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MONTE CARLO LIKELIHOOD INFERENCE FOR MISSING
DATA MODELS

BY YUN JU SUNG AND CHARLES J. GEYER

University of Washington and University of Minnesota

We describe a Monte Carlo method to approximate the maximum like-
lihood estimate (MLE), when there are missing data and the observed data
likelihood is not available in closed form. This method uses simulated miss-
ing data that are independent and identically distributed and independent of
the observed data. Our Monte Carlo approximation to the MLE is a consis-
tent and asymptotically normal estimate of the minimizer θ∗ of the Kullback–
Leibler information, as both Monte Carlo and observed data sample sizes go
to infinity simultaneously. Plug-in estimates of the asymptotic variance are
provided for constructing confidence regions for θ∗. We give Logit–Normal
generalized linear mixed model examples, calculated using an R package.

1. Introduction. Missing data [20] either arise naturally—data that might
have been observed are missing—or are intentionally chosen—a model includes
random variables that are not observable (called latent variables or random effects).
A normal mixture model or a generalized linear mixed model (GLMM) is an ex-
ample of the latter. In either case, a model is specified for the complete data (x, y),
where x is missing and y is observed, by their joint density fθ (x, y), also called
the complete data likelihood (when considered as a function of θ ). The maximum
likelihood estimator (MLE) maximizes the marginal density fθ(y), also called the
observed data likelihood (when considered as a function of θ ). This marginal den-
sity is only implicitly specified by the complete data model, fθ (y) = ∫

fθ (x, y) dx,
and is often not available in closed form. This is what makes likelihood inference
for missing data difficult.

Many Monte Carlo methods for approximating the observed data likelihood in
a missing data model have been proposed. In these, missing data are simulated by
either ordinary Monte Carlo [17, 24] or Markov chain Monte Carlo (MCMC) [10,
12, 18, 29, 28]. To get a good approximation of the likelihood over a large region,
umbrella sampling [13, 30] may be necessary. There are also many Monte Carlo
methods for maximum likelihood without approximating the likelihood: stochas-
tic approximation [23, 38], Monte Carlo EM [14, 34], and Monte Carlo Newton–
Raphson [25]. There are also non-Monte Carlo methods for maximum likelihood
without approximating the likelihood: EM [8] and analytic approximation [6].
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There are so many methods because each has its strength and weakness. In the-
ory, Monte Carlo methods work for complicated problems but require very careful
calibration, whereas non-Monte Carlo methods are relatively easier to implement
but only apply to simple cases. All are useful for some, but not all, problems.

This article is concerned with a Monte Carlo approximation of the observed data
likelihood and asymptotic properties of the maximizer of our Monte Carlo likeli-
hood. Our method uses simulated missing data that are independent and identically
distributed (i.i.d.) and independent of the observed data. It approximates the likeli-
hood over the entire parameter space. We give Logit–Normal GLMM examples to
illustrate the case when our asymptotic normality holds and to show the value of
our Monte Carlo likelihood approximation even when asymptotic normality does
not hold.

Let the observed data Y1, . . . , Yn be i.i.d. from a density g, which is not as-
sumed to be some fθ . We do not assume the model is correctly specified, since
this increase of generality makes the theory no more difficult. The MLE θ̂n is a
maximizer of the log likelihood

ln(θ) =
n∑

j=1

logfθ(Yj ).(1)

In our method, we generate an i.i.d. Monte Carlo sample X1, . . . ,Xm, independent
of Y1, . . . , Yn, from an importance sampling density h and approximate fθ (y) by

fθ,m(y) = 1

m

m∑
i=1

fθ (Xi, y)

h(Xi)
.(2)

This makes heuristic sense because

fθ,m(y)
a.s.−→m Eh

{
fθ(X,y)

h(X)

}
= fθ (y) for each y

by the strong law of large numbers. (The subscript m on the arrow means as m

goes to infinity. Similarly, a subscript m,n means as both m and n go to infinity.)
Our estimate of θ̂n is the maximizer θ̂m,n of our Monte Carlo log likelihood

lm,n(θ) =
n∑

j=1

logfθ,m(Yj ),(3)

an approximation to ln(θ) with fθ,m replacing fθ . We call θ̂m,n the Monte Carlo
MLE (MCMLE).

Under the conditions of Theorem 2.3, the MCMLE

θ̂m,n ≈ N

(
θ∗, J−1V J−1

n
+ J−1WJ−1

m

)
,(4)
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for sufficiently large Monte Carlo sample size m and observed data sample size n,
where θ∗ is the minimizer of the Kullback–Leibler information

K(θ) = Eg log
g(Y )

fθ (Y )
,(5)

J is minus the expectation of the second derivative of the log likelihood, V is the
variance of the first derivative of the log likelihood (score), and W is the variance
of the deviation of the score from its Monte Carlo approximation [given by (7)
below]. Under certain regularity conditions [15, 35],

θ̂n ≈ N

(
θ∗, J−1V J−1

n

)
.(6)

We see that θ̂m,n has nearly the same distribution when the Monte Carlo sam-
ple size m is very large. If the model is correctly specified, that is, g = fθ0 , then
θ∗ = θ0 and J = V , either of which is called Fisher information, and (6) becomes

θ̂n ≈ N

(
θ∗, J−1

n

)
,

the familiar formula due to Fisher and Cramér. This replacement of J−1 by the
so-called “sandwich” J−1V J−1 is the only complication arising from model mis-
specification [19].

The first term of the asymptotic variance in (4) is what would be the asymptotic
variance if we could use the exact likelihood rather than Monte Carlo. Hence it
is the same as the asymptotic variance in (6). The second term is additional vari-
ance due to Monte Carlo. Increasing the Monte Carlo sample size m can make
the second term as small we please so that the MCMLE θ̂m,n is almost as good as
the MLE θ̂n. In (4), W is the only term related to the importance sampling den-
sity h that generates the Monte Carlo sample. Choosing an h that makes W smaller
makes θ̂m,n more accurate.

The asymptotic distribution of θ̂m,n in (4) is a convolution of two independent
normal distributions. The proof of this is not simple, however, for three reasons.
First, the finite sample terms from which these arise [the two terms on the right-
hand side in (9) below] are dependent. Second, one of these is itself a sum of
dependent terms, because each term in (3) uses the same X’s. Third, our two sam-
ple sizes m and n go to infinity simultaneously, and we must show that the result
does not depend on the way in which m and n go to infinity.

2. Asymptotics of θ̂m,n. In this section, we state theorems about strong con-
sistency and asymptotic normality of the MCMLE θ̂m,n. Proofs are in the Appen-
dix.

We use empirical process notation throughout. We let P denote the probability
measure induced by the importance sampling density h, and we let Pm denote the
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empirical measure induced by X1, . . . ,Xm (that are i.i.d. from P ). Similarly, we
let Q denote the probability measure induced by the true density g and Qn denote
the empirical measure induced by Y1, . . . , Yn (that are i.i.d. from Q). Given a mea-
surable function f :X �→ R, we write Pmf (X) for the expectation of f under Pm

and Pf (X) for the expectation under P . Similarly we use Qnf (Y ) and Qf (Y ).
Note that Pmf (X) = 1

m

∑m
i=1 f (Xi) is just another notation for a particular sample

mean.
The Kullback–Leibler information in (5) is written as K(θ) = Q log[g(Y )/

fθ (Y )], its empirical version as Kn(θ) = Qn log[g(Y )/fθ (Y )] and our approxi-
mation to Kn(θ) as

Km,n(θ) = Qn log[g(Y )/fθ,m(Y )]
with fθ,m(y) = Pmfθ(X,y)/h(X). Then Kn(θ) = Qn logg(Y ) − ln(θ)/n and
Km,n(θ) = Qn logg(Y ) − lm,n(θ)/n. Hence the MLE θ̂n is the minimizer of Kn

and the MCMLE θ̂m,n is the minimizer of Km,n. By Jensen’s inequality K(θ) ≥ 0.
This allows K(θ) = ∞ for some θ , but we assume K(θ∗) is finite. [This excludes
only the uninteresting case of the function θ �→ K(θ) being identically ∞.]

2.1. Epi-convergence of Km,n. To get the convergence of θ̂m,n to θ∗ we use
epi-convergence of the function Km,n to the function K . Epi-convergence is a
“one-sided” uniform convergence that was first introduced by Wijsman [36, 37],
developed in optimization theory [2, 3, 26] and used in statistics [11, 12]. It is
weaker than uniform convergence yet insures the convergence of minimizers as
the following proposition due to Attouch [2], Theorem 1.10, describes.

PROPOSITION 2.1. Let X be a general topological space, {fn} a sequence of
functions from X to R that epi-converges to f , and {xn} a sequence of points in X

satisfying fn(xn) ≤ inffn +εn with εn ↓ 0. Then for every converging subsequence
xnk

→ x0

f (x0) = inff = lim
k

fnk
(xnk

).

If f has a unique minimizer x, then x is the only cluster point of the se-
quence {xn}. Otherwise, there may be many cluster points, but all must mini-
mize f . There may not be any convergent subsequence. If the sequence {xn} is
in a compact set and X is sequentially compact, however, there is always a conver-
gent subsequence.

THEOREM 2.2. Let {fθ (x, y) : θ ∈ �}, where � ⊂ Rd , be a family of densities
with respect to a σ -finite measure µ × ν on X × Y, let X1, X2, . . . be i.i.d. from a
probability distribution P that has a density h with respect to µ, and let Y1, Y2, . . .

be i.i.d. from a probability distribution Q that has a density g with respect to ν.
Suppose:

(1) � is a second countable topological space;
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(2) for each (x, y), the function θ �→ fθ (x, y) is upper semicontinuous on �;
(3) for each θ , there exists a neighborhood Bθ of θ such that

Q log
[
P sup

φ∈Bθ

fφ(X,Y )/h(X)g(Y )

]
< ∞;

(4) for each θ , there exists a neighborhood Cθ of θ such that for any subset B

of Cθ , the family of functions {supφ∈B fφ(·, y)/h(·)g(y) :y ∈ Y} is P -Glivenko–
Cantelli;

(5) for each θ , the family of functions {fθ (·|y)/h(·) :y ∈ Y} is P -Glivenko–
Cantelli.

Then Km,n epi-converges to K with probability one.

Glivenko–Cantelli means a family of functions for which the uniform strong
law of large numbers holds ([32], page 81). Conditions (1) through (3) are similar
to those of Theorem 2 in [12]. Also they are vaguely similar to those in [33], which
imply epi-convergence of Kn to K (when there are no missing data and no Monte
Carlo).

2.2. Asymptotic normality of θ̂m,n. The following theorem assumes that the
local minimizer θ∗ of K is an interior point of � and that K is differentiable.
Hence ∇K(θ∗) = 0, where ∇ means differentiation with respect to θ .

THEOREM 2.3. Let {fθ (x, y) : θ ∈ �}, where � ⊂ Rd , be a family of densities
with respect to a σ -finite measure µ × ν on X × Y, let X1, X2, . . . be i.i.d. from a
probability distribution P that has a density h with respect to µ, and let Y1, Y2, . . .

be i.i.d. from a probability distribution Q that has a density g with respect to ν.
Suppose:

(1) second partial derivatives of fθ (x, y) with respect to θ exist and are con-
tinuous on � for all x and y, and may be passed under the integral sign in∫

fθ(x|y)dµ(x);
(2) Y is a separable metric space and y �→ ∇fθ∗(x|y) is continuous for each x;
(3) there is an interior point θ∗ of � such that Q∇ logfθ∗(Y ) = 0, V =

varQ ∇ logfθ∗(Y ) is finite and J = −Q∇2 logfθ∗(Y ) is finite and nonsingular;
(4) there exists a ρ > 0 such that Sρ = {θ : |θ − θ∗| ≤ ρ} is contained in � and

F1 = {∇2fθ (·) : θ ∈ Sρ} is Q-Glivenko–Cantelli;
(5) F2 = {fθ∗(·|y)/h(·) :y ∈ Y} is P -Glivenko–Cantelli;
(6) F3 = {∇fθ∗(·|y)/h(·) :y ∈ Y} is P -Donsker and its envelope function F

has a finite second moment;
(7) F4 = {∇2fθ (·|y)/h(·) :y ∈ Y, θ ∈ Sρ} is P -Glivenko–Cantelli;
(8) there is a sequence θ̂m,n which converges to θ∗ in probability such that√

min(m,n)∇Km,n(θ̂m,n)
P−→m,n 0.



MONTE CARLO LIKELIHOOD ASYMPTOTICS 995

Then

W = varP Q∇fθ∗(X|Y )/h(X)(7)

is finite and

(
V

n
+ W

m

)−1/2

J (θ̂m,n − θ∗) L−→m,n N (0, I ).(8)

Donsker means a family of functions for which the uniform central limit
theorem holds ([32], page 81). Note F3 is a family of vector-valued func-
tions and F1 and F4 are families of matrix-valued functions. Such families are
Glivenko–Cantelli or Donsker if each component is ([31], page 270). Condi-
tions (1), (3), (4) and (8) are similar to the usual regularity conditions for as-
ymptotic normality of the MLE, which can be found, for example, in [9], Chap-
ter 18. For a correctly specified model, differentiability under the integral sign in
1 = ∫∫

fθ (x, y) dµ(x) dν(y) implies conditions (1) and (3). Condition (4) holds if
functions in F1 are dominated by a L1(Q) function because Sρ is compact ([9],
Theorem 16(a)).

Under smoothness conditions imposed in this theorem, the asymptotics of θ̂m,n

arises from the asymptotics of

∇Km,n(θ
∗) = −Qn∇ logfθ∗(Y ) − Qn∇ log Pmfθ∗(X|Y )/h(X).(9)

The two terms on the right-hand side are dependent and the summands in the
second term are dependent, which indicates the complexity of this problem and
why the usual asymptotic arguments do not work here. The asymptotics for the
first term follow from the central limit theorem. The asymptotics for the second
term (Lemma A.4) go as shown below:

√
mQn∇ log Pmfθ∗(X|Y )/h(X)

m

m,n

QnGP ∇fθ∗(X|Y )/h(X)

n

QGP ∇fθ∗(X|Y )/h(X)

We first let m → ∞ then n → ∞. A uniformity argument then makes the result the
same when m and n go to infinity simultaneously. The

m−→ part is weak conver-
gence of the empirical process

√
m(Pm − P) to a tight Gaussian process GP . The

n−→ part is the law of large numbers. Integration over sample paths of GP gives
the distribution of the limit. The asymptotic independence between the two terms
in (9) comes from the fact that the law of large numbers eliminates the randomness
coming from Qn.
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2.3. Plug-in estimates for J , V and W . We can construct a confidence region
for θ∗ using (4) or (8). If we can evaluate the integrals defining J , V and W , then
we may use those integrals with θ̂m,n plugged in for θ∗ to estimate them, assuming
enough continuity. Often we cannot evaluate the integrals or do not know g. Then
we use their sample versions,

Ĵm,n = −1

n

n∑
j=1

∇2 logf
θ̂m,n

(Yj ),

V̂m,n = 1

n

n∑
j=1

∇ logf
θ̂m,n

(Yj )∇ logf
θ̂m,n

(Yj )
T ,(10)

Ŵm,n = 1

m

m∑
i=1

Ŝi Ŝ
T
i ,

where

Ŝi = 1

n

n∑
j=1

∇f
θ̂m,n

(Xi |Yj )/h(Xi).(11)

Often these cannot be used as shown because fθ (y) and fθ (x|y) are not available
in closed form. Then we replace fθ (y) by fθ,m(y) defined in (2) and fθ (x|y) by
fθ (x, y)/fθ,m(y). The resulting variance estimate Ĵ−1

m,n(V̂m,n/n+ Ŵm,n/m)Ĵ−1
m,n is

the sandwich estimator.

2.4. An alternative Monte Carlo scheme. Each term in (3) uses the same X’s.
An alternative is to use each X once, generating a new sample for each term in (3).
Then the resulting estimate has the same asymptotic variance as in (4) or (8) ex-
cept that W is replaced by W̃ = Qvarh ∇fθ∗(X|Y )/h(X). By Jensen’s inequality,
W̃ ≥ W . Thus using the X’s n times makes θ̂m,n more accurate.

3. Logit–Normal GLMM examples. The Logit–Normal GLMM refers to
Bernoulli regression with normal random effects. It has a linear predictor of the
form

η = Xβ + Zb,(12)

where X and Z are known design matrices, and β and b are unknown vectors (fixed
effects and random effects, resp.). The observed data consist of n i.i.d. responses,
one for each individual, and the missing data consist of n i.i.d. random effects vec-
tors, one for each individual with b ∼ N (0,
) (we denote the missing data by b,
instead of x, to avoid confusion with X). The observed data for one individual is
a vector whose components are independent Bernoulli given b, with success prob-
ability vector having components logit−1(ηk) = 1/(1 + exp(−ηk)). The unknown
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parameters to be estimated are β and the parameters determining the variance 


of random effects, which typically has simple structure and involves only a few
parameters.

We reparametrized (12) as

η = Xβ + Z�b,(13)

where � is a diagonal matrix whose diagonal is a vector of unknown parameters
(square roots of variance components) and b is a standard normal random vector
(whose distribution contains no unknown parameters). All of the unknown para-
meters are in β and � in the linear predictor (13). This representation is flexible
enough to include the examples in this article. We used the standard normal density
(which is the true density of b) as our importance sampling density. This makes
sense because of our reparametization to make the density of b not depend on the
parameters. This is not a general recommendation of the normal density.

We wrote an R package bernor that implements the methods of this article
for the Logit–Normal GLMM (available at www.stat.umn.edu/geyer/bernor). The
web page also contains detailed verification of the conditions of our theorems for
the model and detailed descriptions of its applications to our examples.

3.1. Conditions of the theorems. The Logit–Normal GLMM with our impor-
tance sampling density satisfies the conditions of both theorems. Verifying the
conditions is straightforward because of two properties. First, the sample space
Y is finite. Thus verifying Glivenko–Cantelli in conditions (4) and (5) of The-
orem 2.2 and condition (6) of Theorem 2.3 reduces to just verifying that func-
tions are L1(P ), and verifying Donsker in condition (5) of Theorem 2.3 reduces
to just verifying that functions are L2(P ). Also verifying Glivenko–Cantelli in
condition (7) of Theorem 2.3 reduces to just verifying that for each y, the class
{∇2fθ (·|y)/h(·) : θ ∈ Sρ} is P -Glivenko–Cantelli. This can be verified like con-
dition (4) of Theorem 2.3 as discussed after the theorem. Second, our impor-
tance sampling density h is the marginal density of the missing data and this im-
plies fθ(b, y)/h(b) = fθ(y|b), which makes it easy to verify that functions are
L1 or L2. Differentiability under the integral sign twice follows from h having
two moments.

3.2. Data from McCulloch’s model. We use a data set given by Booth and
Hobert [5], Table 2, that was simulated using a model from [22]. This model cor-
responds to a Logit–Normal GLMM with one-dimensional β and b in (12), and
its log likelihood can be calculated exactly by numerical integration. The observed
data consist of ten i.i.d. vectors of length 15. The parameters that generated the
data are β = 5 and σ = √

1/2.
Using a Monte Carlo sample of size 104, we approximated the observed data log

likelihood and obtained the MCMLE. The Monte Carlo profile log likelihood for σ

(Figure 1A) indicates that the log likelihood is well behaved, quadratic around

www.stat.umn.edu/geyer/bernor
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FIG. 1. Monte Carlo profile log likelihood (A) and nominal 95% confidence ellipses (B) for the
Booth and Hobert data using m = 104. Solid dot and solid line are the MCMLE and confidence
ellipse using plug-in estimates of J , V and W at the MCMLE. Hollow dot and dashed line are the
MLE and confidence ellipse using Fisher information and exact W at the MLE. Square and dotted
line are the “simulation truth” parameter value and confidence ellipse using Fisher information and
exact W at the simulation truth. The last two assume V = J .

the MLE, and that our MCMLE (β̂m,n = 6.15, σ̂m,n = 1.31) is very close to the
MLE (β̂n = 6.13, σ̂n = 1.33). Using plug-in estimates given by (10), we also ob-
tained a nominal 95% confidence ellipse for the true parameter (the solid ellipse
in Figure 1B). For comparison, we obtained two other confidence ellipses using
the theoretical expected Fisher information and W at the MLE (the dashed ellipse
in Figure 1B) and also at the true parameter (the dotted ellipse in Figure 1B).
Both these exact evaluations took 13 hours, whereas our plug-in estimates took
two and-a-half minutes. Our MCMLE and the MLE are not close to the truth, and
these ellipses are different, indicating that an observed data sample size n = 10 is
too small to apply asymptotics. But our MCMLE is close to the MLE, indicating
that our Monte Carlo sample size m = 104 is good enough for estimating the MLE
for the observed data.

3.3. Simulation for McCulloch’s model. To demonstrate our asymptotic the-
ory, we did a simulation study using the same model with sample sizes n = 500
and m = 100. [We chose these sample sizes so that the two terms that make up the
variance in (4) have roughly the same size.] Figure 2 gives the scatter plot of 100
MCMLE’s. The solid ellipse is an asymptotic 95% coverage ellipse using the the-
oretical expected Fisher information and W . The dashed ellipse is what we would
have if we had very large Monte Carlo sample size m, leaving n the same. The
solid ellipse contains 92 out of 100 points, thus asymptotics appear to work well
at these sample sizes.
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FIG. 2. Sampling distribution of the MCMLE. Hollow dots are the MCMLE’s for 100 simulated
data sets, using sample sizes n = 500 and m = 100. The solid dot is the “simulation truth” parameter
value. The solid curve is the asymptotic 95% coverage ellipse. The dashed curve is what the 95%
coverage ellipse would be if m were infinity.

3.4. The influenza data. Table 1 in [7] shows data collected from 263 indi-
viduals about four influenza outbreaks from 1977 to 1981 in Michigan. Thus the
observed data consist of 263 i.i.d. vectors of length four. Coull and Agresti [7]
used a Logit–Normal GLMM with four-dimensional β and b in (12) and b having
variance matrix

σ 2




1 ρ1 ρ1 ρ2
ρ1 1 ρ1 ρ2
ρ1 ρ1 1 ρ2
ρ2 ρ2 ρ2 1




and reported the MLE as β̂ = (−4.0,−4.4,−4.7,−4.5), σ̂ = 4.05, ρ̂1 = 0.43 and
ρ̂2 = −0.25. Our reparametrization (13) that corresponds to this model has four-
dimensional identity matrix X, four-dimensional β ,

Z =




1 1 1 0 0 0
1 1 0 1 0 0
1 1 0 0 1 0
1 −1 0 0 0 1


 ,
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FIG. 3. Monte Carlo profile log likelihood using m = 106. For each σ , other parameters are max-
imized. The solid dot is the MLE reported by Coull and Agresti [7]. Leftmost point (σ = 0) corre-
sponds to the MLE for the model without random effects.

six-dimensional diagonal matrix � with diagonal elements δ1, δ2, δ3, δ3, δ3, δ3,
and six-dimensional b.

Using a Monte Carlo sample of size 106, we approximated the observed data log
likelihood and found a ridge in the log likelihood surface (Figure 3). (Monte Carlo
sample size 107 gave results identical to three decimal places.) The log likelihood
is strongly curved in directions orthogonal to the ridge but hardly changes along
the ridge. Fisher information is nearly singular because of this ridge. Parameter
values along the ridge (Table 1) vary over a large range, and the bigger σ is the
more extreme the components of β are. This is a surprise because sample size 263
is usually large enough for making inference about seven parameters. Even though
the model is identifiable, it is not clear that asymptotics would hold for any sample
size. Hence some penalized likelihood method should probably be used.

3.5. The salamander data. We use the data in [21], Section 14.5, that were
obtained from a salamander mating experiment and have been analyzed many
times (see [5], for one analysis and citations of others). This example has been
considered difficult to analyze because its likelihood involves a 20-dimensional
integral. We use “Model A” of Karim and Zeger [16], which corresponds to a
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TABLE 1
Parameter values along the ridge of the Monte Carlo log likelihood for the Influenza Data, using
Monte Carlo sample size m = 106. The MLE from [7] is provided in the last row for comparison

σ ρ1 ρ2 β MC log likelihood

1.60 0.79 −0.47 −2.1 −2.3 −2.5 −2.4 −448.717
2.00 0.64 −0.38 −2.4 −2.6 −2.8 −2.7 −448.682
3.00 0.48 −0.28 −3.2 −3.5 −3.7 −3.6 −448.646
4.00 0.43 −0.25 −4.0 −4.4 −4.6 −4.5 −448.635
5.00 0.40 −0.23 −4.8 −5.3 −5.6 −5.5 −448.631
6.00 0.39 −0.22 −5.7 −6.2 −6.6 −6.4 −448.629
4.05 0.43 −0.25 −4.0 −4.4 −4.7 −4.5 −448.646

Logit–Normal GLMM with four-dimensional β and 20-dimensional b in (12)
with two parameters determining the variance of b. The observed data consist of
three i.i.d. vectors of length 120. The MLE given by Booth and Hobert [5] is β̂ =
(1.03,0.32,−1.95,0.99) and σ̂ = (1.18,1.12). Based on Monte Carlo sample size
107, our MCMLE was β̂m,n = (1.00,0.53,−1.78,1.27) and σ̂m,n = (1.10,1.17),
and the standard errors were (0.35, 0.33, 0.36, 0.53) for β̂m,n and (0.20, 0.28) for
σ̂m,n. Our method did not work well for these data, and these standard errors give
a clear indication of the accuracy of our MCMLE.

4. Discussion. We have described a Monte Carlo method to approximate the
observed data likelihood and the MLE when there are missing data and the ob-
served data likelihood is not available in closed form. The MLE converges to the
minimizer θ∗ of the Kullback–Leibler information, which is the true parameter
value when the model is correctly specified. We have proved that our MCMLE is a
consistent and asymptotically normal estimate of θ∗ as both Monte Carlo and ob-
served data sample sizes go to infinity simultaneously. Plug-in estimates of the as-
ymptotic variance are provided in (10) for constructing confidence regions for θ∗.

We have presented the theory so that it can be used for studying model misspec-
ification in missing data models. In practice, a statistical model fθ is often chosen
only for mathematical convenience and may contain simplistic and unrealistic as-
sumptions. However, it is usually possible to simulate i.i.d. data Y ’s from a more
realistic model g. The theory applies whether the Y ’s are a Monte Carlo sample or
real data. In either case we can estimate θ∗ using θ̂m,n and know what accuracy we
have. By comparing f

θ̂m,n
(an estimate of fθ∗ , the “best” approximation to g in the

model) with g, we can assess model validity as whether the particular model is rea-
sonable for approximating the truth or how its simplifying assumptions influence
scientific conclusions.

Our applications to the Logit–Normal GLMM examples illustrate advantages
and disadvantages of our method. First, our method uses ordinary (independent
sample) Monte Carlo, thus is simpler to implement and easier to understand than
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MCMC. Second, it always provides accurate standard errors, and they give a clear
indication of when the method works and how well. MCMC methods require more
careful tuning and do not provide analogous standard errors. MCMC diagnostics
are widely used but give no guarantees, and convergence proofs are very difficult
except for simple applications and are not widely used. Third, our method approx-
imates the likelihood over the entire parameter space. We have seen the advantage
of such likelihood evaluation for the influenza data in Section 3.4. One can assess
whether the likelihood is well behaved so that appropriate inference can be based
on the MLE. The only disadvantage of our method arises from its simple Monte
Carlo scheme. It does not work well with high-dimensional missing data as in the
salamander data in Section 3.5.

Our method is based on sampling from an importance sampling density h.
In theory, we want the optimal h that makes W as small as possible so that the
MCMLE is as accurate as possible. The form of W in (7) says that we want h(x)

to be high where Q∇fθ∗(x|Y) is high. In very simple situations we can find such h

(Sung [27] finds the optimal h for a normal mixture model). In complicated situa-
tions, just as in ordinary importance sampling, one cannot calculate the optimal h

and must proceed by trial and error.
Asymptotic theory analogous to ours does not exist for MCMC. It involves three

quantities: the MCMLE θ̂m,n is a function of both simulated missing data and ob-
served data, the MLE θ̂n (which cannot be calculated exactly) is a function of
observed data only, and θ∗ is the true parameter value. Geyer [12] provides asymp-
totic theory for θ̂m,n − θ̂n conditional on observed data, accounting for only Monte
Carlo variability, not sampling variability. Classical theory of maximum likelihood
provides asymptotic theory for θ̂n − θ∗, accounting for sampling variability. As we
have seen in this article, it is not easy to combine these two sources of variability,
and this has not been tried for MCMC. Our method could be extended so that the
importance sampling density can depend on observed data, which is usually done
in MCMC. We suppose the theory for that would be considerably more compli-
cated than what we have presented here and would be even more complicated for
MCMC.

Even though our original motivation was theoretical, our method does work
in practical examples. The bernor package can be used for analysis of Logit–
Normal GLMM. Our method is applicable to other missing data models.

APPENDIX

A.1. Proof of Theorem 2.2. Let (mk,nk) be a subsequence. We need to show

K ≤ e-lim infk Kmk,nk
≤ e-lim supk Kmk,nk

≤ K,

which is equivalent to

K(θ) ≤ sup
B∈N (θ)

lim inf
k→∞ inf

φ∈B
Kmk,nk

(φ),(14)

K(θ) ≥ sup
B∈N (θ)

lim sup
k→∞

inf
φ∈B

Kmk,nk
(φ),(15)
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where N (θ) is the set of neighborhoods of θ . By condition (1) there is a countable
basis B = {B1,B2, . . .} for the topology of �. Choose a countable dense subset
�c = {θ1, θ2, . . .} by choosing θn ∈ Bn to satisfy K(θn) ≤ infφ∈Bn K(φ) + 1/n.
Let Nc(θ) = {B ∈ B ∩ N (θ) :B ⊂ Bθ ∩ Cθ } where Bθ is given by condition (3)
and Cθ is given by condition (4). Suprema over N (θ) in (14) and (15) can be
replaced by suprema over the countable set Nc(θ).

By Lemma A.1 below

lim sup
k→∞

Kmk,nk
(θ) ≤ K(θ)(16)

for each θ with probability one, and by Lemma A.2 below

lim inf
k→∞ inf

φ∈B
Kmk,nk

(φ) ≥ −Q logP sup
φ∈B

fφ(X,Y )

h(X)g(Y )
(17)

for each B ∈ Nc(θ) with probability one. Since �c and
⋃

θ∈� Nc(θ) are countable
and since a countable union of null sets is a null set, we have (16) and (17) simul-
taneously on �c and

⋃
θ∈� Nc(θ) with probability one. If B ∈ B and θ ∈ B ∩ �c,

then by (16)

K(θ) ≥ lim sup
k

Kmk,nk
(θ) ≥ lim sup

k→∞
inf
φ∈B

Kmk,nk
(φ).

Hence

sup
B∈Nc(θ)

inf
φ∈B∩�c

K(φ) ≥ sup
B∈Nc(θ)

lim sup
k→∞

inf
φ∈B

Kmk,nk
(φ).

The term on the left-hand side is K(θ) by lower semicontinuity of K (Lemma A.3
below) and by the construction of �c. This proves (15). We also have

sup
B∈Nc(θ)

lim inf
k→∞ inf

φ∈B
Kmk,nk

(φ) ≥ sup
B∈Nc(θ)

−Q logP sup
φ∈B

fφ(X,Y )

h(X)g(Y )

= −Q logP inf
B∈Nc(θ)

sup
φ∈B

fφ(X,Y )

h(X)g(Y )

= −Q logP
fθ(X,Y )

h(X)g(Y )
= K(θ),

where the inequality follows from (17), the first equality from the monotone con-
vergence theorem and the second equality from condition (2). This proves (14).

LEMMA A.1. Under condition (5) of Theorem 2.2, Km,n(θ)
a.s.−→ K(θ).

PROOF. Since fθ,m(y)/fθ (y) − 1 = (Pm − P)fθ (·|y)/h(·) by condition (5),

‖fθ,m(·)/fθ (·) − 1‖Y
a.u.−→m 0



1004 Y. J. SUNG AND C. J. GEYER

by Lemma 1.9.2 in [32]. This implies

sup
n∈N

|Km,n(θ) − Kn(θ)| a.u.−→m 0(18)

since Km,n(θ) − Kn(θ) = 1
n

∑n
j=1 log[fθ (Yj )/fθ,m(Yj )]. Since Kn(θ)

a.s.−→n K(θ)

by the strong law of large numbers, the result follows by the triangle inequality.
�

LEMMA A.2. Under conditions (3) and (4) of Theorem 2.2,

lim inf
(m,n)→(∞,∞)

inf
φ∈B

Km,n(φ) ≥ −Q logP sup
φ∈B

fφ(X,Y )

h(X)g(Y )
(19)

with probability one for each subset B of Bθ ∩ Cθ .

PROOF. By condition (3) the term on the right-hand side in (19) is not −∞.
Next

inf
φ∈B

Km,n(φ) = − sup
φ∈B

Qn log Pm

fφ(X,Y )

h(X)g(Y )
≥ −Qn log Pm sup

φ∈B

fφ(X,Y )

h(X)g(Y )
.

By condition (4), for any ε1 > 0 and ε2 > 0, there are measurable A and M ∈ N

such that Pr(A) ≥ 1 − ε1 and Pm supφ∈B fφ(·, y)/h(·)g(y) ≤ P supφ∈B fφ(·, y)/

h(·)g(y) + ε2 for all m ≥ M and y ∈ Y uniformly on A. Hence

inf
φ∈B

Km,n(φ) ≥ −Qn log
{
P sup

φ∈B

fφ(X,Y )

h(X)g(Y )
+ ε2

}

for all m ≥ M and y ∈ Y uniformly on A. By the strong law of large numbers on
the right-hand side, there are measurable B and N ∈ N such that Pr(B) ≥ 1 − ε3
and

−Qn log
{
P sup

φ∈B

fφ(X,Y )

h(X)g(Y )
+ ε2

}
≥ −Q log

{
P sup

φ∈B

fφ(X,Y )

h(X)g(Y )
+ ε2

}
− ε4

for all n ≥ N uniformly on B . Hence

inf
φ∈B

Km,n(φ) ≥ −Q log
{
P sup

φ∈B

fφ(X,Y )

h(X)g(Y )
+ ε2

}
− ε4

for all m ≥ M and n ≥ N uniformly on A ∩ B . We are done since the ε’s were
arbitrary. �

LEMMA A.3. Under conditions (2) and (3) of Theorem 2.2, K is lower semi-
continuous.
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PROOF. Let θ be a point of � and {θk} a sequence in � converging to θ . Then

lim sup
k→∞

Q log
fθk

(·)
g(·) ≤ lim

n→∞Q logP sup
k≥n

fθk
(X,Y )

h(X)g(Y )

= Q logP lim sup
k→∞

fθk
(X,Y )

h(X)g(Y )
,

where the equality follows from the monotone convergence theorem by condi-
tion (3). Also,

lim inf
k→∞ K(θk) ≥ −Q logP lim sup

k→∞
fθk

(X,Y )

h(X)g(Y )
≥ −Q logP

fθ(X,Y )

h(X)g(Y )
= K(θ),

where the last inequality follows from condition (2). �

A.2. Proof of Theorem 2.3. If we define

Dm,n =
∫ 1

0
∇2Km,n

(
θ∗ + s(θ̂m,n − θ∗)

)
ds,(20)

then by Taylor series expansion

∇Km,n(θ̂m,n) − ∇Km,n(θ
∗) = Dm,n(θ̂m,n − θ∗).

If we show (
V

n
+ W

m

)−1/2

∇Km,n(θ
∗) L−→ N (0, I ),(21)

then since Dm,n
P−→ J by Lemma A.6 below, eventually D−1

m,n will exist, and by
Slutsky’s theorem(

V

n
+ W

m

)−1/2

J (θ̂m,n − θ∗) = −
(

V

n
+ W

m

)−1/2

JD−1
m,n∇Km,n(θ

∗) + op(1)

L−→ N (0, I ).

If we prove (21) under the condition n/(m+n) → α, the subsequence principle
gives us (21) without this condition. If 0 < α < 1, then (m + n)(V/n + W/m) →
V/α + W/(1 − α). Since

∇Km,n(θ
∗) = −Qn∇ logfθ∗(Y ) − Qn∇ log Pmfθ∗(X|Y )/h(X),

we have
√

m + n∇Km,n(θ
∗) L−→ N (0,V/α + W/(1 − α)) by Lemma A.4 below,

and in turn we have (21) by Slutsky’s theorem. The α = 0 and α = 1 cases are
similar.

LEMMA A.4. Under conditions (1) through (3), (5) and (6) of Theorem 2.3,( √
nQn∇ logfθ∗(Y )√

mQn∇ log Pmfθ∗(X|Y )/h(X)

)
L−→ N

(
0,

(
V 0
0 W

))
.(22)



1006 Y. J. SUNG AND C. J. GEYER

PROOF. By condition (5), Pm
a.u.−→ P in l∞(F2) and by condition (6), Gm

L∗−→
GP in l∞(F3), where Gm = √

m(Pm − P) and GP is a tight Gaussian process in
l∞(F3) with zero mean and covariance function E(GP f · GP g) = Pfg −Pf Pg.

By Slutsky’s theorem ([32], Example 1.4.7), (Pm,Gm)
L∗−→ (P,GP ) in D =

l∞(F2) × l∞(F3).
By the almost sure representation theorem ([32], Theorem 1.10.4 and Adden-

dum 1.10.5), if (�,A,Pr) is the probability space where Pn are defined (Pr can
be P ∞), there are measurable perfect functions φm on some probability space
(�̃, Ã, P̃r) such that the following diagram commutes

�
(Pm,Gm)

D

�̃

φm

(P̃m,G̃m)

and Pr = P̃r ◦ φ−1
m and (P̃m, G̃m)

a.s.∗−→ (P̃∞, G̃∞) in D, where (P∞,G∞) =
(P,GP ) and (P̃∞, G̃∞) = (P̃ , G̃P ). Hence for almost all ω̃, supy∈Y |(P̃m −
P̃ )(ω̃)fθ∗(·|y)/h(·)| → 0 and supy∈Y |(G̃m − G̃P )(ω̃)∇fθ∗(·|y)/h(·)| → 0. By
the uniform continuity of (s, t) �→ t/s on [s0,∞) × R with s0 > 0

sup
y∈Y

∣∣∣∣G̃m(ω̃)∇fθ∗(·|y)/h(·)
P̃m(ω̃)fθ∗(·|y)/h(·) − G̃P (ω̃)∇fθ∗(·|y)/h(·)

∣∣∣∣ → 0.(23)

If we define

k(ω, y) = GP (ω)∇fθ∗(·|y)/h(·),(24)

and show y �→ k(ω, y) is bounded and continuous for almost all ω, then the second
term on the left-hand side in (23) [which equals k̃(ω̃, ·) = k(φ∞(ω̃), ·)] is bounded
and continuous for almost all ω̃. By Lemma A.5 below, Qn(η)G̃P (ω̃)∇fθ∗(X|Y)/

h(X) → QG̃P (ω̃)∇fθ∗(X|Y )/h(X) for almost all η and ω̃, and this with (23)
leads to

√
mQn(η)∇ log P̃m(ω̃)∇fθ∗(X|Y )/h(X) → QG̃P (ω̃)∇fθ∗(X|Y )/h(X)(25)

for almost all η and ω̃. Even though first m → ∞ and then n → ∞, the limit can
be shown to be the same (by a triangle inequality) no matter how m and n go to
infinity because of the uniformity in (23).

The function y �→ k(ω, y) is bounded since supy∈Y |k(ω, y)| =
‖GP (ω)‖F3 < ∞ from GP (ω) ∈ l∞(F3). Every subscript i refers to the ith coor-
dinate in Rd . For almost all ω, the sample path f �→ GP (ω)f is ρ-continuous
on F3i ([32], Section 1.5), where ρ(f, g) = {P(f − g)2}1/2. The function
y �→ [∇fθ∗(·|y)/h(·)]i from Y to (F3i , ρ) is continuous by condition (2) and
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the dominated convergence theorem applied to ρ([∇fθ∗(·|yn)/h(·)]i , [∇fθ∗(·|y)/

h(·)]i )2 ≤ 4P(F 2
i ) < ∞ with yn → y and F in condition (6). The function

y �→ ki(ω, y) is a composition of the two continuous functions, hence continu-
ous, for almost all ω.

By the central limit theorem
√

nQn∇ logfθ∗(Y )
L−→ N (0,V ), and if (H,B,

Qr) is the probability space where Qn are defined (Qr can be Q∞), there is an
almost sure representation for this with commutative diagram

H
Qn

Rd

H̃

ψm

Q̃n

and Qr = Q̃r ◦ ψ−1
n . If we combine this representation with (25),( √

nQ̃n(η̃)∇ logfθ∗(Y )√
mQ̃n(η̃)∇ log P̃m(ω̃)∇fθ∗(X|Y )/h(X)

)

→m,n

(
Z(η̃)

QG̃P (ω̃)∇fθ∗(X|Y )/h(X)

)
for almost all η̃ and ω̃, where Z(η̃) is N (0,V ). In this representation, it is clear that
the two terms on the right-hand side, being functions of independent random vari-
ables, are independent. This almost sure convergence implies weak convergence,
and undoing the almost sure representation gives( √

nQn∇ logfθ∗(Y )√
mQn∇ log Pm∇fθ∗(X|Y )/h(X)

)
L−→m,n

(
Z

QGP ∇fθ∗(X|Y )/h(X)

)
.

We are done if we show that the second term on the right-hand side is N (0,W).
Let T = QGP ∇fθ∗(X|Y )/h(X). Note T (ω) = Qk(ω, ·) with k in (24). By

condition (2) there is a sequence {Qi} of probability measures with finite sup-

port such that Qi
L−→ Q ([1], Theorem 14.10 and Theorem 14.12). Let Ti(ω) =

Qik(ω, ·). Then Ti(ω) → T (ω) for almost all ω because y �→ k(ω, y) is bounded
and continuous for almost all ω. Since GP is a Gaussian process, Ti is normally
distributed. By condition (6), (y, s) �→ E[k(·, y)k(·, s)T ] is bounded and continu-
ous by the dominated convergence theorem. Hence varTi → varT , and by Fubini
the limit equals W . Now for any t ∈ Rd exp(−tT (varTi)t/2) → exp(−tT Wt/2).

Hence Ti
L−→ N (0,W) and T ∼ N (0,W). �

LEMMA A.5. Under condition (2) of Theorem 2.3, Qn
L−→ Q almost surely.

PROOF. Let B be a countable basis for Y and A be the set of all finite intersec-
tions of elements of B (also countable). For each A ∈ A we have Qn(A) → Q(A)
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by the strong law of large numbers. Hence, a countable union of null sets being a
null set, this holds simultaneously for all A ∈ A. The result follows since A is a
convergence determining class ([4], Theorem 2.2). �

LEMMA A.6. Under conditions (4) through (8) of Theorem 2.3, Dm,n
P−→ J ,

where Dm,n is defined by (20) and J in condition (3) of Theorem 2.3.

PROOF. First note

|Dm,n − J | ≤
∫ 1

0

∣∣∇2Km,n

(
θ∗ + s(θ̂m,n − θ∗)

) + Q∇2 logf
θ∗+s(θ̂m,n−θ∗)(Y )

∣∣ds

+ sup
0≤s≤1

∣∣Q∇2 logf
θ∗+s(θ̂m,n−θ∗)(Y ) − Q∇2 logfθ∗(Y )

∣∣.
By condition (4), Q∇2 logfθ (Y ) is continuous on Sρ ([9], page 110). Hence the
second term on the right-hand side converges in probability to zero by the weak
consistency of θ̂m,n. The first term on the right-hand side will also converge in
probability to zero because for any ε > 0

Pr
(∫ 1

0

∣∣∇2Km,n

(
θ∗ + s(θ̂m,n − θ∗)

) + Q∇2 logf
θ∗+s(θ̂m,n−θ∗)(Y )

∣∣ds > ε

)
(26)

≤ Pr(θ̂m,n /∈ Sρ) + Pr
(

sup
θ∈Sρ

|∇2Km,n(θ) + Q∇2 logfθ (Y )| > ε

)
,

if we show the second term on the right-hand goes to zero. Note ∇2Km,n(θ) =
−Qn∇2 logfθ(Y ) − QnWm(θ,Y ) where

Wm(θ, y) = Pm∇2fθ (·|y)/h(·)
Pmfθ(·|y)/h(·) − {Pm∇fθ(·|y)/h(·)}{Pm∇fθ (·|y)/h(·)}T

{Pmfθ(·|y)/h(·)}2 .

By condition (4), supθ∈Sρ
|Qn∇2 logfθ (Y ) − Q∇2 logfθ (Y )| a.s.∗−→ 0. Hence the

second term on the right-hand side in (26) will go to zero, if we show

supθ∈Sρ
|QnWm(θ,Y )| a.s.∗−→ 0.

By condition (7)

sup
θ∈Sρ

sup
y∈Y

|Pm∇2fθ (·|y)/h(·)| a.s.∗−→ 0.(27)

Expanding Pm∇fθ(·|y)/h(·) as

Pm∇fθ(·|y)/h(·) = Pm∇fθ∗(·|y)/h(·)
+

∫ 1

0
Pm∇2fθ∗+s(θ−θ∗)(·|y)/h(·)(θ − θ∗) ds
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leads to, for any θ ∈ Sρ ,

sup
y∈Y

|Pm∇fθ(·|y)/h(·)| ≤ sup
y∈Y

|Pm∇fθ∗(·|y)/h(·)|

+ sup
θ∈Sρ

sup
y∈Y

|Pm∇2fθ (·|y)/h(·)|ρ.

The first term on the right-hand side converges almost surely to zero because F3
is P -Glivenko–Cantelli from being P -Donsker [condition (6)]. Since the second
term on the right-hand side also converges almost surely to zero by (27),

sup
θ∈Sρ

sup
y∈Y

|Pm∇fθ(·|y)/h(·)| a.s.∗−→ 0.(28)

With condition (5) and (28), supθ∈Sρ
supy∈Y |Pmfθ(·|y)/h(·) − 1| a.s.∗−→ 0, and

this, (27) and (28) imply supθ∈Sρ
supy∈Y |Wm(θ, y)| a.s.∗−→ 0. We are done because

supθ∈Sρ
|QnWm(θ,Y )| ≤ supθ∈Sρ

supy∈Y |Wm(θ, y)|. �
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