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NONCENTRAL CONVERGENCE OF WALD’S LARGE-SAMPLE
TEST STATISTIC IN EXPONENTIAL FAMILIES!

By T. W. F. StroUD
Queen’s University at Kingston

It is shown that under very mild assumptions Wald’s large-sample
test statistic (quadratic form based on unrestricted maximum likelihood
estimators) converges to noncentral chi-square under a sequence of local
alternatives of the order n—#, when the family of distributions is assumed
to be of exponential type. This eliminates, for these families, the necessity
of invoking the strict regularity conditions of Wald for the purpose of
justifying the asymptotic distribution.

1. Introduction and summary. Let §, be the maximum likelihood estimator
(MLE) of a vector parameter # based on a sample of n independent vector
observations from f(x; #). To test the hypothesis 5(f) = 0 versus S(#) + 0,
where B is a vector-valued function, one may reject for large values of the
quadratic formAn[[B(é,,)]'Eﬂ“l(én)[ﬁ(é,,)], where Z,(6) is the asymptotic covariance
matrix of n#[B(#,) — B(6)]. It is readily seen that the asymptotic null distribution
of this statistic, under weak conditions, is central chi-square. Under a sequence
of local alternatives {6,} converging to the null hypothesis at the rate n—}, Wald
[8] showed the statistic to have a limiting noncentral chi-square distribution.
In the same paper, Wald proved a number of asymptotic optimality properties,
and to this end he assumed some rather severe regularity conditions which do
not hold in many statistical problems. Similar results were also obtained for
the likelihood-ratio test.

A realistic criterion for the convergence to noncentral chi-square of the above
quadratic form (known here as “the Wald statistic”’) has been presented by the
author [7]. Briefly, it is sufficient that n}@, — 6,) converge to a normal law
A0, Zy) and that the matrix used in the quadratic form as estimating the
covariance matrix of n*(é,, — 0,) converge stochastically to Z,, where Z, is non-
singular. @, and the matrix estimator may be any estimators, not necessarily
MLE’s. It has been shown [7] that this criterion is satisfied when MLE’s are
used in one-sample and two-sample problems, where the sampling is from multi-
variate normal distributions with unrestricted mean vectors and (nonsingular)
covariance matrices. The present paper extends this result from the multivariate
normal to the general exponential family, subject to very mild assumptions.
The stated results deal with one-sample problems; the extension to two-sample
problems may be performed as in [7].
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Exponential families are closely linked with maximum likelihood estimation
because of the simple form assumed in such families by the MLE, and also
because these are the only “regular” families where for arbitrary sample size
the MLE can be a sufficient statistic ([5] page 51), although, as LeCam [4] has
pointed out, Wald’s results [8] show that, under the conditions assumed by
Wald, MLE’s are “asymptotically sufficient.” Thus the families of distributions
studied in this paper comprise those for which the Wald statistic based on the
MLE uses, for finite sample sizes, all the relevant information.

In the remaining section, the techniques of proof used in [7] are applied to
show that the sufficient condition for convergence described above holds for the
multiparameter exponential family, under conditions which usually hold in prac-
tice when the family is genuinely exponential (degenerate boundary cases such
as |Z| = 0 in the multivariate normal or p, = 0 for some i in the case of the
multinomial must be excluded).

2. Convergence to noncentral chi-square. A key step in the proof of the main
result is contained in the following lemma, which is a multivariate double-
sequence version of the weak law of large numbers and central limit theorem.

LEMMA. Forn =1,2, ..., suppose t, is a random vector with the representation
nt, = )a_1 W, Where for each n the w,, are independent random vectors with com-
mon mean vector t, and covariance matrix X,. Suppose also that (i) v, — 7, (ii)
X, — Xy > 0, and (iii) there exists M < oo such that the fourth moments of w,, are
all < M for all n. Then plim t, = 7, and £ [n¥(t, — 7,)] — 470, Z)).

Proor. The reader is referred to [7] (pages 1419-1421), where the result is
proved for the case where 7, is the sample covariance matrix from a multivariate
normal. In fact the same proof may be applied directly to the lemma as stated
above. []

The main result is formulated in terms of the natural parametrization of the
exponential family (see Lehmann [5] page 51-53) for some of its properties. The
exponential models used widely in practice (gamma, Poisson, multinomial, etc.)
may be put into this parametrization fairly readily. Of course, because MLE’s are
invariant under any one-one reparametrization, the Wald statistic has the same
value regardless of the parametrization, and may be calculated in whatever
way is most convenient. In particular, the proof of the main result uses for the
parameter the expected value of the function of the observation appearing in
the exponent, because this renders the MLE unbiased and hence facilitates appli-
cation of the above lemma. Dempster [2] calls this the moment parametrization
and points out some interesting duality properties between it and the natural
parametrization. The only assumptions we need make about the exponential
family (other than measurability) are those which guarantee a one-one corre-
spondence between the two parametrizations and the existence of the MLE.

The following theorem gives conditions for a limiting noncentral chi-square
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distribution for the Wald statistic for testing H: () = 0 versus A:8(0) + 0,
where the parameter space © is assumed to be an open subset of the narural
parameter space © , ([5] page 51). We consider a fixed 6, ¢ © satisfying 8(6,) = 0,
and a sequence {0,} converging to 6, such that ni(4, — 6,) — 6. For the special
case 0 = 0, a limiting central chi-square distribution is obtained. In what fol-
lows, the first subscript n refers to the position in the sequence {¢,}, a second
subscript denotes place in a sample of size n, and superscripts refer to components
of vectors. The symbol Z» denotes p-dimensional Euclidean space.

THEOREM. Forn = 1,2, ..., let the observations in the sample (x,, - -, X,,)
be independently and identically distributed according to the density

f(x;6,) = ¢(0,)k(x) exp{ L1, 0,1 (x)}
(where x denotes any x,,) with respect to the o-finite measure yu on the measurable
space (7, ). Assume £, ---, t* and k are measurable real-valued functions on
(&5, ), and that 6, € © for all n, where © is a fixed open subset of the fully p-
dimensional natural parameter space ©,. Assume also that:

ASSUMPTION 1. The matrix C, whose (i, j)th component is —a*log c¢(8)/36* 367
is strictly positive definite for all 6 € ©,°, the interior of ©,.

ASSUMPTION 2. For sufficiently large n the equations
0 : .
— log (0 llzzo, 1:1,...’
a7 108 ¢(0) + P

where ut = n=' Y\"_ ti(x,,), have a solution 8, = J(u) in ©,° with probability 1.

Let B: 0O, — &1 satisfy B(0,) = 0, where 0, O, and assume B to have con-
tinuous second partial derivatives in some sphere about 0,. Assume further that
the sequence of parameter points {6,} is such that n¥(0, — 6,) — 0, for some fixed
de&r.

Let B, be the matrix (0f7/00*), r =1, ...,q;5 =1, ..., p. Then the distri-
bution of the statistic W, = n[ﬂ(én)]’(B,;n C§: B}n)—lﬁ(én) converges, as n — oo, to the
noncentral chi-square distribution with q degrees of freedom and noncentrality pa-
rameter equal to

0'B; (B, Cy.} By )"'By 0 .

ReMaRks. Note that C;? is the asymptotic covariance matrix of nt(d — 0)
(provided there is sufficient regularity) for fixed § where 4 is the MLE of ¢ based
on sample size n. Hence B,C,™'B,’ is the corresponding asymptotic covariance
matrix of n}[8(6) — B(0)] (see Rao [6] page 322). The noncentrality parameter
stated at the end of the theorem can be easily seen to be the limit as n — oo of
n[B(9.)] (B, Cs, B3, )" B(0.)-

In virtually all exponential families used in practice the natural parameter
space is open. In this case ©,, ©,° and the space O, defined below coincide.

Proor. The first step is to put the problem in the context of the moment
parametrization, after which the conclusion of the theorem will follow easily.
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Let 0, = {#e0,: Ej|t(x)] < oo}. For §e0O,, denote r = E,[¢(x)]. Then
tt = —(9/90%) log ¢(f), i = 1, - .., p. Note that because of Assumption 1 #(x) is
not restricted to a proper affine subspace of &7. By Berk ([1], Lemma 2.2) this
implies that the mapping taking 6 into = (0, — 7(0,)) is one-one. By Lehmann
([5] page 52, Theorem 9), ©,° C O (and in fact = is infinitely differentiable on
0,°). The restricted mapping taking ¢ into = (0,° — 7(0,") is also one-one.
Dempster ([2] page 331) sketches an alternative argument for the one-one prop-
erty of § — ¢ based on Assumption 1, pointing out that the positive definite
matrix C, is the matrix of partial derivatives 9r/a@ (see Devinatz [3] page 344,
exercise 10). C, is also (—1/n) times the Hessian of the log likelihood function;
the strict convexity of the log likelihood thus implied by Assumption 1 assures
the uniqueness of @, and that this value of @ produces a global maximum.

Since the transformation ¢: ¢ — @ is one-one on 7(0,°), we reparametrize
the problem in terms of z, and write

W, = n[r(2,)(G,C, G2 ) 'r(%,) »

where ¢, =n' % (x,,), v = Bo¢, G. = B,C,”' = the matrix of partial
derivatives 0y"/dr*, and the Fisher information matrix C, is also the covariance
matrix of #(x,,) and of nt?,.

Let 7, be the value of = when § = 6,. It is straightforward to verify, by
expanding r as a function of ¢ in Taylor series about §,, that the assumption
n¥(, — 6,) — o implies n¥(r, — 7,) — 5, where n = C, 6. Rewriting the non-
centrality parameter stated in the theorem as 'G; (G, C, G{ )G 7, the conclu-
sion of the theorem now follows from the previously mentioned theorem of the
author ([7] page 1415), upon demonstration that #[n¥(?, — z,)] — 470, C,)
and plim C";” = C,,O, since by that theorem these two conditions} plus the assumed
positive-definitenss of C, are sufficient to ensure the stated convergence to non-
central chi-square.

From the above Lemma, with w,, = #(x,,), t, = £, and Z, = C, , it follows
that & [n¥(?, — 7,)] - 470, C, ) and plim ¢, = 7,; plim C; = C, follows from
the latter result since C, is a continuous function of z. (The fourth moments of
t(x,,) are polynomials in the first four orders of partial derivatives of log ¢(4,)
and hence bounded as r, — 7,; this is a straightforward extension of [5], page
58, problem 14.) [] '

In the special case 7, = 7,, the above argument contains an elementary proof
of the (weak) consistency and asymptotic normality of the MLE for exponential
families. Berk [1] has exploited the convexity of —logc¢(f) to obtain strong
consistency and asymptotic normality of the MLE for exponential models in the
more general situation where the true distribution of the observations need not
belong to the exponential family.
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