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ASYMPTOTICALLY EFFICIENT ESTIMATION OF
COVARIANCE MATRICES WITH
LINEAR STRUCTURE!

By T. W. ANDERSON
Stanford University

One or more observations are made on a random vector, whose covari-
ance matrix may be a linear combination of known symmetric matrices and
whose mean vector may be a linear combination of known vectors; the
coefficients of the linear combinations are unknown parameters to be esti-
mated. Under the assumption of normality, equations are developed for
the maximum likelihood estimates.

These equations may be solved by an iterative method; in each step a
set of linear equations is solved. If consistent estimates of o, 01, **+, om
are used to obtain the coefficients of the linear equations, the solution of
these equations is asymptotically efficient as the number of observations
on the random vector tends to infinity. This result is a consequence of a
theorem that the solution of the generalized least squares equations is
asymptotically efficient if a consistent estimate of the covariance matrix is
used. Applications are made to the components of variance model in the .
analysis of variance and the finite moving average model in time series
analysis.

1. Introduction. This paper deals with estimation problems in which one or
more observations are made on a p-component vector X with mean vector
&X = p and covariance matrix €(X) = &(X — p#)(X — #)’ = Z. The mean
vector may be a linear combination

(1) 2= 25182
of known p-component vectors, z,, - - -, z,, which are assumed (for convenience)
to be linearly independent. The covariance matrix may be a linear combination

(2) Z= Z;n=0 Oy Gy
of known symmetric p X p matrices G,, G, - - -, G,,, which are assumed to be
linearly independent; it is also assumed that there is at least one set ¢y, g, - - -, 7,

such that (2) is positive definite. We want to estimate the set on the basis of N
observations x,, - - -, X,.

If £ is known or known to within a constant of proportionality, the best
linear unbiased estimates or Markov estimates of 3, - - -, 8, are the solutions to
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136 T. W. ANDERSON

the normal equations

3) S22z, B = z/27%, j=1,.---,r,
where X is the sample mean. If X has a normal distribution, (3) are the likeli-
hood equations, obtained by setting equal to 0 the derivatives of the likelihood
function with respect to 8, - - -, 8,, and the solution constitutes the maximum
likelihood estimates. In any case the estimates are unbiased, “B, =B, i =

1, --., r, and the covariance matrix of the estimates is

4) [Z(8:» B)] = (1/N)[z/Z72,]" .

If g is known, and X has a normal distribution, the maximum likelihood
estimates of ¢, g, - - -, 6, are a solution of the likelihood equations
(5) (X7 6.G)TG,

=tr(X7r,6,G,) G, (X7r,6,G,)'C, g=0,1,...,m,

where
(6) C = (I/N) 20 (x, — )X, — 22)';
these equations result from setting equal to O the derivatives of the likelihood
function with respect to g, 0y, - - -, g,.. There is at least one solution é,, G, - - -,
é, to (5) such that
(7) Z=2700,G,

is positive definite. If there is more than one solution to the likelihood equations,
the absolute maximum to the likelihood function is attained by the solution
minimizing [i‘.|. The estimates are consistent and asymptotically efficient as
N — oo; N¥@&, — a,), N}, — ay), - - -, N¥&, — 0,) have a limiting normal distri-
bution with means 0 and covariance matrix

(8) [£tr Z7'G, Z7'G,] .

See Anderson? (1969), (1970).

If both g and Z are unknown and X is normally distributed, the likelihood
equations are (3) and (5) with Z replaced by (7) in (3) and g replaced by gz =
>1_, B,z; in (6). The estimates are consistent; the two sets are asymptotically
independent; and each set of estimates has the same asymptotic distribution as
when the other set of parameters is kriown.

The main purpose of this paper is to give a simple method of estimating
Go» O1s - - - » 0, that is asymptotically equivalent to maximum likelihood.

2. Estimation procedure. In view of (7) we can write (5) as

9) Y tr 2'G,27'G, ¢, = tr £7G,2C, g=0,1,-..,m.
These equations suggest an iterative procedure. Suppose g is known. Let 6,7,
é,, ..., ¢, be an initial set of values. Let é,’, ,'*, - .., ¢, be the solutions

2 The 1970 paper was written first, but there was a delay of four years between its receipt by
the editors and its publication.
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to the set of linear equations

(10) X7t 246,266, = r 34,6, 25C,  g=0,1,-.,m,
where
(11) 2= N1, 86, , i=1,2,--.

If £, , is nonsingular, the matrix of coefficients in (10) is positive definite. [The
proof of this statement was given by T. W. Anderson (1970) for Z,_, replaced
by I.] The iteration may be stopped at the ith stage if 6,%, ¢,, ..., 6, do
not differ by much from §,*-v, ¢,¢-v, ... ¢, (-D,

Since £'C = Z, given by (2), unbiased and consistent estimates of Tyy Oyy * + s
¢,, can be obtained as the solution to

(12) Y, tr0G,0G, 4, = tr0G,0C, g=0,1,...,m,

for an arbitrary positive definite matrix ®. [T. W. Anderson (1970) suggested
© = I.] To obtain asymptotically efficient estimates only one step in the iteration
is needed if the initial estimates are consistent (Theorem 2).

If B, - - -, B, are to be estimated as well as g, o,, - - -, g, We can obtain initial
estimates 3,, - - -, 8, on the basis of (3) with Z-* replaced by ®. Then define
C, by (6) with g replaced by £#® = ¥»_, §,%z; and obtain initial estimates of
Oy O35 + + +, 0, from (12) with C replaced by C,. The iteration proceeds by using

(3) with X replaced by f.i_l to obtain §,), . .., 8,9, then 49 = " B].“"zj, then
(13) Ci=(I/N) Zia (X — X)(x, — X)' + (X — g¥)x — gy,

and then ¢,, 6,", ..., ¢, by (10) with C replaced by C;. The matrix ® can
be I or a guess at 1.

The solution of (10) requires evaluation of quantities such as tr A'BA-'L,
where A, B, and L are symmetric and A is positive definite. Finding A~! corre-
sponds to solving AX = I. The “forward solution” of a method of pivotal con-
densation or successive elimination corresponds to multiplying this equation on
the left by a lower triangular matrix F to obtain TX = F, where T is upper
triangular. Then FAF' = TF’ is diagonal and the diagonal elements are positive.
Call the (positive diagonal) square root of this matrix D, and let H = D-F.
Then A~' = H'H, and tr A'BA-'L = tr HHHBH'HL = tr HBH’'HLH’. Thus
only the forward solution is needed. [See Section 2.3 of T. W. Anderson (1971b)
for more details.] In many applications the special forms of £ make this easy
to compute.

As pointed out in earlier papers, the problem is simplified if G, = I and G, =

PA,P’, where A, is diagonal, # = 1, ..., m, for some orthogonal matrix P.
Suppose
v 0 ... 0
0 v, I... 0
(14) A, = . . o, h=1,...,m,

0 0 ...v,I
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where the orders of the I’s are p,, p,, - - -, p,, respectively, not depending on .
Let p,V, be the sum of the diagonal elements of P’CP in the position of v, in
A,. Then (5) is

V
(15) Zz= pkufg — n_ PkaAg k , g:0,1,~~~,m,
' 2ir0 0V ' (X Grvim)
and (10) is
) v,
16) m ST Plcykg.ykf G, " =y kakyA k ,
( - LR Zia (270 0" Py)? ! 2t (X706 V)

g=0,1,.-.,m.

3. Asymptotic efficiency. To obtain asymptotically efficient estimates as N — co
we need only carry out the first stage of the iteration procedure. To show this
we first consider the estimation of 8 = (8, - - -, 8,)’ when X is estimated by a
consistent estimate £(N). Let the solution to (3) constitute B(N), and let Z =
(Z, - -+, 2,). Then N} B(N) — B] has a limiting normal distribution with covari-
ance matrix (Z’'X-'Z)* even if X is not normal.

THEOREM 1. Let x,, -- -, X, be identically independently distributed with mean
“X = ZB and covariance matrix  and let Z(N) be a consistent estimate of Z. Then,
if B*(N) is the solution to (3) with Z replaced by £(N), N*[B*(N) — B] has a limit-
ing normal distribution with covariance matrix (Z'Z7'Z)~*. If ﬁ(N) is asymptotically
efficient, so is ‘g*(N)

PROOF.
NH{B*(N) — ‘§(N)] )
(17) = NYB*(N) — B — [B(N) — B]}
= {[ZZ-Y(N)Z]Z'E-(N) — [Z'ZZ]Z'E}NHX(N) — ZB]

converges stochastically to 0, where X(N) is the mean of N observations, because
(18) plim, .. [Z'E-Y(N)Z]"'Z'E-Y(N) = (Z'2Z)"'Z' !

and Ni[X(N) — ZS] = N[X(N) — p] has a limiting distribution. Thus N*[8*(N) —
B] has a limiting normal distribution with mean 0 and covariance matrix
(Z'2£-'Z), which is the same as the limiting normal distribution of N[ — B(N)].
If B(N ) is asymptotically efficient, then ﬁ*(N ) is (in the same sense). When ,§(N )
is maximum likelihood, as when X has a normal distribution, it is asymptotically
efficient in the sense of attaining the Cramér-Rao lower bound for the covari-
ance matrix of unbiased estimates.

This theorem includes the case where X is a continuous function of a vector
of parameters #. Then Z(N) may be the function of a consistent estimate §(N)
of 8. Note that (N) does not need to be independent of X(N) and N*[§(N) — 6]
does not need to be bounded in probability (as is usually required for this treat-
ment of maximum likelihood estimates).
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We shall now apply Theorem 1 to the estimation of ¢, g, - - -, g,, when g is
known. Let C = (¢;;), Z = (g;;), and G, = (g9{¥). Let ¢ be the vector with
components ¢;;, i < j. Let @ be the vector with components ¢,;, i < j, and g,

be the vector with components g{*, i < j. Then

(19) Ee=0=17,0,8 >

and under normality of X the covariance matrix of ¢ is ® = (¢;;,,), where
s = 005 + 050, i <j, k <I. [See T. W. Anderson (1958), Section
4.2.3, for example.] Since [T. W. Anderson (1969)]

(20) g,/®c = } tr Z'G, Z-'C,

(10) for i = 1 is identical to (3) with the z,’s replaced by g,’s, X by ¢, §;’s by ¢,’s,
and X by ®,, a consistent estimate of ®. Theorem 1 can be applied.

THEOREM 2. Let X,, - - -, Xy be N observations from N(g, X), where p is known
and X is given by (2). Let C be defined by (6). Let 6,7, 4,7, - .., 6,'” be a set of
consistent estimates of ¢,, 0,, - - -, 0,,. Let3,", 8", ..., G, " be the solution to (10)
for i = 1. Then N¥é," — a,), N¥é,"" — ay), ---, N¥é," — a,) have a limiting

normal distribution with means 0 and covariance matrix (8), and 6,*, ¢,*, - .-, ¢,®
are asymptotically efficient.

If both sets 8, ---, 8, and g, 0, - - -, g, are estimated, initial estimates of
G4, 015 -+, 0,, can be obtained from (12) with x replaced by X in (6). Then
g™, ..., B,™and4,", ,v, ..., 4, satisfy Theorems 1 and 2 and are asymptot-
ically efficient.

4. Applications. A general model for the analysis of variance can be written

(21) X=Z8+ >r,Ub, +e,

where U, is a p X n, matrix and b, has the distribution N0, ¢, 1), A =1, ..., m,
e has the distribution N(0, ¢,I), and b, -- -, b,,, e are independent. Then G, = I
and G, = U,U,’. Hartley and J. N. K. Rao (1967) derived the likelihood equa-
tion for this model with one observation on X. The two methods they propose
for solving these equations are numerically more complicated than the method
proposed in this paper. '

C. R. Rao (1972) has considered (21) for N = 1. His method involves finding
B, -, B, as outlined in Section 2 of this paper, then #® and C,, and using
(12) for estimates of gy, gy, - - -, 0,,.

The moving average stationary stochastic process of finite order is defined by
X, =p+ L",a,v,_, where v, =0, £v? = 1, and &v,v, = 0, t = 5. Then
Ex,=pand g, = E(x, — p) (x4 — p#) = 20 a,a,,, h=0,1, ..., m, and
&E(x, — p) (x4, — 1) =0 for h > m. Here G,=1and g =1, |s — 1] = h,
gM =0,|s—t|#=h h=1,.-.,m. If N=1, the right-hand side of (10) is

(22)  trEAGENx — p)(x — p) = (x — #)ZL G, 2 (x — pr)
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where g¢ = (g, - - -, ¢)’, which is a quadratic form in y, the solution to £, ,y =
x — p#. The matrix i_l has nonzero elements only on the main diagonal and
on diagonals within m of the main diagonal; each row of i_l has at most 2m + 1
nonzero elements. In the forward solution by successive elimination of variables,
for example, the elimination of one variable from all equations requires at most
operations on m + 1 equations. At the end of the forward solution each equa-
tion has at most m 4- 1 unknowns. [See T. W. Anderson (1971b) for details.]
The number of arithmetic operations to find y is only a multiple of mp, rather
than multiple of p* as is the case with an arbitrary matrix of coefficients. The
coefficients on the left-hand side of (10) can be approximated by using the fact
that the inverse of the covariance matrix of a moving average process is approxi-
mately the covariance matrix of the autoregressive process with the same co-
efficients. [For example, see Anderson (1971a)and Shaman (1969).] The sample
serial covariances may serve as initial estimates of o,, ¢,, - - -, 0,,.

In this model one observation vector is a univariate time series of length p.
Then the asymptotic theory as p — co may be useful. Whittle (1953), (1954),
A. M. Walker (1964), and Hannan (1970) have treated maximum likelihood
estimates in the context of a spectral density depending on a finite number of
parameters. It follows that p¥(é, — o), p}(6, — oy), - - -, p¥4,, — 0,,) have a limit-
ing normal distribution with means 0 and a covariance matrix which is the
inverse of the matrix with elements ] times

23)  lim,_, p~'tr 271G, 271G, = 4(27)~%, 8, §~ . cos Ak cos Agf~*(2) dA ,

where d, = fand 6, = 1,2 > 0, and f{(2) is the spectral density. [T. W. Anderson
(1971b) has proved (23) directly; the result is valid for any continuous positive
spectral density.]

Durbin (1959), A. M. Walker (1962), Hannan (1969), (1970), Box and Jenkins
(1970), and Clevenson (1969) have given other methods for estimating the o,’s
or a,’s for the moving average process. The methods of Durbin and Walker are
not asymptotically efficient; Box and Jenkins evaluate or approximate the likeli-
hood; Hannan and Clevenson use the sample spectral density, involving a number
of arithmetic operations proportional to p log p.
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