized Hochberg’s procedure
and the original Hochberg’s procedure. As a measure of power, we consider the
average power (AvePower), the expected proportion of false null hypotheses that
are correctly rejected, which is commonly used in simultaneous testing; see, for
example, [2].

4.2. Numerical results. We generated 100 dependent normal random variables
N(µi,1), i = 1, . . . ,100, with a common correlation ρ, where n1 of these 100
µi’s are all equal to 2 and the rest are all equal to 0. We then applied to this data
set each of the aforementioned procedures to test if each of these means is either
true (µi = 0) or false (µi > 0), and noted what proportion of the n1 means that
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are all equal to 2 were correctly declared as false. We repeated this experiment
20,000 times and obtained the average of these proportions to obtain the simulated
AvePower for each procedure. Figure 2 compares the average powers of these
procedures, the five panels in the bottom row presenting this comparison for k = 2,
ρ = 0,0.10,0.25,0.50 and 0.75, and those in the top row presenting it for k = 3
and the same values of ρ.

The proposed generalization of Hochberg’s procedure is seen to be significantly
more powerful compared to any of the other two procedures when the p-values
are independent. With increasing positive dependence among the p-values, our
procedure, however, loses its power, which is consistent with the similar behavior
of the generalized Simes’ to which it is related.

We carried out a similar simulation study comparing our stepdown procedure
with Lehmann–Romano’s but did not include those graphs here as they have pro-
duced the same comparative picture as Figure 2.

5. An application. We consider the data set in [14] that consists of all hedge
funds in the CISDM (Center for International Securities and Derivatives Markets)
database having complete return history from 01/1992 to 03/2004. There are 105
such funds each having 147 monthly returns that are net of management and in-
centive fees. The problem we consider is that of identifying financial strategies,
if there are any, that outperform a benchmark. As it is standard in the hedge fund
industry, the benchmark chosen is the risk free rate of return (3-month T-bills).
The random variable of interest is the difference in log returns between a particu-
lar fund and the T-bill. A weak positive dependence among the funds in terms of
this variable is assumed observing that the 5,460 sample correlations have an av-
erage of 0.27. The returns for hedge funds are autocorrelated, see [14]. Therefore,
we fitted an AR(1) model with a constant term to the log-return differences for
each fund and tested if that constant is significantly different from zero or not. The
p-value was computed for each fund before applying our generalized Hochberg’s
and the stepup version of the Lehmann–Romano k-FWER procedures at α = 0.05
for k = 1,2 and 3, ρ = 0.00,0.10 and 0.25. Recall that when k = 1 both our and
the Lehmann–Romano procedures are same as the original Hochberg’s procedure,

TABLE 3
Number of funds declared outperforming the benchmark at α = 0.05

Lehmann–Romano
procedure

Our procedure

k ρ = 0.00 ρ = 0.10 ρ = 0.25

1 20 20 20 20
2 23 31 28 23
3 23 50 31 23
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and that the Lehmann–Romano procedure does not depend on ρ. Table 3 shows
the number of funds that are declared significantly outperforming the benchmark
according to these procedures.

6. Concluding remarks and additional numerical investigations. An at-
tempt has been made in the article to utilize kth-order joint null distributions of
the p-values in order to improve k-FWER procedures for a global or simultaneous
testing that are based only on the marginal p-values. The underlying idea seems in-
tuitively reasonable when the joint null distribution of the p-values are known and
computationally feasible with k not being excessively large. Nevertheless, while
we have been quite successful in our attempt when the p-values are independent
or weakly but positively dependent, the idea does not appear to work that well
when there is a strong positive dependence among the p-values. The main reason,
of course, is that the critical values become smaller with increasing dependence
among the p-values, making the corresponding procedure more and more conser-
vative. It is important to note, however, that we cannot just use the critical values
corresponding to the independence case even when the p-values are dependent.
This will not control the k-FWER. Results in this paper have been used very re-
cently in [4, 17].

Although we have assumed throughout this article that the p-values are mar-
ginally distributed as uniform on (0,1) under the respective null hypotheses, we
could relax this when the p-values are independent. In Simes’ test or its pro-
posed generalization, we could assume the p-values to be stochastically larger than
U(0,1), that is, PrHi

{Pi ≤ u} ≤ u, under the null hypotheses when they are inde-
pendent. The k-FWER would still be bounded above by α [which can be checked
from the first equality in (A.4)]. The same assumption can be made in the inde-
pendence case for the generalized stepwise procedures considered in this article.
While in our generalized single-step and stepdown procedures we have assumed
only the availability of the kth-order joint null distributions of the p-values, in our
proposed generalized stepup procedure we have made some additional assump-
tion on the dependence structure of the p-values. We could actually forgo this
additional dependence assumption and develop alternative stepup procedures that
control the k-FWER, as in [12, 13], by making use of the inequality (2.2).

The procedures proposed in this article are heavily dependent on the MTP2 and
“identical kth-order joint null distributions” assumptions. What if one or both of
these assumptions are violated? Considering first the generalized Simes’ test, we
did some numerical calculations to see how it can be handled in a situation where
the p-values are MTP2 but do not have identical kth-order joint null distributions.
In particular, we considered the scenario where Xi ∼ N(µi,1), i = 1, . . . , n, are
jointly multivariate normal with correlations ρij = λiλj , for some 0 < λi,λj < 1,
i, j = 1, . . . , n, with H0 :

⋂n
i=1{µi = 0} and H1 :

⋃n
i=1{µi > 0}. This is the situa-

tion that occurs in the many-to-one comparison problem in unbalanced one-way
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setup [6]. The Xi’s are MTP2, as the off-diagonal entries of the inverse of this cor-
relation matrix are all negative; see, for example, [10], but now they do not have
identical kth-order joint null distributions. We modified the generalized Simes’ test
in this case by considering

G̃k(u) = 1

an

∑
J∈Ck

PrH0

{
max
i∈J

Pi ≤ u

}

in place of Gk to determine the critical values. We numerically computed its
k-FWER (weak) and the power, the probability of correctly rejecting k or more
of the component null hypotheses, and compared them to those of the original
Simes’ test with k = 2, n = 20, λi = √

0.25 for i = 1, . . . ,10, and = √
0.75, for

i = 11, . . . ,20. Figure 3 shows this power comparison for different values of n1,
where it is assumed that µi = 0 for i = 1, . . . , n0 = n − n1, and = 2 for the other
n1 i’s. When n1 = 0, that is, under H0 the powers are 0.02690 and 0.02060 for this
modified generalized Simes’ and the original Simes’ tests, respectively, indicating
that the modified generalized Simes’ test controls the 2-FWER, slightly better than
the original Simes’ test. Moreover, the modified generalized Simes’ test performs
reasonably well in terms of power compared to the original Simes’ test. The sim-
ulated powers were based on 20,000 iterations. So, the idea of averaging out the
Gk to modify the generalized Simes’ test when the p-values are MTP2 but do not

FIG. 3. Comparison of powers of the modified generalized and the original Simes’ tests for testing
multivariate normal means when ρij = λiλj , where λi = √

0.25 for i = 1, . . . ,10, = √
0.75 for

i = 11, . . . ,20, k = 2 and α = 0.05.
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have identical kth-order joint null distributions seems to work in the present sce-
nario. The same would also work for the corresponding generalized Hochberg’s
procedure. Proving these analytically for a general scenario of this type would be
an interesting and challenging undertaking.

We also numerically investigate how the proposed procedures would perform if
the MTP2 condition is violated. For instance, suppose that we have a central mul-
tivariate t corresponding to an equicorrelated standard multivariate normal with
nonnegative correlations. The MTP2 condition does not hold here, although the
PRDS does; see, for example, [1, 16]. We ran a simulation study for this distribu-
tion based on 20,000 iterations considering ρ = 0.25. Figure 4 shows the perfor-
mance of the generalized Simes’ test over the original Simes’ for different values
of the degrees of freedom. it seems that the generalized Simes’ test, and hence, the
generalized Hochberg’s procedure, would still work in this case.

We have shown theoretically that our proposed k-FWER procedures with
k ≤ 1/α are more powerful than the corresponding existing procedures when the
p-values are independent and given empirical evidence that this power improve-
ment is still maintained when the p-values are weakly dependent. What happens
when k > 1/α, as in high-dimensional settings where the number of tests might
be in the thousands and one might want to set k at a large value? We numer-
ically investigated this question only for the generalized Hochberg’s procedure,
expecting that similar conclusion can be drawn from this study regarding the gen-

FIG. 4. Comparison of powers of the generalized and original Simes’ tests for multivariate t cor-
responding to equicorrelated multivariate normal with ρ = 0.25, k = 2 and α = 0.05.
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FIG. 5. Comparison of average powers of the proposed generalized Hochberg’s procedure,
Lehmann–Romano version of the generalized Hochberg’s procedure and the original Hochberg’s
procedure for testing independent normal means with α = 0.05.

eralized Simes’ test. We ran another simulation study extending that in Section 4.2
from 100 to 1,000 tests and recomputing AvePower’s for all these three procedures
based on 20,000 iterations for values of k much larger than 3. We, however, consid-
ered ρ = 0, since the critical values become increasingly difficult to calculate as k

becomes larger when ρ > 0 and we expect, as for smaller values of k, that the per-
formance of our procedure for weakly dependent p-values would not change much
from the situation when ρ = 0. Figure 5 shows the power performance of the gen-
eralized Hochberg’s procedure in these situations. Comparing this with Figure 2,
we see that the performance of our procedure actually gets better when k > 1/α.

APPENDIX

A.1. Proof of Lemma 2.1. First, we have

Pr

{
n⋃

i=k

(Xi:n ≤ ci)

}
(A.1)

=
n∑

i=k

Pr{Xi:n ≤ ci,Xi+1:n > ci+1, . . . ,Xn:n > cn}.
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For each i = k, . . . , n,

Pr{Xi:n ≤ ci,Xi+1:n > ci+1, . . . ,Xn:n > cn} = ∑
J ∗∈Ci

Pr{AJ ∗},(A.2)

where

AJ ∗ =
{

max
j∈J ∗ Xj ≤ ci,X1:J ∗c > ci+1, . . . ,Xn−i:J ∗c > cn

}
.

Since for J ∈ Ck and J ∗ ∈ Ci with k ≤ i,{
max
j∈J

Xj ≤ ci

}
∩ AJ ∗ =

{
AJ ∗, if J ⊆ J ∗,

∅, otherwise,

we see that(
i

k

) ∑
J ∗∈Ci

Pr{AJ ∗} = ∑
J ∗∈Ci

∑
J∈Ck :J⊆J ∗

Pr{AJ ∗}

= ∑
J∈Ck

∑
J ∗∈Ci :J ∗⊇J

Pr
({

max
j∈J

Xj ≤ ci

}
∩ AJ ∗

)
(A.3)

= ∑
J∈Ck

Pr{Xk:J ≤ ci,Xi−k:J c ≤ ci,

Xi−k+1:J c > ci+1, . . . ,Xn−k:J c > cn}.

Thus, we get from (A.1), (A.2) and (A.3) that

Pr

{
n⋃

i=k

(Xi:n ≤ ci)

}

= ∑
J∈Ck

n∑
i=k

a−1
i Pr{Xk:J ≤ ci,Xi−k:J c ≤ ci,

Xi−k+1:J c > ci+1, . . . ,Xn−k:J c > cn}

= ∑
J∈Ck

{
a−1
n E[{1 − ψn−k(XJ )}I (Xk:J ≤ cn)]

+
n−1∑
i=k

E[ψi−k+1(XJ )a−1
i I (Xk:J ≤ ci)](A.4)

−
n−1∑

i=k+1

E[ψi−k(XJ )a−1
i I (Xk:J ≤ ci)]

}
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= a−1
n

∑
J∈Ck

Pr{Xk:J ≤ cn}

+ ∑
J∈Ck

n−1∑
i=k

E[ψi−k+1(XJ ){a−1
i I (Xk:J ≤ ci)

− a−1
i+1I (Xk:J ≤ ci+1)}].

This proves the lemma.

A.2. Proof of Lemma 2.2. Writing Gk as a function of λ = ρ1/2 and letting
�−1(1 − u) = t , we have

∂

∂λ
Gk(u;ρ)

(A.5)

= −k

∫ ∞
−∞

[
1 − �

(
t − λy√
1 − λ2

)]k−1{
∂

∂λ
�

(
t − λy√
1 − λ2

)}
φ(y) dy.

Since {
∂

∂λ
�

(
t − λy√
1 − λ2

)}
φ(y) = − (y − λt)

(1 − λ2)
√

1 − λ2
φ

(
y − λt√
1 − λ2

)
φ(t),

making the transformation y = v
√

1 − λ2 + λt in (A.5), we get

∂

∂λ
Gk(u;ρ)

= kφ(t)

1 − λ2

∫ ∞
−∞

[
1 − �

(
t

√
1 − λ2 − λv

)]k−1
vφ(v) dv

≥ kφ(t)

1 − λ2

∫ ∞
−∞

[
1 − �

(
t

√
1 − λ2 − λv

)]k−1
φ(v) dv ×

∫ ∞
−∞

vφ(v) dv

= 0,

as 1 − �(t
√

1 − λ2 − λv) is increasing in v.
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