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SPATIAL AGGREGATION OF LOCAL LIKELIHOOD ESTIMATES
WITH APPLICATIONS TO CLASSIFICATION!

By DENIS BELOMESTNY AND VLADIMIR SPOKOINY

Weierstrass Institute

This paper presents a new method for spatially adaptive local (constant)
likelihood estimation which applies to a broad class of nonparametric mod-
els, including the Gaussian, Poisson and binary response models. The main
idea of the method is, given a sequence of local likelihood estimates (“weak”
estimates), to construct a new aggregated estimate whose pointwise risk is of
order of the smallest risk among all “weak” estimates. We also propose a new
approach toward selecting the parameters of the procedure by providing the
prescribed behavior of the resulting estimate in the simple parametric situ-
ation. We establish a number of important theoretical results concerning the
optimality of the aggregated estimate. In particular, our “oracle” result claims
that its risk is, up to some logarithmic multiplier, equal to the smallest risk for
the given family of estimates. The performance of the procedure is illustrated
by application to the classification problem. A numerical study demonstrates
its reasonable performance in simulated and real-life examples.

1. Introduction. This paper presents a new method of spatially adaptive non-
parametric estimation based on the aggregation of a family of local likelihood es-
timates. As a main application of the method, we consider the problem of building
a classifier on the base of the given family of k-NN or kernel classifiers.

The local likelihood approach has been intensively discussed in recent years;
see, for example, Tibshirani and Hastie [16], Staniswalis [15] and Loader [11].
We refer to Fan, Farmen and Gijbels [5] for a nice and detailed overview of the
local maximum likelihood approach and related literature. Similarly to nonpara-
metric smoothing in the regression or density framework, an important issue for
local likelihood modeling is the choice of localization (smoothing) parameters.
Different types of model selection techniques based on the asymptotic expansion
of the local likelihood are mentioned in Fan, Farmen and Gijbels [5], which in-
clude global, as well as variable, bandwidth selection. However, the finite sample
performance of estimators based on bandwidth or model selection is often rather
unstable; see, for example, Breiman [2]. This point is particulary critical for the
local or pointwise model selection procedures like Lepski’s method. In spite of
the nice theoretical properties (see Lepski, Mammen and Spokoiny [8], Lepski
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and Spokoiny [9] or Spokoiny [14]), the resulting estimates suffer from high vari-
ability due to a pointwise model choice, especially for a large noise level. This
suggests that in some cases, the attempt to identify the true model is not neces-
sarily appropriate. One approach to reducing variability in adaptive estimation is
model mixing or aggregation. Catoni [4] and Yang [18], among others, have sug-
gested global aggregating procedures that achieve the minimal estimation risks
over the family of given “weak” estimates. In the regression setting, Juditsky and
Nemirovski [7] have developed aggregation procedures which have a risk within
a multiple of the smallest risk in the class of all convex combinations of “weak”
estimates plus log(n)/n. Tsybakov [17] has discussed asymptotic minimax rates
for aggregation. Aggregation for density estimation has been studied by Li and
Barron [10] and more recently by Rigollet and Tsybakov [13]. To the best of our
knowledge, pointwise aggregation has not yet been considered.

Our approach is based on the idea of the spatial (pointwise) aggregation of a
family of local likelihood estimates (“weak”™ estimates) 6®  The main idea is,
given the sequence {6}, to construct in a data-driven way, for every point x, the
“optimal” aggregated estimate B(x). “Optimality” means that this estimate satisfies
some kind of “oracle” inequality, that is, its pointwise risk does not exceed the
smallest pointwise risk among all “weak” estimates up to a logarithmic multiple.

Our algorithm can be roughly described as follows. Let (P}, k=1,...,K,
be a sequence of “weak” local likelihood estimates at a point x, ordered accord-
ing to their variability, which decreases with k. Starting with 8" (x) = 81D (x),
an aggregated estimate 6™ (x) at any step 1 < k < K is constructed by mixing
the previously constructed aggregated estimate 6*=D (x) with the current “weak”
estimate 6% (%),

0™ (x) = p® () + (1 — y)B* D (),

and taking 6®)(x) as a final estimate. The mixing parameter y; (which may de-
pend on the point x) is defined using a measure of statistical difference between
@““”(x) and 6® (x). In particular, yx is equal to zero if §(k_1)(x) lies outside
the confidence set around 6% (x). In view of the sequential and pointwise nature
of the algorithm, the suggested procedure is called Spatial Stagewise Aggregation
(SSA). Important features of the proposed procedure are its simplicity and ap-
plicability to a variety of problems including Gaussian, binary, Poisson regression,
density estimation, classification, etc. The procedure does not require any splitting
of the sample as many other aggregation procedures do (cf. Yang [18]). Further-
more, the theoretical properties of SSA can be rigorously studied. In particular, we
establish precise nonasymptotic “oracle” results which are applicable under very
mild conditions in a rather general setting. We also show that the oracle property
automatically implies spatial adaptivity of the proposed estimate.

Another important feature of the procedure is that it can be easily implemented
and the problem of selecting the tuning parameters can be carefully addressed.
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Our simulation study confirms nice finite sample performance of the proce-
dure for a broad class of models and problems. We only show the results for the
classification problem as the most interesting and difficult one. Some more exam-
ples for univariate regression and density estimation can be found in our preprint
Belomestny and Spokoiny [1]. Section 4 shows how the SSA procedure can be
applied to aggregating kernel and k-NN classifiers in the classification problem.
Although these two nonparametric classifiers are rather popular, the problem of
selecting the smoothing parameter (the bandwidth for the kernel classifier or the
number of neighbors for the k-NN method) has not yet been satisfactorily ad-
dressed. Again, the SSA-based classifier demonstrates the “oracle” quality in terms
of the both pointwise and global misclassification errors. This application clearly
shows one more important feature of the SSA method: it can be applied to an
arbitrary design with design space of arbitrary dimension. This is illustrated by
simulated and real-life classification examples in dimensions up to 10.

The procedure proposed in this paper is limited to aggregating the kernel-type
estimates which are based on local constant approximation. The modern statistical
literature usually considers the more general local linear (polynomial) approxi-
mation of the underlying function. However, for this paper, we have decided for
several reasons to restrict our attention to the local constant case. The most im-
portant one is that for the examples and applications we consider in this paper, the
use of the local linear methods does not improve (and even degrades) the quality
of estimation. Our experience strongly confirms that for problems like classifica-
tion, local constant smoothing combined with the aggregation technique delivers
reasonable finite sample quality.

Our theoretical study is split into two major parts. Section 2 introduces the lo-
cal parametric setting to be considered and extends the parametric risk bounds to
the local parametric and nonparametric situation under the so-called “small mod-
eling bias” condition. The main result (Corollary 2.6) claims that the parametric
risk bounds continue to apply provided that this condition is fulfilled. One possi-
ble interpretation of our adaptive procedure is the search for the largest localiz-
ing scheme for which the “small modeling bias™ condition still holds. Theoretical
properties of the aggregation procedure are presented in Section 5. The main result
states the “oracle” property of the SSA estimate: the risk of the aggregated estimate
is, within a log-multiple, as small as the risk of the best “weak” estimate for the
function under consideration. The results are established in the precise nonasymp-
totic way for a rather general likelihood setting under mild regularity conditions.
Moreover, our approach establishes a link between parametric and nonparametric
theory. In particular, we show that the proposed method delivers root-n accuracy
in the parametric situation. In the nonparametric case, the quality corresponds to
the best parametric approximation. Both the theoretical study and the motivation
of the procedure employ some exponential bounds for the likelihood which are
given in Section 2.2. An important feature of our theoretical study is that the prob-
lem of selecting the tuning parameters is also discussed in detail. We offer a new
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approach, in which the parameters of the procedure are selected to provide the
desirable performance of the method in the simple parametric situation. This is
similar to the hypothesis problem approach when the critical values are selected
using the performance of the test statistic under the simple null hypothesis; see
Section 3.3.1 for a detailed explanation.

2. Local constant modeling for exponential families. This section presents
some results on local constant likelihood estimation. We begin by describing
the model under consideration. Suppose we are given independent random data
Zi,...,Z, of the form Z; = (X;, Y;). Here, every X; denotes a vector of “fea-
tures” or explanatory variables which determine the distribution of the “obser-
vation” Y;. For simplicity, we assume that the X;’s are valued in the finite-
dimensional Euclidean space 2~ = R4 and that the Y;’s belong to R. The vector X;
can be viewed as a location and Y; as the “observation at X;.” Our model assumes
that the distribution of each Y; is determined by a finite-dimensional parameter 6
which may depend on the location X;.

More precisely, let & = (P, 0 € ©) be a parametric family of distributions
dominated by a measure P. In this paper, we only consider the case when ® is a
subset of the real line. By p(-, 8) we denote the corresponding density. We consider
the regression-like model in which every “response” Y; is, conditionally on X; = x,
distributed with the density p(-, f(x)) for some unknown function f(x) on 2
with values in ®. The model under consideration can be written as

Yi ~ Prxy-

The aim of the data analysis is to estimate the function f(x). For related models,
see Fan and Zhang [6] and Cai, Fan and Li [3].

In this paper, we focus on the case where &7 is an exponential family. This
means that the density functions p(y,0) = ‘fillf(y) are of the form p(y,0) =
p(y)eyc(e)_B(e). Here, C(0) and B(f) are some given nondecreasing functions
on ® and p(y) is some nonnegative function on R.

A natural parametrization for this family is defined by the equality EqY =
[ yp(y,0)P(dy) =6, for all 6 € ®. This condition is useful because the weighted
average of observations is a natural unbiased estimate of 6. In what follows, we
assume that & also satisfies the following regularity conditions.

(Al) & = (Py,0 € ® CR) is an exponential family with a natural parame-
trization and the functions B(-) and C(-) are continuously differentiable.

(A2) ® is compact and convex and the Fisher information [(0) :=
Eg|0log p(Y, 9)/80|2 satisfies, for some s > 1,

110)/1(0M'? <3,  6,0"€0.

We illustrate this setup with two examples relevant to the applications we con-
sider below. More examples can be found in Fan, Farmen and Gijbels [5] and
Polzehl and Spokoiny [12].
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EXAMPLE 2.1 [Inhomogeneous Bernoulli (binary response) model]. Let Z; =
(X;,Y;) with X; € R? and ¥; a Bernoulli .v. with parameter f(X;), thatis, P(Y; =
1| Xi=x)=f(x)and P(Y; =0| X; =x) = 1— f(x). Such models arise in many
econometric applications and are widely used in classification and digital imaging.

EXAMPLE 2.2 (Inhomogeneous Poisson model). Suppose that every Y; is val-
ued in the set N of nonnegative integers and P(Y; =k | X; = x) = fk(x)e_f(x)/k!,
that is, ¥; follows a Poisson distribution with parameter 6 = f(x). This model is
commonly used in queueing theory, occurs in positron emission tomography and
also serves as an approximation for the density model obtained by a binning pro-
cedure.

In the parametric setting with f(-) = 6, the distribution of every “observation”
Y; coincides with Py for some 6 € ® and the parameter € can be well estimated
using the parametric maximum likelihood method,

6= arg max Zlogp(Y, ,0).
6e® i=1

In the nonparametric framework, one usually applies the localization idea. In the
local constant setting this means that the regression function f(-) can be well ap-
proximated by a constant within some neighborhood of every point x in the “fea-
ture” space Z . This leads to the local model concentrated in some neighborhood
of the point x.

2.1. Localization. We use localization by weights as a general method to de-
scribe a local model. Let, for a fixed x, a nonnegative weight w; = w;(x) <1 be
assigned to the observation Y; at X;, i = 1,...,n. The weights w; (x) determine
a local model corresponding to the point x in the sense that, when estimating the
local parameter f(x), every observation Y; is taken with welght w; (x). This leads
to the local (weighted) maximum likelihood estimate 0= 9(x) of f(x),

2.1 8(x) =argmaxZw,~(x)logp(Yi,0).

We now mention two possible ways of choosing the weights w;(x). Local-
ization by a bandwidth is defined by weights of the form w;(x) = Kjoc(l;) with
l; = p(x, X;)/ h, where h is a bandwidth, p(x, X;) is the Euclidean distance be-
tween x and the design point X; and Ko iS a location kernel. Localization by a
window simply restricts the model to a subset (window) U = U (x) of the design
space which depends on x, that is, w;(x) = 1(X; € U(x)). Observations Y; with
X; outside the region U (x) are not used for estimating f (x). This kind of localiza-
tion arises, for example, in the classification with k-nearest neighbors method or
in the regression tree approach. Sometimes it is convenient to combine these two
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methods by defining w; (x) = Kjoc(1;)1(X; € U(x)). One example is given by the
boundary-corrected kernels.

We do not assume any special structure for the weights w; (x), that is, any con-
figuration of weights is allowed. We also denote W = W (x) = {w(x), ..., w,(x)}
and

L(W,0) =Y w;(x)log p(¥;,6).
i=1

To simplify notation, we do not show the dependence of the weights on x explicitly
in what follows.

2.2. Local likelihood estimation for an exponential family model. 1f & =
(Pp) is an exponential family with the natural parametrization, the local log-
likelihood and the local maximum likelihood estimates admit a simple closed form
representation. For a given set of weights W = diag{wy, ..., w,} with w; € [0, 1],
denote

n n
N=Zwi, S=Zinl’.
i=1 i=1

Note that both sums depend on the location x via the weights {w;}.

LEMMA 2.1 (Polzehl and Spokoiny [12]).
n
L(W,0)= Z w;ilog p(¥;,0) =SCO) — NB() + R,
i=1

where R =}""_, w; log p(Y;). Moreover,

n n
2.2) G=S/N=Y wY;/ Y w
i=l i=1

and

L(W,8,0):=L(W,0) — L(W,0) =N (8,0).

We now present some exponential inequalities for the “fitted log-likelihood”
L(W,6,0) which apply in the parametric situation f(-) = 0 for an arbitrary
weighting scheme and arbitrary sample size.

THEOREM 2.2 (Polzehl and Spokoiny [12]). Let W = {w;} be a localizing
scheme such that max; w; < 1. If f(X;) =60 for all X; with w; > 0, then for any
z>0,

Py« (L(W,6,0%) > z) =Pg«(NF (,0%) > z) <2e .
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REMARK 2.1. Condition (A2) ensures that the Kullback—Leibler divergence
K satisfies 2 (0, 0%) < I*|6' — 0*|? for any point @ in a neighborhood of 6*,
where I'* is the maximum of the Fisher information over this neighborhood. There-
fore, the result of Theorem 2.2 guarantees that 16 —6*| < CN~Y2 with high prob-
ability. Theorem 2.2 can be used to construct the confidence intervals for the para-
meter 6*.

THEOREM 2.3. If 3, satisfies 2e 7% < «, then
Eu=1{0':NA(0,0") < 30}
is an a-confidence set for the parameter 6*.
Theorem 2.2 claims that the estimation loss measured by % (6, 6) is, with high

probability, bounded by 3/N, provided that 3 is sufficiently large. Similarly, one
can establish a risk bound for a power loss function.

THEOREM 2.4. Assume (Al) and (A2) and let Y; be i.i.d. from Pg+. Then, for
anyr >0,
Eg:L"(0,60%) = N'Eg« " (0,60%) < 1,,
where T, =2r fg,zo 3 " le73dy = 2rI"(r). Moreover, for every A < 1,
Eg+ exp{AL (@, 6%)} = Eg= exp{ANZ (@, 6%)} <2(1 — 1)~ .

PROOF. By Theorem 2.2,

Eg*Lr(g, 0*) < _f>03r dPg*(L(g, ") > 3)
3=

<r 3”1P9*(L(5,0*)>3)d3§2r/ e ds
320 320

and the first assertion is satisfied. The last assertion is proved similarly. [

2.3. Risk of estimation in the nonparametric situation. “Small modeling bias”
condition. This section extends the bound of Theorem 2.2 to the nonparametric
situation where the function f(-) is no longer constant, even in the vicinity of
the reference point x. We, however, suppose that the function f(-) can be well
approximated by a constant 6 at all points X; with positive weights w;. To measure
the quality of the approximation, define for every 6

(2.3) AW, 0) =780, f(X)L(w; > 0),
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where, with £(y, 0, 0") = log géyy’g%,

2 ’
/ Y,0
5(0,0") =log Ege =2 "%%) =log Eey.
p-(¥,0)
One can easily check that §(9, 8') < I*|0 — 8’|, where I* = maxgrcjg.07 1 (6").

THEOREM 2.5. Let #w be a o-field generated by the r.v. Y; for which w; > 0
and let A(W,0) < A. Then, for any random variable & measurable with respect
to F W

EfE < (e"EgtH)'/?.
PROOF. Define Zw (6) = exp{—>_; £(Y;, 0, f(X;))1(w; > 0)}. This value is
nothing but the likelihood ratio of the measure P (., with respect to Py upon re-

stricting to the observations Y; for which w; > 0. Then, for any & ~ %y, we have
E & =Eg&Zw (). Independence of the Y;’s implies that

logEgZ3,(0) = ) logEge 2 Yi0-/ XD (y; > 0)
i

=) 80, f(Xi)L(w; > 0) <A.

The result now follows from the Cauchy—Schwarz inequality Eg&Zy (6) <
{Eg&2Eo Z3,(0)}1/2. O

This result implies that the bound for the risk of estimation E s )L" @,0) =

N"Ep 2" (6,0) under the parametric hypothesis can be extended to the non-
parametric situation, provided that the value A(W, ) is sufficiently small.

COROLLARY 2.6. Foranyr > 0andany A <1,

N"E |4 @.0) < \JerWo)y,

~ .1
N{E;ul2 @, )} < X{log

2
o AW.0) 420 - 1)+}.

PROOF. The first bound follows directly from Theorems 2.4 and 2.5. The
proof of the second bound uses the fact that for r > 0, the function h(x) =
log" (x + ¢,) with ¢, = ¢ =D+ is concave on (0, 00) because

rlog" ~2(x +¢,)
(X + C'r)2

h'(x) = {r—1—log(x+c¢)} <0
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for x > 0. With ¢ = AL(@,6)/2, this implies, by monotonicity of the logarithm
function and Jensen’s inequality, that E r,)¢” <E ¢ h(e®) < h(E s e°), hence

1
Ef/(f)é" < log(Ef(.)ef + Cr) < IOgEf(.)eg T =1y

< Tlog(e® WD Ege®) + (r — 1)

and the assertion follows. [

Corollary 2.6 presents two bounds for the risk of estimation in the nonparamet-
ric situation which extend the similar parametric bounds by Theorem 2.5. The risk
bound in the parametric situation can be interpreted as the bound for the variance
of the estimate &, while the term A(W, 0) controls the bias of estimation; see the
next section for more details. Both bounds formally apply, regardless of what the
“modeling bias” A(W, 0) is. However, the results are meaningful only if this bias
is not too large. The first bound could be preferable for small values of A(W, 9).
However, the multiplicative factor e2("-9)/2 makes this bound useless for large
A(W, 0). The advantage of the second bound is that the “modeling bias” enters in
additive form.

In the remainder of this section, we briefly comment on relations between the
results of Section 2.3 and the usual rate results under smoothness conditions on
the function f(-) and the regularity conditions on the design Xy, ..., X;,. More
precisely, we assume that the weights w; are supported on a ball with radius 2 > 0
and center x and that the function f(-) is smooth within this ball in the sense that
for 6* = f(x),

(2.4) SY2(6%, fx+1) <Lh  V|t|<h.

In view of the inequality §(6,0") < I*|0 — 6’|, this condition is equivalent to the
usual Lipschitz property. Obviously, (2.4) implies, with N = }_; 1(w; > 0), that

AW,6%) < L’h®N.
Combined with the result of Corollary 2.6, these bounds lead to the following rate

results.

THEOREM 2.7. Assume (A1) and (A2) and let §'/2(0*, f(x+1)) < Lh forall
lt] < h. Select h = ¢(L*n)~1/@td) for some ¢ > 0 and let the localizing scheme
W be such that w; =0 for all X; with |X; — x| > h, N =), w; > o1nh? and
N := Yil(w; >0) < onh? with some constants 9| < 0,. Then

Ef N @, 0% < {exp(c® )7, }'/%.
Moreover, with ¢y = ¢"4/? exp(02+d02/2)01_r/2, we have

Ef(.)}nl/(2+d)¢%/(§,0*)’r/2 < C2er/(2+d)‘[r1/2~

This corresponds to the classical accuracy of nonparametric estimation for the
Lipschitz functions (cf. Fan, Farmen and Gijbels [5]).
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3. Description of the method. We start by describing the setting under con-
sideration. Let a point of interest x be fixed. The target of estimation is the value
f(x) of the regression function at x. The local parametric approach described in
Section 2 and based on local constant approximation of the regression function in
a vicinity of the point x strongly relies on the choice of the local neighborhood or,
more generally, of the set of weights (w;). The problem of selecting such weights
and constructing an adaptive (data-driven) estimate is one of the main issues for
practical applications and we focus on this problem in this section.

3.1. Local adaptive estimation. General setup. For a fixed x, we assume that
an ordered set of localizing schemes w® = (wi(k)), fork=1,..., K, is given.
The ordering condition means that wl.(k) > wl.(k,) for all i and all k > k’, that is, the
degree of locality given by Wl.(k) is weakened as k grows. See Section 3.3 for some
examples. For the popular example of kernel weights wi(k) = K((X; —x)/ hg), this
condition means that the bandwidth /; grows with k. Also, let {5 ® k=1,....K }
be the corresponding set of local likelihood estimates for 8 = f(x),

n n
0 () = argmax L(W,0) = Y wv; /3w,
0e® = P

Due to Theorem 2.2, the value 1/Nj can be used to measure the variability of
the estimate 6. The ordering condition means, in particular, that Ny grows and
hence the variability of 6% decreases with k.

Given the estimates (&) we consider the larger class of their convex combina-
tions,

0=010D . 4 agd®  wttag=1, >0,

where the mixing coefficients oy may depend on the point x. We aim to construct
a new estimate 0 in this class which performs at least as well as the best one in the
original family {§®)}.

3.2. Stagewise aggregation procedure. The adaptive estimate 6 of 6 = fx)
is computed sequentially via the following algorithm:

1. Initialization: 9" =M,
2. Stagewise aggregation: Fork=2,..., K,

0P = 1 6® 4 (1 — y)f*=D),

with the mixing parameter y being defined for some 3; > 0 and a kernel Kpg(+)
as

Vi = Kag(m(k)/;,k), m® = N (@D, kD).
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3. Loop: If k < K, then increase k by one and continue with Step 2. Otherwise,
terminate and set § = 6K),

The idea behind the procedure is quite simple. We start with the first esti-
mate 61 which has the smallest degree of locality but the largest variability,
of order 1/N;. Next, we consider estimates with larger values Ni. Every cur-
rent estimate %) is compared with the previously constructed estimate f*k—D,
If the difference is not significant, then the new estimate 8%) basically coin-
cides with 6%, Otherwise, the procedure essentially keeps the previous value
6*=1 For measuring the difference between the estimates 6® and 9D we use
m® = Ny ¥ (5 &) é(k_l)), which is motivated by the results of Theorems 2.2 and
2.3. In particular, a large value of m®) means that 6% =1 does not belong to the
confidence set corresponding to 6® and hence indicates a significant difference
between these two estimates. To quantify this significance, the procedure utilizes
the parameters (critical values) 3x. Their choice is discussed in Section 3.3.1.

REMARK 3.1. If Kyg(-) is the uniform kernel on [0, 1], then yy is either zero
or one, depending on the value of m®. This yields, by induction arguments, that
the final estimate coincides with one of the “weak” estimates § ¥ In this case, our
method can be considered a pointwise model selection method.

If the kernel Ky is such that K,g(¢) = 1 for < b with some positive b, then the
small values of the “test statistic” m® lead to the aggregated estimate k) =gk,
This is an important feature of the procedure which will be used in our implemen-
tation and theoretical study.

3.3. Parameter choice and implementation details. The implementation of the
SSA procedure requires the fixing of a sequence of local likelihood estimates, the
kernel K,; and the parameters 3;. The next section gives some examples of how
the set of localizing schemes W %) can be selected. The only important parameters
of the method are “critical values” 3; which normalize the “test statistics” m®.
Section 3.3.1 describes in detail how they can be selected in practice.

The kernel K, should satisfy 0 < K,g(z) < 1, be monotone decreasing and
have support on [0, 1]. Further, there should be a positive number » such that
Kg(t) =1 for t < b. Our default choice is a piecewise linear kernel with b =1/6
and K,g(t) = (1 — (t — b)4)4. Our numerical results (not shown here) indicate
that the particular choice of kernel K¢ has only a minor effect on the final results.

3.3.1. Choice of the parameters 3. The “critical values” 3; define the level of
significance for the test statistics m®). A proper choice of these parameters is cru-
cial for the performance of the procedure. In this section, we propose one general
approach for selecting them which is similar to the bootstrap idea in the hypothesis
testing problem. Namely, we select these values to provide the prescribed perfor-
mance of the procedure in the parametric situation (under the null hypothesis). For
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every step k, we require that the estimate 6™ is sufficiently close to the “oracle”
estimate 6 in the parametric situation f(-) = 6, in the sense that

3.1 sup E9*|Nk<)£/(§(k),§(k))|r <art
0*e®
for all k = 2,...,K with 7, from Theorem 2.4. In some cases, the risk

Eg« | Ny % (0~ &), §(k)) | does not depend on 6*. This is the case, for example, when
0 is a shift or scale parameter, as for Gaussian shift, exponential and volatility fam-
ilies. It then suffices to check (3.1) for any single point 8*. In the general situation,
the risk Eg« | Ny ¢ (5 ®, é(k)) |” depends on the parameter value 6*. However, our
numerical results (not reported here) indicate that this dependence is minor and
usually it suffices to check these conditions for one parameter 6*. In particular, for
the Bernoulli model considered in Section 4 we recommend only checking con-
dition (3.1) for the “least favorable” value 8* = 1/2 corresponding to the largest
variance of the estimate 6.

The values o and r in (3.1) are two global parameters. The role of « is sim-
ilar to the level of the test in the hypothesis testing problem, while r describes
the power of the loss function. A specific choice is subjective and depends on the
particular application in question. Taking a large r and small & would result in an
increase of the critical values and therefore improve the performance of the method
in the parametric situation, with the cost of some loss of sensitivity to parameter
changes. Theorem 5.1 presents some upper bounds for the critical values 3 as
functions of « and r in the form ag + a; log a4 arr(K — k) with some coeffi-
cients ag, a; and a>. We see that these bounds depend linearly on r and loga~!.
For our applications to classification, we apply a relatively small value, r = 1/2,
because the misclassification error corresponds to the bounded loss function. We
also apply @ = 1, although other values in the range [0.5, 1] lead to very similar
results. Note that in general, the parameters 3; thus defined depend on the model
considered, design X1, ..., X, and localizing schemes w® . W& which, in
turn, can differ from point to point. Therefore, an implementation of the suggested
rule would require separate computation of the parameters for every point of es-
timation. However, in many situations, for example, for the regular design, this
variation from point to point is negligible and a universal set of parameters can be
used. It is only important that conditions (3.1) are satisfied for all the points.

3.3.2. Simplified parameter choice. Proposal (3.1) is not constructive: we
have only K — 1 conditions for choosing K — 1 parameters. Here, we present
a simplified procedure which is rather easy to implement and is based on Monte
Carlo simulations. It suggests first identifying the last value 3x using the reduced
aggregation procedure with only two estimates gK=1 and §K);

sup Eg:|[Ng. 2 (6,0Gx))|" <ot /(K — 1),
0*e®
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where 0(x) = y0%) + (1 — )0* D, y = Kog(m/3x) and m = Ng.7# (65,
G(K_l)). The other values 3 are found in the form j; = 3x + ((K — k) to en-
sure (3.1). This suggestion is justified by Theorem 5.1 from Section 5.1.

3.3.3. Examples of sequences of local likelihood estimates. This section
presents some examples and recommendations for the choice of the localizing
schemes W® which we also use in our simulation study. Note, however, that the
choice of W®)’s is not part of the SSA procedure. The procedure applies with any
choice under some rather mild growth conditions.

Below, we assume that the design X1, ..., X, is supported on the unit cube
[—1, 1]%. This condition can be easily met by rescaling the design components.
We mention two approaches to choosing the localizing scheme which are usually
used in applications. One is based on a given sequence of bandwidths, and the
other is based on the nearest neighbor structure of the design. In both situations,
we assume that a location kernel Kj, is a nonnegative function on the unit cube
[—1, 1]%. In general, we only assume that this kernel is decreasing along any radial
line, that is, Kjoc(px) > Kioc(x) for any x € [—1, 114 and p <1, and Kjpc(x) =
0 for |x| > 1. In most applications, one applies an isotropic kernel Kjo,. which
depends only on the norm of x. The recommended choice is the Epanechnikov
kernel Kioe(x) = (1 — |x|?)4.

Bandwidth-based localizing schemes. This approach is recommended for the uni-
variate or bivariate equidistant design. Let {1} ,le be a finite set of bandwidth can-
didates. We assume that this set is ordered, thatis, h; < hy < --- < hg. Every such
bandwidth determines the collection of kernel weights wl-(k) = Kioc (X; — x)/ hy),
i =1,...,n. This definition assumes that the same localizing bandwidth is ap-
plied for all directions in the feature space. In all of the examples below, we apply
a geometrically increasing sequence of “bandwidths” hy, that is, hx41 = ahy for
some a > 1. This sequence is uniquely determined by the starting value Ay, the
factor a and the total number K of local schemes. The recommended choice of a
is (1.25)1/4, although our numerical results (not reported here) indicate no signifi-
cant change in the results when any other value of a in the range 1.1 to 1.3 is used.
The value £ is to be selected in such a way that the starting estimate 6D is well
defined for all points of estimation. In the case of a local constant approximation,
this value can be taken very small because even one point can be sufficient for pre-
liminary estimation. In the case of a regular design, the value & is of order n=1/.
The number K of local schemes W® or, equivalently, of “weak” estimates g
is largely determined by the values /1 and a, in such a way that hx = h1a®~1 is
approximately one, that is, the last estimate behaves like a global parametric esti-
mate from the whole sample. The formula K = alog(hg/h) suggests that K is
at most logarithmic in the sample size n.
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k-NN-based local schemes. 1If the design is irregular or the design space is high-
dimensional (d > 2), then it is useful to apply the local schemes based on the k-
nearest neighbor structure of the design. For this approach, an increasing sequence
{ Ny} of integers must be fixed. For a fixed x and every k > 1, the bandwidth Ay is
the minimal one for which the ball of radius % contains at least Ny design points.
The weights are again defined by wi(k) = Kjoc((X; — x)/ hi). The sequence {Ni}
is selected similarly to the sequence {h;} in the bandwidth-based approach. One
starts with a fixed N; and then multiplies it at every step by some factor a > 1:
Ni41 = aNg. The number of steps K is such that Ng is of order 7.

One can easily check that the kernel- and k-NN-based local schemes coincide
in the case of univariate regular design.

4. Application to classification. One observes a training sample (X;, Y;),
i =1,...,n, with X; valued in a Euclidean space 2" = R“ and with known class
assignment Y; € {0, 1}. Our objective is to construct a discrimination rule assign-
ing every point x € 2 to one of the two classes. The classification problem can
be naturally treated in the context of a binary response model. It is assumed that
each observation Y; at X; is a Bernoulli r.v. with the parameter 6; = f(X;), that
is, P(Y; =0|X;) =1 — f(X;) and P(Y; = 1| X;) = f(X;). The “ideal” Bayes dis-
crimination rule is 1(f(x) > 1/2). Since the function f(x) is usually unknown,
it is replaced by its estimate 6. If the distribution of X; within the class k has
density pg, then

6; = 1 p1(X;)/(mopo(Xi) + 1 p1(Xy)),

where 1 is the prior probability of kth population, k =0, 1.

Nonparametric methods of estimating the function 6 are typically based on lo-
cal averaging. Two typical examples are given by the k-nearest neighbor (k-NN)
estimate and the kernel estimate. For a given k and every point x in 2", denote
by Zk(x) the subset of the design X1, ..., X, containing the k nearest neighbors
of x. Then the k-NN estimate of f(x) is defined by averaging the observations Y;
over Z;(x),

V=" 3 1.
X €D (x)

The definition of the kernel estimate of f(x) involves a univariate kernel function
K () and the bandwidth £,

70 (x) = ZK(p(x}’lXi))Yi/ZK<p(x}’lXi)>'
i=l1 i=1

Both methods require the choice of a smoothing parameter (the value k for k-NN
and the bandwidth /& for the kernel estimate).
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FI1G. 1. A sample from the binary response model with the normal mixture class densities (left) and
results of applying the Bayes discrimination rule to this model (right).

EXAMPLE 4.1. In this example, we consider the binary classification problem
with the corresponding class densities pg(x) and pi(x) given by two-component
normal mixtures

po(x) =0.2¢(x; (—1,0),0.5I2) + 0.8¢ (x; (1, 0), 0.512),
p1(x) =0.5¢(x; (0, 1), 0.5I) 4+ 0.5¢ (x; (0, —1),0.51,),

where ¢ (-; i, X) is the density of the multivariate normal distribution with mean
vector w and covariance matrix X and I, is the 2 x 2 unit matrix.

Figure 1 shows one typical realization of the training sample with 100 observa-
tions in each class (left) and the optimal Bayes classification for a testing sample
with 1000 observations in each class (right). First, in order to illustrate the “ora-
cle” property of the SSA, we compute the pointwise misclassification errors for
all weak estimates and SSA estimates at four boundary points. Figure 2 is ob-
tained using a training sample of size 400, k-NN weighting scheme with N1 =5,
Nk =300, K =30 and o = 0.5. Further, we have carried out 500 simulation
runs, each time generating 100 training points and 100 testing points. The rates
of misclassification on testing sets have been averaged thereafter to give the mean
misclassification error, shown as a dotted reference line in Figure 3. We note here
that the critical values

3k =0.0031 4-0.007 * (K — k), k=1,...,K,

have been computed only once for one design realization and least favorable pa-
rameter value 6* = 0.5, then used in all runs. The same strategy is used in other
examples. Next, two “weak” classification methods, k-NN and kernel classifiers,
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FI1G. 2.  Pointwise misclassification errors (black dots) at four points for all weak estimates used in
Example 4.1. Solid reference lines correspond to SSA misclassification errors.

with varying smoothing parameters, are applied to the same data set. Figure 3 (top)
shows the dependence of the misclassification error on the bandwidth for kernel
classifiers and on the number of nearest neighbors for the k-NN classifier.

One can observe that a careful choice of the smoothing parameter is crucial for
getting a reasonable quality of classification. A wrong choice leads to a significant
increase of the misclassification rate, especially for the kernel classifiers. At the
same time, the optimal choice can lead to a reasonable quality of classification,
only slightly worse than that of the Bayes decision rule.

EXAMPLE 4.2. We now consider Example 4.1 with eight additional inde-
pendent N (0, 1)-distributed nuisance components. So, now X; = (Xl.l, e Xilo),
where

(X1 XD ~ potassiy, (X3, .., X1~ N (0,...,0),Ig).
——
8
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FI1G. 3. Misclassification errors as functions of the main smoothing parameter for k-NN (right)
and kernel (left) classifiers. SSA and Bayes misclassification errors are given as reference lines. Top:
Example 4.1 (dimension 2). Bottom: Example 4.2 (dimension 10).

The SSA procedure is now implemented, again using k-NN weights with the num-
ber of nearest neighbors exponentially increasing from 5 to 100. The results are
shown in the bottom row of Figure 3. We again observe that the quality of both
standard classifiers depends significantly on the choice of the smoothing parame-
ters. In the high-dimensional situation considered, even under the optimal choice,
the quality of the dimension-independent Bayes classifier is not attained. How-
ever, the SSA procedure again performs nearly as well as the best k-NN or kernel
classifier.

EXAMPLE 4.3 (BUPA liver disorders). We consider the dataset sampled by
BUPA Medical Research Ltd. It consists of seven variables and 345 observed vec-
tors. The subjects are single male individuals. The first five variables are mea-
surements taken by blood tests that are thought to be sensitive to liver disorders
and which might arise from excessive alcohol consumption. The sixth variable is
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FIG. 4. One-leave-out cross-validation errors as functions of the main smoothing parameters for
k-NN (left) and kernel (right) classifiers. The dotted line describes the error of the SSA classifier.

a sort of selector variable. The seventh variable is the label indicating the class
identity. Among all the observations, there are 145 people who belong to the liver-
disorder group (corresponding to selector number 2) and 200 people who belong
to the liver-normal group. The BUPA liver disorder data set is notoriously difficult
to classify, with usual error rates at about 30%. We apply SSA, k-NN and ker-
nel classifiers to tackle this problem. In the SSA procedure, the k-NN weighting
scheme was employed with the number of k-NN ranging from 2 to 100. Figure 4
shows the corresponding leave-one-out cross-validation errors for the above meth-
ods. One can see that the SSA method is uniformly better than kernel or k-NN
classifiers.

EXAMPLE 4.4 (Bankruptcy data). The data set from the Compustat repository
contains statistics concerning bankruptcies (defaults) in the private sector of the
U.S. economy during the period 2000-2005. There are 14 explanatory variables
including different financial ratios, industry indicators and so on. First, a prelim-
inary analysis is conducted and the two most informative variables [equity/total
assets ratio and net income/total assets ratio (profitability)] are selected. The pro-
jection of the default statistics onto the corresponding plane is shown in Figure 5.
Further, the performance of the SSA procedure is compared to the performance
of the k-NN classifier with different numbers of nearest neighbors. Namely, leave-
one-out cross-validation errors are computed for both SSA and k-NN classification
methods and the latter one is presented in Figure 5 as a function of the number of
nearest neighbors. Again, as in previous examples, the quality of classification
strongly depends on the choice of the parameter k. The adaptive SSA procedure
provides the performance corresponding to the best possible choice of this para-
meter.
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FI1G. 5. Left: default events (crosses indicate defaulted firms and circles indicate operating ones)
are shown depending on the two characteristics of a firm. Right: leave-one-out cross-validation error
for the k-NN classifier as a function of the number of nearest neighbors. The CV error for the SSA
classifier is given as a reference line.

5. Some theoretical properties of the SSA method. This section discusses
some important theoretical properties of the proposed aggregating procedure. In
particular, we establish the “oracle” result which claims that the aggregated esti-
mate is, up to a log factor, as good as the best one among the considered family
{5 &)} of local constant estimates.

The majority of the results in the modern statistical literature are stated as as-
ymptotic rate results. It is, however, well known that the rate optimality of an
estimation procedure does not automatically imply its good finite sample proper-
ties and cannot be used for comparing different procedures. Also, the rate results
are almost useless for selecting the parameters of the procedure. In our theoretical
study, we apply another approach which aims to link parametric and nonparamet-
ric inference with the focus on the adaptive behavior of the proposed method. This
means, in particular, that the SSA procedure attains parametric accuracy if the
parametric assumption is satisfied. In the general situation, the procedure attains
(up to an unavoidable price for adaptation) the quality corresponding to the best
possible local parametric approximation for the underlying model near the point
of interest.

The “oracle” result is, in turn, a consequence of two important properties of the
aggregated estimate 6: “propagation” and “stability.” “Propagation” can be viewed
as the oracle result in the parametric situation with f(-) = 6*. In this case, the ora-
cle choice would be the estimate with the largest value N, that is, the last estimate
65 in the family {6®}. The “propagation” property means that at every step k of
the procedure, the “aggregated” estimate 6™ is close to the “oracle” estimate 6 %),
In other words, the “propagation” property ensures that at every step, the degree of
locality is relaxed and the local model applied for estimation is extended to a larger
neighborhood described by the weights W*). The “propagation” property can be
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naturally extended to a nearly parametric case when A(W®, 6) is small for some
fixed 0 and all k < k*. The “propagation” feature of the procedure ensures that the
quality of estimation improves and confidence bounds for 6® become tighter as
the number of iterations increases, provided that the “small modeling bias™ condi-
tion still holds. Finally, the “stability” property ensures that the quality gained in
the “propagation” stage will be maintained for the final estimate.

Our theoretical study is carried out under assumptions (Al) and (A2) on the
parametric family &?. Additionally, we impose the following assumption on the
sequence of localizing schemes W*) which was already mentioned in Section 3.

(A3) The set W% is ordered, in the sense that wi(k) > wi(k,) for all i and all
k > k'. Moreover, for some constants ug, u with 0 < ug < u < 1, values N; =
(k) satisfy, forevery 2 <k <K,

?:1 w;
uo < Ny—1/Nr < u.

5.1. Behavior in the parametric situation. First, we consider the homoge-
neous situation with the constant parameter value f(x) = 6*. Our first result
claims that in this situation, under assumption (A3), the parameters 3; can be cho-
sen in the form 3; = 3x + (K — k) in order to satisfy the “propagation” condi-
tion (3.1). The proof is given in the Appendix.

THEOREM 5.1.  Assume (Al), (A2) and (A3). Let f(X;) =0 for all i. Then
there are three constants ag, a1 and a», depending on r, ug and u only, such that
the choice

3k =ap+a loga_l + apr log Ny
ensures (3.1) for all k < K. In particular, Eg« |NK,/“£/(§(K), §)|’ <at.

5.2. “Propagation” under “small modeling bias.” We now extend the “prop-
agation” result to the situation where the parametric assumption is no longer ful-
filled, but the deviation from the parametric structure within the local model under
consideration is sufficiently small. This deviation can be measured for the localiz-
ing scheme w by AW® 9) from (2.3).

We suppose that there is a number k* such that the modeling bias A(W®), )
is small for some 6 and all £ < k*. Consider the corresponding estimate 6"
obtained after the first k* steps of the algorithm. Theorem 2.5 implies, in this situ-
ation, the following result.

THEOREM 5.2. Assume (Al), (A2) and (A3). Let 0 and k* be such that
AW® ) < A for some A > 0 and all k < k*. Then

E /(| New st (0%, 6097 < \Jar,eh,

Ef(.)’Nk*%(g(k*), 9)|r/2 <. tel.
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5.3. “Stability after propagation” and “‘oracle” results. Due to the “propa-
gation” result, the procedure performs well, provided the “small modeling bias”
condition A(W®)_ 9) < A is satisfied. To establish the accuracy result for the fi-
nal estimate §, we have to check that the aggregated estimate 6® does not vary
much at the steps “after propagation” when the divergence A(W® ) from the
parametric model becomes large.

THEOREM 5.3. Under (Al), (A2) and (A3), for every k < K, we have

(5.1) N (00, 6%y < 4.
Moreover, under (A3), for every k' with k < k' < K, we have
(5.2) Nt (0%, 00) < 5223,

2

with ¢, = (u™ "% = 1)1 and 3; = max;> 3.

REMARK 5.1. An interesting feature of this result is that it is satisfied with
probability one, that is, the control of stability not only “works” with high proba-
bility, it always applies. This property follows directly from the construction of the
procedure.

PROOF OF THEOREM 5.3. (The convexity of the Kullback—Leibler diver-
gence % (u, v)) with respect to the first argument implies
jg(éik)’ @‘(k—l)) < yk%(g(k), g(k—l))'

If Ji/(g(k), é‘(k—l)) > 3%/ Ni, then y, = 0 and (5.1) follows. Now, assumption (A2)
and Lemma A.1 yield

K K
%/1/2(9\(%),@%)) < Z %1/2(@1),97171)) < Z Gi/NDV2.
I=k+1 I=k+1
The use of assumption (A3) leads to the bound

/

k
HV2EF),G0) < 3G /NP Y P2 <5 u(1 = ) G/ NV,
[=k+1

which proves (5.2). [

A combination of the “propagation” and “stability” statements implies the main
result concerning the properties of the adaptive estimate 6.

THEOREM 5.4. Assume (Al), (A2) and (A3). Let k* be a “good” choice, in
the sense that

max A(W(k), 0) <A
k<k*
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for some 0 and some value A. Then

Ef(.)|Nk*<%/(§(k*), é*)’r/Z < 2(r—1)+%r{ at.ed + (Ci gk*)’/z},

where ¢, is the constant from Theorem 5.3.

We also present a corollary of the “oracle” result concerning the risk of the
adaptive estimate 6 for the special case where r = 1. Other values of r can be
considered as well: one only has to update the constants depending on r. We also
assume that o < 1.

COROLLARY 5.5. Let max <j+ AW®H 9y < A for some 6 and some A. Then
NLPE oy 2@,60) < (2 T1e™ +/c251).

PROOF. Simply observe that by Lemma A.1,

H12@,0)

k
< %{%1/2(5(](*)’9) +%1/2(§(k*)’§(k*)) + Z %1/2@‘(1)’@‘(1—1))}
I=k*+1

and follow the proof of Theorem 5.3. [

REMARK 5.2. Recall that in the parametric situation, the risk Eg«|Ng x
H (O 6%)|1/2 of 6*) is bounded by 71,2 (cf. Theorem 2.2). In the nonparamet-
ric situation, the result is only slightly worse: the value 7y ; is replaced by v/71e2,
which takes into account the modeling bias. There is also an additional term pro-
portional to \/3;«, which can be considered as the payment for adaptation. Due to
Theorem 5.1, 3;+ is bounded from above by 3x +((K —k*). By Theorem 5.1, K is
only logarithmic in the sample size n.

Therefore, the risk of the aggregated estimate corresponds to the best possible
risk among the family {6®} for the choice k = k* up to a logarithmic factor. Lep-
ski, Mammen and Spokoiny [8] established a similar result in the regression setting
for the pointwise adaptive Lepski procedure. Combining the result of Corollary 5.5
with Theorem 2.7 yields the rate of adaptive estimation (n~! logn)'/?+4) under
Lipschitz smoothness of the function f and the usual design regularity; see Polzehl
and Spokoiny [12] for more details. It was shown that in the problem of pointwise
adaptive estimation, this rate is optimal and cannot be improved by any estimation
method. This gives an indirect proof of the optimality of our procedure: the factor
3.+ in the accuracy of estimation cannot be removed or reduced in the rate because
otherwise a similar improvement would appear in the rate of estimation.
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APPENDIX: PROOF OF THEOREM 5.1

The proof utilizes the following simple “metric-like” property of .# 1/2(., -).

LEMMA A.1 (Polzehl and Spokoiny [12], Lemma 5.2). Under condition (A2),
it holds for every sequence 6y, 01, ..., 6, that

HV201,60y) < s V261, 00) + 4262, 60)),
A2 00, 6p) < (V2 00,60) + -4+ H V2 (On1,0m))}.

With the given constants 3¢, define for k > 1 the random sets
o= (N (@0,06 D) <by), P =0 N,

where b enters into the construction of Kyg: Kao(7) =1 fort < b.

First note that 8% = §® on «7® for all k < K. This fact can be proved by
induction on k. For k = 1 the assertion is trivial because 81 = (). Now sup-
pose that %=1 = g*=D Tt then holds on <% that m® = N # (%), k=D =
Nt (@R, 6% Dy < b3y and thus y = Kag(m® /31) > Kyo(b) = 1, yielding
o) — gk).

Therefore, it remains to bound the risk of * on the complement E(k) of &7 ®.
Define %y = o/ *~D \ &7® . On the event %y, the index k is the first one for
which the condition Ny ¢ (5 *®) g *k=Dy < b3 is violated. It is obvious that y(k) =
U<k % First, we bound the probability Py« (%;). Applying assumption (A3) and
Lemma A.1 yields, for every /,

N (B0, 80DY < 22N [ (GO, 0%) + 2 (39D, 6%))
< 2%2{N1<%/(§(l), 0%) + ualNl_lf(g(l_l), 6%)}.
Therefore, by Theorem 2.2,

~ o~ b
Py (%)) < Po (N (60,007D) > b)) < 2exp<—4u%3l>.
»
On the set %, we have 8¢~D =g~ and thus for every k > [, the aggregated
estimate 0% is, by construction, a convex combination of 8¢~V ... 8% Con-
vexity of the Kullback—Leibler divergence with respect to the second argument,
the definition of %) and Lemma A.1 ensure that
HV2EP 00 1(Z) < max o 2ER, D)
U'=l—1,...k—1

.....

<x  max {A'20P, 0%+ 220D, 6%))
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This and Theorem 2.4 imply that for every r,

k
Eg- ¢ (60, 00)1(B) < (2507 Ee- Y 70D, 0M1(B)
I'=l—-1

k
<@0¥ 3 BV OV, 0MP (%)
I'=I—-1

k
b
<@ Y NT’Rxp(—%az)
r=i-1 *

—r _1/2
<CiN, rfzr/ exp(—c231)

for some fixed constants C| and c¢;. Therefore,

k k
Egs " (00, 00) <3 Egrt” (0®,00)1(%) < 3 1N 1,/ exp(—cap).

=2 =2

It remains to check that the choice 3 = ag + aj log a ' +ar log(Nk /Ng), Zvith
properly selected ag,a; and ap, provides the required bound Eg«| Ny ¢ (65,
0" < ar,.

(9]

(10]

(1]
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