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Response-adaptive designs have been extensively studied and used in
clinical trials. However, there is a lack of a comprehensive study of response-
adaptive designs that include covariates, despite their importance in clinical
trials. Because the allocation scheme and the estimation of parameters are af-
fected by both the responses and the covariates, covariate-adjusted response-
adaptive (CARA) designs are very complex to formulate. In this paper, we
overcome the technical hurdles and lay out a framework for general CARA
designs for the allocation of subjects to K (≥ 2) treatments. The asymptotic
properties are studied under certain widely satisfied conditions. The proposed
CARA designs can be applied to generalized linear models. Two important
special cases, the linear model and the logistic regression model, are consid-
ered in detail.

1. Preliminaries.

1.1. Brief history. In most clinical trials, patients accrue sequentially.
Response-adaptive designs provide allocation schemes that assign different treat-
ments to incoming patients based on the previous observed responses of patients. A
major objective of response-adaptive designs in clinical trials is to construct a ran-
domized treatment allocation scheme in order to minimize the number of patients
that are, assigned to the inferior treatments to a degree that still allows statistical in-
ference with high power. The ethical and other characteristics of response-adaptive
designs have been extensively discussed by many authors (e.g., [27]).

Early important work on response-adaptive designs was carried out by Thomp-
son [23] and Robbins [18]. Since then, a steady stream of research [10, 14, 24,
25] in this area has generated various treatment allocation schemes for clinical tri-
als. Some of the advantages of using response-adaptive designs have been recently
studied by Hu and Rosenberger [13] and Rosenberger and Hu [20].
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In many clinical trials, covariate information is available that has a strong influ-
ence on the responses of patients. For instance, the efficacy of a hypertensive drug
is related to a patient’s initial blood pressure and cholesterol level, whereas the
effectiveness of a cancer treatment may depend on whether the patient is a smoker
or a nonsmoker.

The following notation and definitions are introduced to describe the random-
ized treatment allocation schemes. Consider a clinical trial with K treatments. Let
X1,X2, . . . be the sequence of random treatment assignments. For the mth sub-
ject, Xm = (Xm,1, . . . ,Xm,K) represents the assignment of treatment such that if
the mth subject is allocated to treatment k, then all elements in Xm are 0 except
for the kth component, Xm,k , which is 1. Let Nm,k be the number of subjects as-
signed to treatment k in the first m assignments and write Nm = (Nm,1, . . . ,Nm,K).
Then Nm = ∑m

i=1 Xi . Suppose that {Ym,k, k = 1, . . . ,K , m = 1,2, . . .} denote
the responses such that Ym,k is the response of the mth subject to treatment k,
k = 1, . . . ,K . In practical situations, only Ym,k with Xm,k = 1 is observed. Denote
Ym = (Ym,1, . . . , Ym,K). Let Xm = σ(X1, . . . ,Xm) and Ym = σ(Y1, . . . ,Ym) be
the corresponding sigma fields. A response-adaptive design is defined by

ψm = E(Xm|Xm−1,Ym−1).

Now, assume that covariate information is available in the clinical study. Let ξm

be the covariate of the mth subject and Zm = σ(ξ1, . . . , ξm) be the corresponding
sigma field. In addition, let Fm = σ(Xm,Ym,Zm) be the sigma field of the history.
A general covariate-adjusted response-adaptive (CARA) design is defined by

ψm = E(Xm|Fm−1, ξm) = E(Xm|Xm−1,Ym−1,Zm),

the conditional probabilities of assigning treatments 1, . . . ,K to the mth patient,
conditioning on the entire history including the information of all previous m − 1
assignments, responses, and covariate vectors, plus the information of the current
patient’s covariate vector.

A number of attempts have been made to formulate adaptive designs in the pres-
ence of covariates. For example, Zelen [26] and Pocock and Simon [17] considered
balancing covariates by using the idea of the biased coin design [11]. Atkinson
[1–3] tackled this problem by employing the D-optimality criterion with a linear
model. The prime concern of these works is to balance allocations over the covari-
ates with treatment assignment probabilities

ψm = E(Xm|Xm−1,Zm),

which differs from the CARA designs. These allocation schemes do not depend
on the outcome of the treatment, which is important for adaptive designs that aim
to reduce the number of patients that receive the inferior treatment.

The history of incorporating covariates in response-adaptive designs is short.
For the randomized play-the-winner rule, Bandyopadhyay and Biswas [8] incor-
porated polytomous covariates with binary responses. Rosenberger, Vidyashankar
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and Agarwal [22] considered a CARA design for binary responses that uses a lo-
gistic regression model. Their encouraging simulation study indicates that their
approach, together with the inclusion of the covariates, significantly reduces the
percentage of treatment failures. However, theoretical justification and asymptotic
properties have not been given. Further, the applications of their procedure are
limited to two treatments with binary responses.

To compare two treatments, Bandyopadhyay and Biswas [9] considered a lin-
ear model to utilize covariate information with continuous responses. A limiting
allocation proportion was also derived in their design. However, according to their
proposed scheme, the conditional assignment probabilities are

ψm = E(Xm|Fm−1).

The above probabilities do not incorporate the covariates of the incoming patient,
which in some cases are crucial. For instance, let the covariate be gender and let
there be two treatments. If males and females react very differently to treatments
A and B, whether the next patient is male or female is an important element in
the assignment of treatment. Recently, Atkinson [4] considered adaptive biased-
coin designs for K treatments based on a linear regression model. Atkinson and
Biswas ([5] and [6]) proposed adaptive biased-coin designs and Bayesian adaptive
biased-coin designs for clinical trials with normal responses. However, none of
these articles provided the asymptotic distribution of the estimators and the allo-
cation proportions. Without the asymptotic properties of the estimators, it is often
difficult to assess the validity of the statistical inference after using CARA designs.

Instead of working on specific setups, we seek to derive a general framework of
CARA designs and provide theoretical foundation for these designs. The technical
complexity arises because the assignment of treatment Xm depends on Fm−1 and
the covariate information (ξm) of the incoming patient.

1.2. Main results and organization of the paper. The main objectives are (i) to
propose a general CARA design that can be applied to cases in which K treatments
(K ≥ 2) are present and to different types of responses (discrete or continuous),
and (ii) to study asymptotic properties of the proposed design. These proper-
ties provide a solid foundation for both the CARA design and its related statis-
tical inference. Major mathematical techniques, including martingale theory and
Gaussian approximation, are employed to develop the asymptotic results.

The rest of the paper is organized as follows. In Section 2 we introduce the gen-
eral framework of the CARA design. Under this general framework, we are able
to derive many new response-adaptive designs. Useful asymptotic results (includ-
ing strong consistency and asymptotic normality) for both the estimators of the
unknown parameters and the allocation proportions are derived. The generalized
linear model represents a broad class of applications and is an important tool in the
analysis of data that involve covariates. In Section 3 the proposed design is applied
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to generalized linear models, and two special cases, the linear model and the lo-
gistic regression model, are considered in detail. We then conclude our paper with
some observations in Section 4. Technical proofs are provided in the Appendix.

2. General CARA design.

2.1. General framework. Based on the notation in Section 1, suppose that a
patient with a covariate vector ξ is assigned to treatment k, k = 1, . . . ,K , and the
observed response is Yk . Assume that the responses and the covariate vector satisfy

E[Yk|ξ ] = pk(θk, ξ), θk ∈ �k, k = 1, . . . ,K,

where pk(·, ·), k = 1, . . . ,K , are known functions. Further, θk , k = 1, . . . ,K ,
are unknown parameters, and �k ⊂ R

d is the parameter space of θk . Write
θ = (θ1, . . . , θK) and � = �1 × · · · × �K . This model is quite general, and
includes the generalized linear models of [16] as special cases. The discussion
of the generalized linear models is undertaken in Section 3. We assume that
{(Ym,1, . . . , Ym,K, ξm), m = 1,2, . . .} is a sequence of i.i.d. random vectors, the
distributions of which are the same as that of (Y1, . . . , YK, ξ).

2.2. CARA design. The allocation scheme is as follows. To start, assign m0
subjects to each treatment by using a restricted randomization. Assume that m

(m ≥ Km0) subjects have been assigned to treatments. Their responses {Yj , j =
1, . . . ,m} and the corresponding covariates {ξ j , j = 1, . . . ,m} are observed. We
let θ̂m = (̂θm,1, . . . , θ̂m,K) be an estimate of θ = (θ1, . . . , θK). Here, for each k =
1, . . . ,K , θ̂m,k = θ̂m,k(Yj,k, ξ j :Xj,k = 1, j = 1, . . . ,m) is the estimator of θk that
is based on the observed Nm,k-size sample {(Yj,k, ξ j ): for which Xj,k = 1, j =
1, . . . ,m}. Next, when the (m + 1)st subject is ready for randomization and the
corresponding covariate ξm+1 is recorded, we assign the patient to treatment k

with probability

ψk = P
(
Xm+1,k = 1

∣∣Fm, ξm+1
) = πk(̂θm, ξm+1), k = 1, . . . ,K,(2.1)

where Fm = σ(X1, . . . ,Xm,Y1, . . . ,Ym, ξ1, . . . , ξm) is the sigma field of the his-
tory and πk(·, ·), k = 1, . . . ,K , are some given functions. Given Fm and ξm+1,
the response Ym+1 of the (m + 1)st subject is assumed to be independent of its
assignment Xm+1. We call the function π(·, ·) = (π1(·, ·), . . . , πK(·, ·)) the allo-
cation function that satisfies π1 + · · · + πK ≡ 1. Let gk(θ

∗) = E[πk(θ
∗, ξ)]. From

(2.1), it follows that

P(Xm+1,k = 1
∣∣Fm) = gk(̂θm), k = 1, . . . ,K.(2.2)

Different choices of π(·, ·) generate different possible classes of useful designs.
For example, we can take πk(θ , ξ) = Rk(θ1ξ

T , . . . , θKξT ), k = 1, . . . ,K , which
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includes a large class of applications. Here, 0 < Rk(z) < 1, k = 1, . . . ,K , are real
functions that are defined in R

K with
K∑

k=1

Rk(z) = 1 and Ri(z) = Rj(z) whenever zi = zj .(2.3)

For simplicity, it is assumed that ξ and θk , k = 1, . . . ,K , have the same dimen-
sions; otherwise slight modifications are necessary (see Example 3.1 for an illus-
tration). In practice, the functions Rk can be defined as

Rk(z) = G(zk)

G(z1) + · · · + G(zK)
, k = 1, . . . ,K,

where G is a smooth real function that is defined in R and satisfies 0 < G(z) < ∞.
An example is Rk(z) = eCzk/(eCz1 + · · · + eCzK ), k = 1, . . . ,K , for some C > 0.

In the two-treatment case, we can let R1(z1, z2) = G(z1 − z2) and R2(z1, z2) =
G(z2 − z1), where G is a real function defined on R satisfying G(0) = 1/2,
G(−z) = 1 − G(z) and 0 < G(z) < 1 for all z. For the logistic regression
model, Rosenberger, Vidyashankar and Agarwal [22] suggested using the esti-
mated covariate-adjusted odds ratio to allocate subjects, which is equivalent to
defining Rk(z1, z2) = ezk/(ez1 + ez2), k = 1,2. For each fixed covariate ξ , we can
also choose π(θ , ξ) according to [7] and [13]. When π(θ , ξ) does not depend on ξ ,
one can use the allocation scheme of [9] for the normal linear regression model.
We now introduce some asymptotic properties.

2.3. Asymptotic properties. Write π(θ∗,x) = (π1(θ
∗,x), . . . , πK(θ∗,x)),

g(θ∗) = (g1(θ
∗), . . . , gK(θ∗)), vk = gk(θ) = E[πk(θ , ξ)], k = 1, . . . ,K , and v =

(v1, . . . , vK). We assume that 0 < vk < 1, k = 1, . . . ,K . For the allocation func-
tion π(θ∗,x) we assume the following condition.

CONDITION A. Assume that the parameter space �k is a bounded domain in
R

d , and that the true value θk is an interior point of �k , k = 1, . . . ,K .

1. For each fixed x, πk(θ
∗,x) > 0 is a continuous function of θ∗, k =

1, . . . ,K .
2. For each k = 1, . . . ,K , πk(θ

∗, ξ) is differentiable with respect to θ∗ under
the expectation, and there is a δ > 0 such that

gk(θ
∗) = gk(θ) + (θ∗ − θ)

(
∂gk

∂θ∗
∣∣∣∣
θ

)T

+ o(‖θ∗ − θ‖1+δ),

where ∂gk/∂θ∗ = (∂g/∂θ∗
11, . . . , ∂g/∂θ∗

Kd).

THEOREM 2.1. Suppose that for k = 1, . . . ,K ,

θ̂nk − θk = 1

n

n∑
m=1

Xm,khk(Ym,k, ξm)
(
1 + o(1)

) + o(n−1/2) a.s.,(2.4)
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where hk are K functions with E[hk(Yk, ξ)|ξ ] = 0. We also assume that E‖hk(Yk,

ξ)‖2 < ∞, k = 1, . . . ,K . Then under Condition A, we have for k = 1, . . . ,K ,

P(Xn,k = 1) → vk, P(Xn,k = 1|Fn−1, ξn = x) → πk(θ ,x) a.s.(2.5)

and

Nn

n
− v = O

(√
log logn

n

)
a.s., θ̂n − θ = O

(√
log logn

n

)
.(2.6)

Further, let Vk = E{πk(θ , ξ)(hk(Yk, ξ))T hk(Yk, ξ)}, k = 1, . . . ,K , V = diag(V1,

. . . ,VK), �1 = diag(v) − vT v, �2 = ∑K
k=1

∂g
∂θk

Vk(
∂g
∂θk

)T and � = �1 + 2�2.
Then

√
n(Nn/n − v)

D→ N(0,�) and
√

n(̂θn − θ)
D→ N(0,V).(2.7)

REMARK 2.1. Condition (2.4) depends on different estimation methods. In
the next section, we show that it is satisfied in many cases.

Theorem 2.1 provides general results on the asymptotic properties of the allo-
cation proportions Nn,k/n, k = 1, . . . ,K . Sometimes, one may be interested in the
proportions for a given covariate (for discrete ξ ) as discussed in Section 4. Given
a covariate x, the proportion of subjects that is assigned to treatment k is∑n

m=1 Xm,kI {ξm = x}∑n
m=1 I {ξm = x} := Nn,k|x

Nn(x)
,

where Nn,k|x is the number of subjects with covariate x that is randomized to treat-
ment k, k = 1, . . . ,K , in the n trials, and Nn(x) is the total number of subjects with
covariate x. Write Nn|x = (Nn,1|x, . . . ,Nn,K|x). The following theorem establishes
the asymptotic results of these proportions.

THEOREM 2.2. Given a covariate x, suppose that P(ξ = x) > 0. Under Con-
dition A and (2.4), we have

Nn,k|x/Nn(x) → πk(θ ,x) a.s. k = 1, . . . ,K(2.8)

and √
Nn(x)

(
Nn|x/Nn(x) − π(θ ,x)

) D→ N(0,�|x),(2.9)

where

�|x = diag(π(θ ,x)) − π(θ ,x)T π(θ ,x)

+ 2
K∑

k=1

∂π(θ,x)

∂θk

Vk

(
∂π(θ ,x)

∂θk

)T

P(ξ = x).
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3. Generalized linear models. In this section, the general results of Section 2
are applied to the generalized linear model (GLM) and its two special cases, the
logistic regression model and the linear model (refer to [16] for applications of
these models). Suppose, given ξ , that the response Yk of a trial of treatment k has
a distribution in the exponential family and takes the form

fk(yk|ξ , θk) = exp
{(

ykµk − ak(µk)
)
/φk + bk(yk,φk)

}
(3.1)

with link function µk = hk(ξθT
k ), where θk = (θk1, . . . , θkd), k = 1, . . . ,K ,

are coefficients. Assume that the scale parameter φk is fixed. Then E[Yk|ξ ] =
a′
k(µk), Var(Yk|ξ) = a′′

k (µk)φk and

∂ logfk(yk|ξ , θk)

∂θk

= 1

φk

{yk − a′
k(µk)}h′

k(ξθT
k )ξ ,

∂2 logfk(yk|ξ , θk)

∂θ2
k

= 1

φk

{−a′′
k (µk)[h′

k(ξθT
k )]2 + [yk − a′

k(µk)]h′′
k(ξθT

k )}ξT ξ .

Thus, given ξ , the conditional Fisher information matrix is

Ik(θk|ξ) = −E
[
∂2 logfk(Yk|ξ , θk)

∂θ2
k

∣∣∣ξ]
= 1

φk

a′′
k (µk)[h′

k(ξθT
k )]2ξT ξ .

For the observations up to stage m, the likelihood function is

L(θ) =
m∏

j=1

K∏
k=1

[fk(Yj,k|ξ j , θk)]Xj,k =
K∏

k=1

m∏
j=1

[fk(Yj,k|ξ j , θk)]Xj,k :=
K∏

k=1

Lk(θk)

with logLk(θk) ∝ ∑m
j=1 Xj,k{Yj,k −ak(µj,k)}, µj,k = hk(θ

T
k ξ j ), k = 1,2, . . . ,K .

The MLE θ̂m = (̂θm,1, . . . , θ̂m,K) of θ = (θ1, . . . , θK) maximizes L(θ) over θ ∈
�1 × · · · × �K . Equivalently, θ̂m,k maximizes Lk over θk ∈ �k , k = 1,2, . . . ,K .
Rosenberger, Flournoy and Durham [19] established a general result for the as-
ymptotic normality of MLEs from a response-driven design. Rosenberger and Hu
[21] gave the asymptotic normality of the regression parameters from a general-
ized linear model that followed a sequential design with covariate vectors. These
two papers neither examined the case of using covariates to adjust the design,
nor established the asymptotic properties of the allocation proportions. The next
corollary gives results on both the estimators of the parameters and the allocation
proportions.

COROLLARY 3.1. Define

Ik = Ik(θ) = E{πk(θ , ξ)Ik(θk|ξ)}, k = 1, . . . ,K.(3.2)

Under Condition A, if the matrices Ik , k = 1,2, . . . ,K , are nonsingular and the
MLE θ̂m is unique, then under regularity condition (A.13) in the Appendix, we
have (2.5), (2.6) and (2.7) with Vk = I−1

k , k = 1, . . . ,K . Moreover, if P(ξ = x) > 0
for a given covariate x, then (2.8) and (2.9) hold.
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The proof is given in the Appendix through the verification of condition (2.4). For
both the logistic regression and the linear regression, condition (A.13) is satisfied.

REMARK 3.1. From Corollary 3.1, it follows that√
Nn,k(̂θn,k − θk)

D→ N(0, vk{E[πk(θ , ξ)Ik(θk|ξ)]}−1), k = 1, . . . ,K.(3.3)

It should be noted that the asymptotic variances are different from those of general
linear models with a fixed allocation procedure. For the latter, we have√

Nn,k(̂θn,k − θk)
D→ N(0, {E[Ik(θk|ξ)]}−1), k = 1, . . . ,K.(3.4)

If the allocation functions πk(θ , ξ) do not depend on ξ , then πk(θ , ξ) = gk(θ) =
vk , and so (3.3) and (3.4) are identical. Our asymptotic variance–covariance ma-
trix of θ̂n is also different from that in Theorem 2 of [7], because the allocation
probabilities in their study do not depend on the covariates.

REMARK 3.2. When the distribution of ξ and the true value of θ are known,
the values of v = E[π(θ , ξ)], ∂g/∂θk = E[∂π(θ , ξ)/∂θk] and Ik in (3.2) can be
obtained by computing the expectations, and then the values of the asymptotic
variance–covariance matrices V, � and �|x can be obtained. In practice, we can
obtain the estimates as follows.

(a) Estimate Ik by În,k = 1
n

∑n
m=1 Xm,kIk(̂θn,k|ξm), k = 1,2, . . . ,K ; and then

the estimator of V is V̂n = diag(̂I−1
n,1, . . . , Î−1

n,K).

(b) Estimate �1 and ∂g
∂θk

, respectively, by

�̂1 = diag
(

Nn

n

)
−

(
Nn

n

)T Nn

n
and

∂̂g
∂θk

= 1

n

n∑
m=1

∂π(θ∗, ξm)

∂θ∗
k

∣∣∣∣
θ∗=θ̂n

.

(c) Define the estimator �̂ of � by �̂ = �̂1 + 2
∑K

k=1
∂̂g
∂θk

V̂n,k(
∂̂g
∂θk

)T .
(d) For a given covariate x, we can estimate �|x by

�̂|x = diag(π (̂θn,x)) − π (̂θn,x)T π (̂θn,x)

+ 2
K∑

k=1

(
∂π(θ∗,x)

∂θ∗
k

∣∣∣∣
θ∗=θ̂n

)
V̂n,k

(
∂π(θ∗,x)

∂θ∗
k

∣∣∣∣
θ∗=θ̂n

)T #{m ≤ n : ξm = x}
n

.

Notice that φkIk(θ |ξ) does not depend on φk . When φk is unknown, we can esti-
mate Ik in the same way after replacing φk with its estimate φ̂k .

We now consider two examples, the logistic regression model and the linear
model.
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EXAMPLE 3.1 (Logistic regression model). We consider the case of dichoto-
mous (i.e., success or failure) responses. Let Yk = 1 if a subject being given treat-
ment k is a success and 0 otherwise, k = 1, . . . ,K . Let pk = pk(θk, ξ) = P(Yk =
1|ξ) be the probability of the success of a trial of treatment k for a given covari-
ate ξ , qk = 1 − pk , k = 1, . . . ,K . Assume that

logit(pk) = αk + θkξ
T , k = 1, . . . ,K.(3.5)

Without loss of generality, we assume that αk = 0, k = 1,2, . . . ,K , or alterna-
tively, we can redefine the covariate vector to be (1, ξ). For each k = 1, . . . ,K ,
let pj,k = pk(θk, ξ k). With the observations up to stage m, the MLE θ̂m,k of θk

(k = 1, . . . ,K) is that for which θ̂m,k maximizes

Lk =:
m∏

j=1

p
Xj,kYj,k

j,k (1 − pj,k)
Xj,k(1−Yj,k) over θk ∈ �k.(3.6)

The logistic regression model is a special case of GLM (3.1) with φk = 1, µk =
log(pk/qk), hk(x) = x, bk(yk,φk) = 0 and ak(µk) = − log(1 − pk) = log(1 +
eµk ). Thus, given ξ , the conditional information matrix is Ik(θk|ξ) = a′′

k (µk)ξ
T ξ =

pkqkξ
T ξ . For Corollary 3.1, we have the following corollary.

COROLLARY 3.2. Suppose that Condition A is satisfied, E‖ξ‖2 < ∞ and the
matrix E[ξT ξ ] is nonsingular. We then have (2.5), (2.6), (2.7) with Vk = I−1

k and
Ik = E{πk(θ , ξ)pkqkξ

T ξ}, k = 1, . . . ,K . Moreover, if P(ξ = x) > 0 for a given
covariate x, then (2.8) and (2.9) hold.

EXAMPLE 3.2 (Normal linear regression model). The responses are normally
distributed, that is, Yk|ξ ∼ N(µk,σ

2
k ) with link function µk = θkξ

T . Then the
linear model is a special case of GLM (3.1) with φk = σ 2

k , ak(µk) = µ2
k/2 and

hk(x) = x. Thus, we have the following corollary.

COROLLARY 3.3. Suppose that the conditions in Corollary 3.2 are satisfied.
We then have (2.5), (2.6), (2.7) with Vk = I−1

k and Ik = E[πk(θ , ξ)ξT ξ ]/σ 2
k , k =

1, . . . ,K . Moreover, if P(ξ = x) > 0 for given x, then (2.8) and (2.9) hold.

REMARK 3.3. Bandyopadhyay and Biswas [9] considered the normal linear
regression model in which θ11 = µ1, θ21 = µ2, θ1j = θ2j = βj−1, j = 2, . . . , d ,
and the first component of ξ is 1. Their proposed allocation probabilities are func-
tions of estimates of the unknown parameters that depend only on information of
the previous patients, but not on the covariates of the incoming patient. Theorem 1
of [9] gives the consistency property of Nn,1/n and P(Xn,1 = 1). However, their
proof is not correct, since the assignments δ1, . . . , δi are functions of the previous
responses Y1, . . . , Yi−1 and covariates. In fact, given the assignments δ1, . . . , δi ,
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the responses Y1, . . . , Yi are no longer independent normal variables, which im-
plies that their equation (4) is not valid. Nevertheless, if we let

ξ = (1, ξ̃), a = Eξ̃ , Iξ̃ = Var{̃ξ},

v1 = �

(
µ1 − µ2

T

)
and v2 = 1 − v1,

under our theoretical framework it can be proved that Theorem 1 of [9] is correct.
Further, we can show that

√
n(µ̂n1 − µ1, µ̂n2 − µ2)

D→ N

(
(0,0), σ 2

(
1/v1 + aI−1

ξ̃
aT aI−1

ξ̃
aT

aI−1
ξ̃

aT 1/v2 + aI−1
ξ̃

aT

))
,

√
n(β̂n − β)

D→ N(0, σ 2I−1
ξ̃

)

and

√
n(Nn1/n − v1)

D→ N

(
0, v1v2 + 2σ 2

v1v2

(
1

T
�′

(
µ1 − µ2

T

))2)
,

where σ 2 is the variance of the errors in the linear model.

REMARK 3.4. Corollary 3.3 can be generalized to responses not follow-
ing (3.1). Suppose that the response Yk of a subject to treatment k, k = 1, . . . ,K

and its covariate ξ satisfies the linear regression model

E[Yk|ξ ] = pk(θk, ξ) = θkξ
T , k = 1, . . . ,K.

For the observations up to stage m, let θ̂m,k minimize the error sum of squares

Sk(θk) =
m∑

j=1

Xj,k(Yj,k − θkξ
T
j )2 over θk ∈ �k,

k = 1, . . . ,K . Here, θ̂m,k is the least-squares estimator (LSE) of θk . Then Corol-
lary 3.3 remains true with Vk = I−1

ξk IYkI−1
ξk , Iξk = E[πk(θ , ξ)ξT ξ ] and IYk =

E{πk(θ , ξ)(Yk − θkξ
T )2ξT ξ} under the condition E‖Ykξ‖2 < ∞, k = 1, . . . ,K .

This result follows from Theorem 2.1, as condition (2.4) is satisfied with hk =
(Yk − θkξ

T )ξI−1
ξk .

4. Discussion. This paper makes two major contributions. First, a comprehen-
sive framework of CARA designs is proposed to serve as a paradigm for treatment
allocation procedures in clinical trials when covariates are available. It is a very
general framework that allows a wide spectrum of applications to very general
statistical models, including generalized linear models as special cases. Second,
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asymptotic properties are obtained to provide a statistical basis for inference after
using a CARA design.

When covariate information is not being used in the treatment allocation
scheme, an optimal allocation proportion is usually determined with the assistance
of some optimality criterion. Jennison and Turnbull [15] described a general pro-
cedure to search for an optimal allocation. For CARA designs, how to define and
obtain an optimal allocation scheme is still unclear. For a CARA design, we can
find optimal allocation for each fixed value of the covariate. Theorem 2.2 provides
theoretical support for targeting optimal allocation by using a CARA design for
each fixed covariate.

For response-adaptive designs without covariates, Hu and Rosenberger [13]
studied the relationship among the power, the target allocation and the variabil-
ity of the designs. It is important to study the behavior of the power function when
a CARA design is used in clinical trials. However, the formulation becomes very
different for CARA designs. It is an interesting topic for future research.

APPENDIX

PROOF OF THEOREM 2.1. First, notice that for each k = 1, . . . ,K , Xm+1,k =
Xm+1,k − E[Xm+1,k|Fm] + gk(̂θm) and then

Nn,k = E[X1,k|F0] +
n∑

m=1

(Xm,k − E[Xm,k|Fm−1]) +
n−1∑
m=1

gk(̂θm).(A.1)

The second term is a martingale. We next show that the third term can be approx-
imated by another martingale. Write �Mm,k = Xm,k − E[Xm,k|Fm−1], �Tm,k =
Xm,khk(Ym,k, ξm), k = 1, . . . ,K . Let Mn = ∑n

m=1 �Mm and Tn = ∑n
m=1 �Tm,

where �Mm = (�Mm,1, . . . , �Mm,K) and �Tm = (�Tm,1, . . . ,�Tm,K). Here,
the symbol � denotes the differencing operand of a sequence {zn}, that is, �zn =
zn − zn−1. Then {(Mn,Tn)} is a multi-dimensional martingale sequence that sat-
isfies

|�Mn,k| ≤ 1, ‖�Tn,k‖ ≤ ‖hk(Yn,k, ξn)‖(A.2)

and E‖hk(Yn,k, ξn)‖2 < ∞, k = 1, . . . ,K . It follows that

‖Mn‖ = O
(√

n
)

and ‖Tn‖ = O
(√

n
)

in L2.(A.3)

Also, according to the law of the iterated logarithm for martingales, we have

Mn = O
(√

n log logn
)

a.s. and Tn = O
(√

n log logn
)

a.s.(A.4)

From (A.4) and (2.4), it follows that

θ̂n − θ = O

(√
log logn

n

)
a.s.(A.5)
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From (A.1), (A.3), (A.5) and Condition A, it follows that

Nn,k − nvk = Mn,k +
n−1∑
m=1

K∑
j=1

(̂θm,j − θ j )

(
∂gk

∂θ j

)T

+
n−1∑
m=1

o(‖θ̂m − θ‖1+δ)

= Mn,k +
n∑

m=1

K∑
j=1

Tm,j (1 + o(1))

m

(
∂gk

∂θ j

)T

+ o(n1/2) a.s.

= Mn,k +
n∑

m=1

K∑
j=1

Tm,j

m

(
∂gk

∂θ j

)T

+ o(n1/2) in probability,

that is,

Nn − nv = Mn +
n∑

m=1

K∑
j=1

Tm,j (1 + o(1))

m

(
∂g
∂θ j

)T

+ o(n1/2) a.s.(A.6)

= Gn + o(n1/2) in probability,(A.7)

where

Gn = Mn +
n∑

m=1

K∑
j=1

Tm,j

m

(
∂g
∂θ j

)T

= Mn +
n∑

m=1

K∑
j=1

�Tm,j

(
∂g
∂θ j

)T n∑
i=m

1

i
.

The combination of (A.4) and (A.6) yields

Nn − nv = O
(√

n log logn
) +

n∑
m=1

K∑
j=1

O(
√

m log logm)

m

= O
(√

n log logn
)

a.s.

(2.5) is obvious by noting (A.5) and the continuity of π(·, ξ). The proof of con-
sistency is thus obtained. Next, we consider the asymptotic normality. Notice that
Mn, Tn and Gn are all sums of martingale differences. It is easy to verify that the
Lindberg condition is satisfied by (A.2). To complete the proof it suffices to derive
the variances. First, the conditional variance–covariance matrices of the martingale
difference {�Mn,�Tn} satisfy

E[(�Mn)
T �Mn|Fn−1] = diag(g(̂θn−1)) − (g(̂θn−1))

T g(̂θn−1) → �1

in L1,

E[(�Tn,k)
T �Tn,k|Fn−1] = E[πk(x, ξ)(hk(Yk, ξ))T hk(Yk, ξ)]|x=θ̂n−1

→ Vk

in L1,

E[(�Mn,i)
T �Tn,j |Fn−1] = 0 for all i, j
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and

E[(�Tn,i)
T �Tn,j |Fn−1] = 0

for all i �= j . It follows that Var{Tn}/n → V and

Var{Gn} =
n∑

m=1

[�1 + o(1)] +
n∑

m=1

n∑
l=1

K∑
j=1

l ∧ m

ml

∂g
∂θ j

[Vj + o(1)]
(

∂g
∂θ j

)T

= n(�1 + 2�2) + o(n) = n� + o(n).

By the central limit theorem for martingales [12], it follows that
√

n(̂θn − θ) =
n−1/2Tn + o(1)

D→ N(0,V) and

√
n(Nn/n − v) = n−1/2Gn + o(1)

D→ N(0,�).(A.8)

The proof is now complete. �

PROOF OF THEOREM 2.2. First, according to the law of large numbers, we
have

1

n

n∑
m=1

I {ξm = x} → P(ξ = x) a.s.(A.9)

and

1

n

n∑
m=1

Xm,kI {ξm = x}

= 1

n

n∑
m=1

(Xm,kI {ξm = x} − E[Xm,kI {ξm = x}|Fm−1])

+ 1

n

n∑
m=1

πk(̂θm−1,x)P(ξm = x) → πk(θ ,x)P(ξ = x) a.s.,

and thus (2.8) is proved. We next consider the asymptotic normality. The proof is
similar to that of (A.8). The difference lies in the approximation of the process by
a new 2K-dimensional martingale and the calculation of its variance–covariance
matrix. Define ζn,k(x) := ∑n

m=1(Xm,k − πk(θ ,x))I {ξm = x}. Then

√
Nn(x)

(
Nn|x

Nn(x)
− π(θ ,x)

)
=

√
n

Nn(x)

ζn,k(x)√
n

, k = 1, . . . ,K.

Notice (A.9). It is sufficient to prove

n−1/2(
ζn,1(x), . . . , ζn,K(x)

) D→ N
(
0,�|xP(ξ = x)

)
.(A.10)
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With the same argument as is used to derive (A.6), we can obtain

ζn,k(x) =
n∑

m=1

(
�ζn,k(x) − E[�ζn,k(x)|Fn−1])

+
n∑

m=1

(
πk(̂θm−1,x) − πk(θ ,x)

)
P(ξ = x)

=
n∑

m=1

(
�ζm,k(x) − E[�ζm,k(x)|Fm−1])

+
K∑

j=1

n∑
m=1

Tm,j

m

(
∂πk(θ,x)

∂θ j

)T

P(ξ = x) + o(n1/2) in probability

=: Gn,k(x) + o(n1/2).

Similar to the proof of (A.8), to complete the proof it suffices to get the variance of
Gn(x) = (Gn,1(x), . . . ,Gn,K(x)). Let �Mn,k(x) = �ζn,k(x)− E[�ζn,k(x)|Fn−1].
The variance–covariance matrix of the martingale difference {(�Mn(x),�Tn)}
then satisfies E[(�Mn,k(x))2|Fn−1] → πk(θ ,x)(1 − πk(θ ,x))P(ξ = x),
E[�Mn,k(x)�Mn,j (x)|Fn−1] → −πk(θ ,x)πj (θ ,x)P(ξ = x) ∀k �= j and
E[�Mn,k(x)�Tn,j |Fn−1] = 0 ∀i, j in L1. It follows that

Var{Gn(x)} = n[diag(π(θ ,x)) − π(θ ,x)T π(θ ,x)P(ξ = x) + o(1)]

+
n∑

m=1

n∑
l=1

K∑
j=1

l ∧ m

lm

∂π(θ ,x)

∂θ j

[Vj + o(1)]
(

∂π(θ ,x)

∂θ j

)T

P2(ξ = x)

= n�|xP(ξ = x) + o(n).

(A.10) is then proved. �

PROOF OF COROLLARY 3.1. By Theorem 2.1, it suffices to verify the condi-
tion (2.4). Notice that θ̂m,k is a solution to ∂ logLk/∂θk = 0. The application of
Taylor’s theorem yields

∂ logLk

∂θk

∣∣∣∣
θk

+ (̂θm,k − θk)

{
∂2 logLk

∂θ2
k

∣∣∣∣
θk

+
∫ 1

0

[
∂2 logLk

∂θ2
k

∣∣∣∣θk+t (̂θm,k−θk)

θk

]
dt

}
(A.11)

= ∂ logLk

∂θk

∣∣∣∣̂
θm,k

= 0,

where f (x)|ba = f (b) − f (a). Notice that

∂ logLk

∂θk

=
m∑

j=1

Xj,k

∂ logfk(Yj,k|ξ j , θk)

∂θk

(A.12)
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and

∂2 logLk

∂θ2
k

=
m∑

j=1

Xj,k

∂2 logfk(Yj,k|ξ j , θk)

∂θ2
k

.

We assume the regularity condition

H(δ) =: E
[

sup
‖z‖≤δ

∥∥∥∥∂2 logfk(Yk|ξ , θk)

∂θ2
k

∣∣∣∣θk+z

θk

∥∥∥∥]
→ 0 as δ → 0.(A.13)

This regularity condition is implied by the simple condition that a′′
k , h′′

k are contin-
uous and ξ is bounded. Under (A.13), one can show that

sup
‖z‖≤δ

∥∥∥∥ 1

m

∂2 logLk

∂θ2
k

∣∣∣∣θk+z

θk

∥∥∥∥ ≤ H(δ) + o(1) a.s.

However,
m∑

j=1

{
Xj,k

∂2 logfk(Yj,k|ξ j , θk)

∂θ2
k

− E
[
Xj,k

∂2 logfk(Yj,k|ξ j , θk)

∂θ2
k

∣∣∣∣Fj−1

]}
is a martingale. According to the law of large numbers,

∂2 logLk

∂θ2
k

=
m∑

j=1

E
[
Xj,k

∂2 logfk(Yj,k|ξ j , θk)

∂θ2
k

∣∣∣∣Fj−1

]
+ o(m)

= −
m∑

j=1

{E[πk(z, ξ)Ik(θk|ξ)]}z=θ̂ j−1
+ o(m)(A.14)

= −mIk + o(m) a.s.

The substitution of (A.12) and (A.14) into (A.11) yields

m(̂θm,k − θk)
{
Ik + o(1) + O

(
H(‖θ̂m,k − θk‖))} =

m∑
j=1

Xj,k

∂ logfk(Yj,k|ξ j , θk)

∂θk

.

Thus,

θ̂m,k − θk = 1

m

m∑
j=1

Xj,k

∂ logfk(Yj,k|ξ j , θk)

∂θk

I−1
k

(
1 + o(1)

)
a.s.(A.15)

Notice that

E
[
∂ logfk(Yj,k|ξ j , θk)

∂θk

∣∣∣ξ j

]
= 0

and

Var
{
∂ logfk(Yj,k|ξ j , θk)

∂θk

∣∣∣ξ j

}
= Ik(θk|ξ j ).

Hence, condition (2.4) is valid. By Theorem 2.1, the proof is complete. �
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