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BOOTSTRAP PROCEDURES UNDER SOME NON-LLD. MODELS!

By RecINA Y. Liv
Rutgers University

It is shown in this article that the classical i.i.d. bootstrap remains a
valid procedure for estimating the sampling distributions of certain symmet-
ric estimators of location, as long as.the random observations are indepen-
dently drawn from distributions with (essentially) a common location. This
may be viewed as a robust property of the classical ii.d. bootstrap. Also
included is a study of the second order properties of a different bootstrap
procedure proposed by Wu in the context of heteroscedasticity in regression.

1. Introduction. The bootstrap resampling procedure is known to be a good
general procedure for estimating a sampling distribution under i.i.d. models.
[See, e.g., Efron (1979), Bickel and Freedman (1981) and Singh (1981).] In
practical situations the i.i.d. setup is often violated, and so it is natural to
wonder how the bootstrap performs under non-ii.d. models. In this article we
focus particularly on the bootstrap procedure under (essentially) two models: (i)
X,,..., X, are independent observations drawn from distributions G,,...,G,
with a common mean or a common center of symmetry but not necessarily
identical. (ii) The simple regression model Y, = Bx;, + e, i =1,..., n, where
Var(e;)’s are possibly different.

For motivation, consider the following two practical examples for which model
(i) arises naturally.

EXAMPLE 1. Suppose n measurements of a certain object are taken using a
number of different instruments by personnel with varying skills. However, the
collected data do not take into account the different instruments and personnel.

ExaMPLE 2. Suppose in a given produce line the quality of the product
varies over time due to some deterministic or random factors. As a result the
variance of a certain measurement of the output does not necessarily remain the
same.

With regard to model (i), we are asking the specific question: Suppose we
choose one of the standard estimates for location, e.g., the mean, the median, a
trimmed mean or the average of a few quantiles, and then apply the classical
bootstrap based on i.i.d. samples from the empirical population to estimate the
sampling distribution of the chosen estimate. Are the results still asymptotically
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correct? Interestingly enough, the answer is yes, even though the classical
bootstrap does not seem intuitively appropriate here for the simple reason that
the original data are not ii.d. while the bootstrap still draws i.i.d. samples.
Moreover, this “incorrect” bootstrap not only captures the first order limit, but
also retains the second order asymptotic properties in the case of the sample
mean. In the next paragraph we provide a brief explanation for this phenome-
non, which represents a robust property of the bootstrap.

Throughout the paper we use the notation ~, to indicate the average of the
elements - .s *n, for example, G = (1/n)Z? 1G The result that the asymp-
totic propertles of the classical bootstrap still hold under model (i) is primarily a
consequence of the simple probabilistic identity Var(X,) = Var({,), where {£;}
are taken to be i.i.d. random variables having c.d.f. G, while assuming that G,’s
have the same mean. Since the empirical distribution function F,, based on the
X;’s well approximates G,, typically at the rate O,(n~'/?), the classical boot-
strap which draws samples for F,, should correctly estimate the standard error of
¢, which equals the standard error of X ,. Thus, the problem bas1cally does not
reflect the difference between the stationary model (G, X --- XG,) and the
nonstationary model (G, X --- XG,). This observation also extends to symmet-
ric L-statistics (linear combinations of order statistics). Using a representation
similar to the ones derived in Babu and Singh (1984) and Liu, Singh and Lo
(1986), we note that bootstrapping symmetric L-statistics is mathematically
equivalent to bootstrapping a sample mean whose component variables are of
mean 0, provided that the underlying distributions are all symmetric about a
common center.

The claim made previously regarding the second order asymptotic properties
is established by examining the formal one-term Edgeworth expansions for both
the original sampling distribution and the bootstrap distribution. Details are
given in later sections.

As for the regression problem with Var(e;) = 02 mentioned in (ii), we search
for modifications of the classical bootstrap procedure which provide consistent
results regardless of the nonidentical error variances. Partial success has been
achieved in this search. In particular, we have found the bootstrap procedure
proposed by Wu (1986) useful. In this procedure i.i.d. observations are drawn
from an external population (having mean 0 and variance 1) which is totally
unrelated to the original data set. We devote Section 4B to the issue of second
order asymptotic properties of this procedure. The main discovery is that if the
external population, in addition to having mean 0 and variance 1, also has its
third central moment equal to 1, then Wu’s bootstrap shares the usual second
order asymptotic properties of the classical bootstrap.

The rest of the article is organized as follows: In Section 2, we study the
bootstrap distributions of the studentized as well as the nonstudentized statistics
based on X, under model (i). In Section 3, we extend the first order results
obtained for the classical bootstrap in Section 2 to a class of symmetric L-statis-
tics. In the last section, besides studying Wu’s bootstrap procedure in the
regression problems, we also use this bootstrap to provide a competing alterna-
tive for bootstrapping the mean (Section 4A).
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2. The classical bootstrap on X,. Throughout Sections 2 and 3,
{Y,...,Y,} indicates a bootstrap sample which is formed by drawing an i.i.d.
sample of size n from F,, where F, is the empirical d.f. based on X,,..., X,.
Recall that G, is the c.df. of X, i =1,..., n.

THEOREM 1. Let X,,..., X,, be a set of independent random observations
and let p; and o? denote, respectively, the mean and the variance of X,
i=1,...,n. Also let vI=(1/n)Xr0? and V2= (1/n)I (X, - X)) If (i)
lim,_, 1/n)Cr (p; — B,)2 =0, (i) liminf,_ _»2>0 and (ii) E|X;?* <
K < oo, for some 8§ > 0 and for all i, then

lim ||P*(y/r_z(l7n - fn) < x) - P(w/;(fn - ﬁn) < x)llw =0 a.s.
n— oo

(P* stands for the bootstrap probability and || ||;, stands for the sup-norm
over x.)

The proof of Theorem 1 uses a modified version of Marcinkiewicz—Zygmund
SLLN (strong law of large numbers) which we state in

LEMMA 1. Let W, W,,... be independent random variables with
E\W,|”*¢ < K for some p,0 <p <2, and ¢ > 0. Then
n
(2.1) n P Y (W,-—a,)->0 a.s.,

i=1

where a; = EW, if p > 1 and a; = 0 otherwise.

ProoF. The proof is sketched here only for p < 1. Arguments for the other
case should be similar. Note that by Kronecker’s lemma, (2.1) follows from

0
(2.2) Y n"VPW, < 0 as.

n=1
To obtain (2.2) we first concentrate on the truncated random variables 7T, =
n=YPW, Iy < »») and show that ©2_, E|T,|* < oo, which in turn implies that
2 (T, — ET,) < oo as. Since X2_,P(n"VPW, # T,) < o0, by Markov’s in-

equality it suffices to show that ¥2_,|ET,| converges. This is clearly implied by

n=1

the assumption E|W,|?*¢ < K, for all n.O
PROOF OF THEOREM 1. Writing
12 =2
‘/;12_1’3:; Z [(Xi_""i+”i_”n+“n_xn) _ai2]’
i=1

and using Lemma 1 as well as condition (i), we immediately see that V;2 — »2 — 0
a.s. Therefore, the result follows if we prove both

1P(Vn (X, = Bp) /v < 2) = @(2)ll, — 0
and

I1P*(V (Y, - X,)/V, < x) = @(2)ll, > 0 ass,
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as n = oo, where ®(-) indicates the c.d.f. of a standard normal distribution. The
former part is an immediate consequence of the central limit theorem. To show
the latter, we first apply the Berry—-Esseen theorem to obtain

I1P*(Vr (Y, - X,)/V, < x) — ®(x)|l, < cV; 20" V2E*Y, - X3,

for some constant ¢ > 0. Note that the right-hand side does not exceed
4cV, 3n~VH E*Y,? + | X,,)?). Since E*|Y;® = 1/n)X™,|X,|°, we only need to
show that n=%2%" ||X;|> - 0 as. This indeed follows by Lemma 1 if we let
p=2/3.0

REMARK. It is apparent from the proof that the condition (i)
(1/n)Z™ (p; — B,)? — 0 is necessary for the consisteney result in Theorem 1. It
also seems unlikely that without this condition one can place an asymptotically
correct error bound on the estimate X, for ,,.

We now proceed to examine whether the second order asymptotic properties
of the classical bootstrap are retained under model (i). Let us set aside the
validity of the one-term Edgeworth expansion for a later discussion. If we
assume that the expansion does exist, we will see that the bootstrap still corrects
the skewness term. To elaborate this point, we consider the nonstudentized and
the studentized cases separately. For the nonstudentized case, the formal
Edgeworth expansions, if they exist, should be

P(Vn (X, - i) <)
o) 8 )
P(n(Y,- X,) <x)

x K, [x? x )
-_— — — emmmme—— ] — — _— _/2 e
%) sv,.%(wf 1)¢(m)*°"‘ ) e

where fi; , = (1L/n)E% Eg(X; — p,)’, Ky=(@1/n)Ei (X, - X,)* and ¢(-) =
@'(-). It is easy to see that the skewness terms are matched if

(2.3)

!lg

(2.4)

(2.5) Ky—fi;,—>0 as.asn— oo.

This holds if we assume that E|X,**® <K < o for some 8 >0 and
n~'Z |p; — B,|% = 0. To prove this, one only needs to incorporate the preced-
ing assumptions into the proof of Theorem 1. (The homogeneity conditions on u,
in terms of the second and the third moments may appear artificial. In practice
they ought to be interpreted as saying that the population means are essentially
the same.) Note that in this nonstudentized case the leading terms themselves do
not match. This phenomenon of partial n~!/%term correction of the bootstrap
has been studied in Liu and Singh (1987).
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As far as the studentized case is concerned, the formal Edgeworth expansions,
if they exist, should be

(2.6) P(JE X"; L x) =0(x) + »/_ (2x% + 1)¢(x) + o(n™1/?)

n

and

Y, - X,
P*(w/r_t- v < x)
(2.7) \

= (x)+ ‘/_

where V,*2 = n7'X2_ (Y, — Y,)? the variance of the bootstrap sample. In anal-
ogy thh the nonstudentized case, we need condition (2.5) to obtain the correc-
tion of skewness term by the bootstrap. Note also that both leading terms in
(2.6) and (2.7) are identical. Thus, there is a total n~'/%-term correction by the
bootstrap in the studentized case. [See Liu and Singh (1987) for “total correc-
tion.”]

We now turn to the issue of validity of the expansions (2.3), (2.4), (2.6) and
@2.7).

(2x2+ o(x) + o(n"?) as,,

THEOREM 2. (i) The expansions (2.3) and (2.4) hold under conditions (a), (b)
and (c):

(a) There exists a nonlattice distribution H with mean 0 and variance 1, and a
sequence k, with k,/logn — oo, such that k, of the population G;’s are of
the form G,(x) = H((x — p;)/0;) with the o;’s bounded away from 0.

(b) E|X,3*% < M < oo for some 8, > 0.

(¢) liminf ,_, _ »2> 0 and (1/n)L™ (p; — B,)? = o(n~?).

(ii) The expansions (2.6) and (2.7) will hold if, in addition to (a), (b) and (c),
we also assume that H is continuous and E|X;|°*® < M, < c for some § > 0.

ProoOF. The proof for the nonstudentized case (2.3) and (2.4) is along the
same lines as the proof for the case of i.i.d. mean given in Feller (1971). In
extending the one-term Edgeworth expansion to the non-ii.d. case, the main
difficulty lies in showing that
n

1 ]
L nomea 0875 )

for any 0 < ¢ < M, where y;(n) = Eexp[zn(X p;)]. Hence it suffices to show
that

3

dn = o(n"V?)

= o(n"12),

l—[tP,('n)

Jj=1

sup
e<n<M

which is clearly implied by condition (a).



BOOTSTRAP PROCEDURES UNDER NON-LI.D. MODELS 1701

Similar arguments apply to the bootstrap part (2.4). We only need to show
that

(2.8) sup [¥x(m)]" = o(n7'?) as,

e<n<M
where Y (1) = Eg{exp[in(Y;, — )?n)]}. Note that by definition
1z -
*(n) = — e MX;j—Xn),
va(n) = ,2

If we assume, wlog, that the first £, of G, are of the form G;(x) = H((x — u,)/09;),
then

n—k
n

n

1 %
’k— Z e %i| 4

n j=1

ky
OTER

Since the first %, of the o;’s are bounded away from 0, we have

)
inX;
sup |- ZEGje il<p<1
e<n<M|™n j=1 .

for some p > 0. Now (2.8) is a consequence of

) 1 o x 1-p
lim sup |— Y (% — Ege™ f) < as.
n-—» oo ES'ﬂSM kn j=1 J 2

To establish this, we begin by bounding the supremum by the maximum over n?
equidistant points with a remainder term of O(n~!). We then use an exponential
bound together with Bonferroni’s inequality to show that the probability for the
maximum to exceed (1 — p)/2 is n20(e~%~) for some & > 0. Since &,/logn - oo,
the result follows from the Borel-Cantelli lemma.

For the studentized case, we follow the procedure in Babu and Singh (1983)
for proving the validity of the one-term Edgeworth expansion. The statistic
Vn(X, - §,)/V, can be written as a function of two normalized means
Vn(X, - &,) and Vn[n 'ZP (X, — p;)? — 2], with a remainder term which
is negligible for the expansion. The remainder term can be handled using con-
dition (c). The moment condition E|X,®*® < M, is used to guarantee that
the (3 + 8,/2)th moment of the vector (X;, X?) be bounded. The continuity of H
implies that the vector (X, X?) is nonlattice. The extra work needed due to the
non-i.i.d. structure is similar to that for the nonstudentized case, and is thus
omitted. O

It may be worth mentioning that condition (a) is weaker than the following
simple condition: There exists a §, 0 < & < 1, such that [8n] of the underlying
distributions {G,} are the same and the common distribution is nonlattice. This
is the case of Example 1, where the observations are not identically distributed
simply because k different instruments are used for measuring.
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We remark here that Section 4A provides an alternative bootstrap procedure
in estimating a common mean in contrast to the classical bootstrap procedure
discussed in this section.

3. The classical bootstrap on symmetric L-statistics. Our main objec-
tive in this section is to assert the following fact without giving complete
mathematical details: As far as the first order limit is concerned, bootstrapping
symmetric L-statistics when the underlying distributions are symmetric around
a common center is equivalent to bootstrapping a sample mean when the
underlying populations have a common mean. Besides the examples given in the
Introduction, we mention here a natural setup under which the theory for
symmetric L-statistics presented in this section is applicable.

ExXAMPLE 3. Let
T,=Bx;+e

be a simple regression model, where x;’s are known nonzero numbers and e;’s
have a common symmetric distribution centered at 0. It is natural to consider
the class of estimators of 8 consisting of symmetric L-statistics based on the
ratios X; = T,/x,, i = 1,..., n. The distributions of X;’s clearly have 8 as their
common center of symmetry but otherwise they are different. The results of this
section will establish that the bootstrap which draws i.i.d. samples from the
empirical d.f. formed by X;’s is consistent for this class of estimators of B.

The subsequent discussion hinges on Theorem 3, which is a variation of the
Bahadur-Kiefer representation of quantiles. We omit the proof of the theorem
because it follows the standard techniques used for proving the representation.
See, for example, Babu and Singh (1984) for the key steps involved in the proof.

Define, for a cdf. H, H™(t)=inf{x: H(x)>t}. Let F, , denote the
empirical d.f. based on a bootstrap sample Y,,..., Y, and recall that F, is the
empirical d.f. based on X,,..., X,.

THEOREM 3. For some 0 < a < 8 <1 and ¢ > 0, assume that (7,, is twice
differentiable on [G,(a) — ¢, G, (B) + €], where both the derivatives are
bounded above and the first derivative is bounded away from 0. Let g, , =
G(G;(t)). Then

supﬁlF,,‘l(t) = G;(¢) + [F(G;\(¢)) - t] /8,..| = O(n~**(log n)**) a.s.

asit<

and
sup ﬁlﬂi‘t(t) - F;\(t) + [F, (G Y(t)) - F(G; (1)) /.,

a<st<
= Op*(n‘3/4(log n)3/4) a.s.,

where Oy stands for O, under the bootstrap probability.
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We would like to point out that unlike in the i.i.d. case, one cannot prove the
result for the U[0,1] population and then extend it to a general c.d.f. by the
standard quantile transformation since G;’s are allowed to be different here.
Therefore, one should directly work with the general G;’s.

Let B=1—a, a <1 and W be a cdf. on [a,1 — a] which is symmetric
around 1. Suppose G,’s are all symmetric about a common center 6. If we define

L= [TF7(2) aw(z)

and
Ly = [TFL (1) aw(e),
then Theorem 3 immediately implies
COROLLARY 1. Under the conditions given in Theorem 3,

1 n
= g Z (X,) + 0(n=**(log n)**) a.s.

and
Li—Ln= %Elga(Y) - _I'E‘ t5(X,) + OF (n~*(log n)”*) a.s.,
where
to(X) = - [0

a gn,t

This demonstrates that bootstrapping L, — 6 is mathematically equivalent to
bootstrapping the sample mean E(—;—n, treating {{z(X,)} as the original data
instead of {X;} themselves. The crucial point that remains to be checked is

E;é5(X;) =0 foreachi=

Note that
o r1-alxs@iiey ~ ¢
&#dXJ=—L [ = dW(t) dGy(=).

n,t

Interchanging two integrals and then integrating the inner part, we are left with

1-a Gi(G (1)) — ¢
Egés(X,) = - j; 7.
Now, we break the integral into two parts: [;/%+ + [}5*+, and write this as
(I) + (I). Note that the assumed symmetry of G;’s around 0 implies that G, is

also symmetric around 6. Applying the symmetry propertles of G;’s, G, &n, and
W together, we obtain at once that (I) = —(II).

dw(t).
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As a direct consequence of Corollary 1, the consistency of the bootstrap for
estimating the distribution of L, — 6 can be stated immediately. The proof is
based on the representations in Corollary 1 which clearly establish the equiva-
lence of bootstrapping L, — 6 and bootstrapping a sample mean.

THEOREM 4. Under the conditions given in Theorem 3 and the condition
that liminf, , (1/n)L}_Var {5(X,) > 0, we have

lim \P*(Vn (Lt - L,) <x) - P(Yn(L,— 8) <x)||, =0 a.s.

There are many commonly used statistics which belong to the class of
L-statistics we considered. As examples, we mention the sample median, the
hinged mean (the average of the first and the third quartiles), the (symmetri-
cally) trimmed mean [dW(f) = dt/(1 —2a) for a <t <1 - «] and the
Winsorized means [W(¢) puts mass a« at ¢t =a and £t =1 — a and dW(¢) = dt
for a < ¢ <1 — a]. It is also worth noting that our theory can be applied in
obtaining an adaptive trimmed mean, which selects from finitely many trimming
proportions on the basis of estimated s.e.’s (standard errors). In other words, we
can use bootstrap to estimate the s.e.’s of several trimmed means with different
trimming proportions and select the oné with the smallest estimated s.e.

We conclude this section with the remark that the classical bootstrap remains
valid under the nonexchangeable models considered here for all location estima-
tors which, after being centered, can be represented as a sample mean, provided
that each summand in the sample mean has expectation 0. This includes, for
example, M-estimators with symmetric weight functions.

4. Wu’s bootstrap and regression problems.

A. Estimating a common mean. We begin by using the idea of the weighted
bootstrap in Wu’s (1986) regression to construct a bootstrap procedure in the
context of estimating a common mean (or almost so) from possibly different
distributions. Let
(+) Yi=Xn+ (Xi_Xn)ti’ ]
where ¢,,..., t, are ii.d. random variables with mean 0 and variance 1 and are
chosen completely independent of data X;’s. The distribution of X; has mean p;
and variance o?. The p,’s are “roughly” the same while the o?’s are possibly
different. The random variables Y},...,Y, form a bootstrap sample. For each i,
i=1,...,n, Y, has the same mean X, and the variance Var(Y}) = (X; — X,,)%
which in its own right is an estimator of o2 Thus, the bootstrap sample
constructed from (+) in essence reflects the heteroscedasticity of the original
data. It is therefore natural to expect that this bootstrap will provide a consis-
tent procedure for estimating the sampling distribution of X, and it will also
spossess the second order property (one-term Edgeworth correction) of the classi-
cal bootstrap, under possibly some further conditions on ¢, More precisely, we
state Theorem 5 to establish the consistency of this bootstrap procedure and we
examine the n~!/%term correction phenomenon afterward.
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THEOREM 5. If E|t|® < 0, E|X;|?*® < K < 0, for some § >0 and i =
1,...,n, liminf, ,  n"'Y" 02 > 0 and lim,_, (1/n)X7_ (p; — i,)% = 0, then

nli_’n:o"P*(\/rT(l_/n - fn) < x) - P(‘/E(Xn - ﬁn) < x)||°o =0 a.s.

The proof is very similar to that of Theorem 1. The condition E|¢t;|® < co can
be relaxed to E|t;|2*® < oo, for some § > 0, by using a more general version of
the Berry—Esseen bound.

To study the second order asymptotics of this particular bootstrap procedure,
we need to consider E,(Vn (Y, — X,))?, where E, stands for the expectation w.r.t.
t’s treating X,’s as fixed numbers (i.e,, the conditional expectation given
X, ..., X,). Note that

[é( )]3 }::(x X,)VEe,
Thus, if Et3 = 1,
E,(m(?,, -X,)) - n—w[% ¥ (X, - Xn)?’},

i=1

which is n™12n~1L7 b, + o(n” 1/2) assummg that E|X?"® < K < oo for
some 8 > 0 and for all i. This last expression is equal to E[n"? (X, — i,)]® +
o(n™1?%) if n7'L™ |u; — B,)* = 0. Therefore the skewness term in the formal
Edgeworth expansions will match if the ¢;’s have third central moment equal to
1, besides having mean 0 and variance 1. Moreover, similar calculations show
that if Et? =1, then the first three cumulants of the studentized statistics
Vn(X,-£,)/V, and Vn(Y,— X,)/V,* (conditional on X;), where V* =
[n~Z2 (Y, — Y,)?]/2 match up to o(n~'/?). Consequently, there is a total
n~'/2.term corrections by the bootstrap in this case. We keep the discussion brief
here because similar phenomena have been discussed in detail in Section 2.

Regarding the n~!/%term correction by the bootstrap, the n~'/%term is
automatically missing in the expansion if the original population is assumed to
be symmetric. Thus we would like to correct the next term, namely the n~!-term,
in the expansion of the studentized mean. Similar calculations reveal that the
condition for this is to require the first four moments of ¢; to be 0, 1, 0 and 1,
respectively. The only distribution that satisfies this requirement is the two
points distribution P(¢, = 1) = P(¢, = —1) = }, which is a lattice distribution.
This choice of ¢; makes even the existence of one-term Edgeworth expansion for
the statistics based on Y;’s unlikely.

The issue of the validity of Edgeworth expansions for the studentized or
nonstudentized statistics based on Y, itself poses interesting probablhstlc ques-
tions. We focus on the nonstudentlzed case, i.e., Vn (Y X ). In view of the
arguments in Feller [(1971), Chapter 16, Section 4], we know the main difficulty
is to establish that

(4.1) sup nEtexp(tn(X X) ) =o(n"%) as.

e<n<M|J
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Suppose that the ¢;’s satisfy Cramér’s condition, so that
(4.2) limsup Ee™ < 1.

[nl— o0
(Note that this condition makes it unnecessary to worry about the cases when
|X; — X,| gets too large.) Then it suffices to have &, of the | X; — X,|'s be greater
than some positive number 80 where k,/logn — co. Assume E|X,|**® < K for
all i. If liminf, , (1/n)X" 62 > 0, then liminf,_ (1/n)2", (X, - X,)2=m
a.s. for some m > 0. Using the Markov and Bonferroni inequalities, we conclude
that

P( [pax | X, > Vn /(log n)) = 0(n~1-%72),

Thus we may assume that for a given sequence of- X;’s, max, _; . ,|X; — X, <
2Vn /(log n) for all large n. Suppose , of the | X; — X, ['s are less than &,. Then

182+ 4(n—1)n/(logn)’ > n(m/2)
for all large n a.s. This inequality implies
(n —1,) > constant - (log n)?,

which guarantees that k,/logn — oo (a.s.). This observation together with
condition (4.2) amounts to condition (4.1).

B. Regression. Consider now the simple linear model Y, = Bx; + e;, where
x;’s are nonzero real numbers, Ee; = 0, Var(e;) = o2 and e ’s are mdependent
The least square estimate of B is § = QrxY) /Z’L lx Clearly Var(f) =
X xlel /(X x3) Let ;= Y, — x; ,@ be the residuals. The classical bootstrap
sample is Y* —x,é+r* fori— 1,...,n, where r*,..., r,* is a random sample
from the empmcal d.f. based on (rl 7)., (r,— T, ) If ,B,, denotes the least
square estimate based on Y;*’s, then the bootstrap variance of ,B,,, Var* (,B,,), is

(= F)Y/Erx? which is equivalent to (n™'L},0?)/(X7_,x7) asymp-
totlcally Thus the classmal bootstrap does not provide a consistent estimator for
the s.e. of ,l? if the error variances are allowed to be different. However, it is not
difficult to modify this bootstrap to achieve the consistency. Let us form the
emplncal d.f. on {(x,/(xn)l/ ®X(r; - 1,)} instead of just {r;— 7,} [recall that
x2= (1/n)X’ ,x?] and let B, denote the resulting bootstrap least square estima-
tor of B. Then, under the conditions that x,’s are bounded and
liminf, ,  n~ X" x> 0 (ie, X7 ;x2 grows roughly like n),

-1/ 2
Var**(/fb) Zl-lx I‘ _ n (zz=1xz’2.z)
(o) (25))

(** stands for the bootstrap probability under the weighted empirical d.f.), which
is equal to

+0 (n—a/z)
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In fact, one can center the weighted empirical before bootstrapping in order to
make the bootstrap variance exactly equal to X7 x?r?/(£7_,x?)? [= (I), say]. A
natural pivot related to 8 is T, = (8 — 8)/(I)'/2. Denote the bootstrap counter-
part of T, to be T* = (8, — ﬁ)/(n)lf_, where (II) = T2 x2r*? /(X2 ,x2)? an
{r*}\-, are i.i.d. samples from {(x,/(x2)"/?)(r; — 7,)}’s. By computing the ﬁrst
three cumulants of T, and T,*, we can show that the bootstrap will correct the
skewness term (i.e., the n~'/%-term) in the Edgeworth expansion of the sampling
distribution of T,. ’
As for Wu'’s bootstrap on this simple regression, we assert that under this

weighting scheme, the bootstrap sample is
(4.3) Yi*,-", Y;;*’ i* =xiﬁ+ ritia
where {; J1 are iid. with Et;=0 and Var¢, = 1, for all i. Note that in Wu
(1986), r; is multiplied with an adjusting factor wh1ch is equal to 1 asymptoti-
cally. Let ,Bb indicate the least square estimator of 8 under the bootstrap (4.3).
Then

n 2,.21742 n

Vw,(ﬁb) _ Y xirlEt; _ Y x2? + O, (n-?)
(En- 1% ) ( F=1%) )

since Var ¢; = 1. Hence Et; = 0 and Var(¢;) = 1 for all i are sufficient for proving
the consmtency of the bootstrap If we also assume that Et? = 1, then the third
moments of Vn (8 — B) and all first three moments of T will be estimated
correctly up to O(rn~1) by this bootstrap.

Suppose one is interested in the sampling distribution of the least square
estimator of a certain linear combination of B, say I'B, of a general linear model
Y = XB + e. Here X is a n X p matrix, B and 1 are p X 1 vectors and e is a
n X 1 vector. The idea of bootstrapping from the empirical d.f. based on
weighted residuals extends readily. It is so because the least square estimator 1’
can be expressed in a form of ¥ w,Y;, where the vector w = (w,,...,w,) =
I'(X’X)"'X’. Using the same ldea of weighted empirical d.f. previously men-
tioned, we only need to multiply the residuals (7, — 7,) with w,/(w?2)'/? before
forming the empirical d.f. However, the main drawback is that the weights and
thus the whole procedure depend on 1. It is not known to us at this point if any
single weight vector can be so chosen as to work for all 1. On the other hand,
Wu’s bootstrap, different from the classical one [see, e.g., Freedman (1981) on
bootstrapping regression models], does provide a consistent estimator for the
standard error of I' for all 1. In thls bootstrap, the bootstrap sample is

(44) = XB + e*.
Here e* = (e},...,e}) and ei* = r;t;, where the ¢;’s are i.i.d. random variables
with mean 0 and variance 1. Let B, represent the least square estimate of B

under the bootstrap of (4.4). Assume that the elements of X are bounded and the
column of X have length O(n). Then we have

Vart(l’ﬁb - 1’3) = Y wlr’Et},

i=1




1708 R.Y.LIU

which is X7 w?e? + o(1) since Er? = o? + o(1) and E¢? = 1, for all i. Further-
more,

E(1B, - 18)' = ¥ wpr?

i=1

provided Et =1 and
n n
Ywirl=Y why,+o(1),

i=1 i=1
where pg ; = Ee}. Therefore, the condition Et} = 1 will suffice to correct the
skewness term in the Edgeworth expansion of the sampling distribution of I'B.
In concluding this section we reemphasize that, in addition to the conditions
Et, = 0 and Et? = 1, the key condition Et? = 1 is needed in order to obtain the
second order properties of Wu’s bootstrap. Two examples satisfying these condi-
tions will now be given.

ExampPLE4. t,=D,— ED,i=1,...,n,and D,,..., D, arei.i.d. with gamma
distribution having density gp(x) = [«?/(B — 1)!]x#"'e™*I . ), where a = 2
and B = 4.

EXAMPLE 5. t;=WZ, — (EW)(EZ ), i=1,...,n, where W,,..., W, are
ii.d. normally dlstrlbuted with mean 3(y/17 /6 + /7 ) and variance %,
Z,...,Z, are iid. normally distributed with mean 3(/17/6 — ‘/7 ) and
variance %, and W,’s and Z;’s are independent.
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