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ADMISSIBILITY IN DISCRETE AND CONTINUOUS INVARIANT
NONPARAMETRIC ESTIMATION PROBLEMS AND IN THEIR
MULTINOMIAL ANALOGS!

BY LAWRENCE D. BROWN

Cornell University and Hebrew University

Discrete and multinomial analogs are defined for classical (continuous)
invariant nonparametric problems of estimating the sample cumulative dis-
tribution function (sample c.d.f.) and the sample median. Admissibility of
classical estimators and their analogs is investigated. In discrete (including
multinomial) settings the sample c.d.f. is shown to be an admissible estimator
of the population c.d.f. under the invariant weighted Cramér-von Mises loss
function .

L(F, F) = [[(F(2) - B&))*/(F(t) (1 - F(2)))] dF(2).

Ordinary Cramér-von Mises loss—Ly(F, F) = [[(F(¢) — F(t))?] dF(t)—is
also studied. Admissibility of the best invariant estimator is investigated. (It
is well known in the classical problem that the sample c.d.f. is not the best
invariant estimator, and hence is not admissible.) In most discrete settings
this estimator must be modified in an obvious fashion to take into account
the end points of the known domain of definition for the sample c.d.f. When
this is done the resulting estimator is shown to be admissible in some of the
discrete settings. However, in the classical continuous setting and in other
discrete settings, the best invariant estimator, or its modification, is shown to
be inadmissible.

Kolmogorov—Smirnov loss for estimating the population c.d.f. is also
investigated, but definitive admissibility results are obtained only for discrete
problems with sample size 1. In discrete settings the sample median is an
admissible estimator of the population median under invariant loss. In the
continuous setting this is not true for even sample sizes.

1. Introduction. Very little is currently known about finite sample size
decision-theoretic properties in invariant nonparametric estimation problems.

For reasons of aesthetics and convenience the usual formulation of these
problems involves observation of independent identically distributed real ob-
servations having an unknown continuous cumulative distribution function
(c.d.f.). However, it is also possible, and of interest, to study the formulation in
which the unknown c.d.f. is assumed to correspond to an unknown discrete
distribution. It is possible to simplify the problem further by assuming the
unknown discrete distribution is multinomial on a given finite set of points E.
Such a formulation is, of course, no longer invariant since the set E is given, and,
hence, is not invariant under monotone transformations. However, in other
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1568 L. D. BROWN

respects these multinomial problems share the flavor of their nonparametric
progenitors.

There have been recent advances in decision-theoretic methodology for in-
vestigating admissibility in multinomial and other discrete problems. Brown
(1981) generalizes techniques used earlier in specific settings by Johnson (1971)
and Alam (1979), and these techniques have been used recently in Ighodaro,
Santner and Brown (1982), Cohen and Kuo (1985) and Meeden, Ghosh and
Vardeman (1985).

The latter two references are partlcularly relevant here since they treat
multinomial versions of nonparametric problems. However, these versions, while
of interest on their own merits, are not true analogs of the usual nonparametric
problems since the loss functions used are discrete analogs of noninvariant loss
functions, instead of being the discrete analogs of the invariant loss functions of
classical nonparametric estimation problems. [A similar comment is relevant to
Phadia (1972) which proves minimaxity of the sample c.d.f. relative to a nonin-
variant loss function.]

There are two main objectives of the current study. The first is to carefully
formulate discrete and multinomial analogs of classical invariant nonparametric
estimation problems. To the extent possible these formulations should preserve
the flavor of the original classical formulations. (Hopefully without the use of
artificial preservatives!) This is desirable for aesthetic reasons, and possibly also
practical ones, as well as in the hope that decision-theoretic results in ap-
propriately formulated discrete problems will transfer easily to the classical
continuous problems.

The second objective is to investigate decision-theoretic results—primarily
those concerning the fundamental property of admissibility—in these discrete
formulations, and also in the classical, continuous formulation. As hoped, it has
been possible to derive several admissibility results in the discrete formulations,
and also a few in the classical formulation. In contrast to our original expecta-
tion it turns out that results in discrete and continuous settings may easily be
different.

We can point to three major conclusions of this study:

I. Admissibility of the sample c.d.f. as an estimator of the population c.d.f. in
discrete problems involving scaled Cramér-von Mises loss [L,, as defined in
(2.3.1)].

II. Inadmissibility of the best invariant estimator of the population c.d.f. in
continuous problems involving ordinary Cramér—von Mises loss [ L,, defined in
(2.3.2)]. This inadmissibility extends to some discrete reformulations of this
problem but does not hold in others.

III. Several other admissibility and inadmissibility results and a number of
open questions. One of the more interesting of these results is the admissibility of
the (or, any) sample median as an estimator of the population median in discrete
problems under a simple invariant loss L, [defined in (2.3.4)]. On the other hand,
when the sample size is even any 1nvar1ant sample median is inadmissible in
continuous problems. Among the more interesting questions left open here are
the admissibility of the sample c.d.f. in continuous problems using scaled
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Cramér-von Mises loss referred to in I, a variety of questions involving admissi-
bility under Kolmcgorov—Smirnov loss, and the admissibility of the sample
median in continuous problems having odd sample size. The first of these
questions has recently been given a surprising answer in Yu (1986, 1987).

2. Formulation of the problem.

2.1. Sample space and distributions. - The conventional formulation of a
nonparametric estimation problem begins with a sample space corresponding to
n independent identically distributed real random variables, X,,..., X,,, n > 1,
on I = (a,b) c (-, ). Conventionally, it is assumed that each X; has a
continuous cumulative distribution function (c.d.f.) F about which nothing else is
known. Thus, I C (—o0,0) is a specified interval and the space of possible
distributions # for each X is

(2.1.1) Fo=F(I) = {F: F is a continuous c.d f. on I}.

The problems to be considered are invariant under monotone, strictly increasing,
transformations of the interval (a, b) onto their range. Hence, a problem with
F=Zc((a, b)) is equivalent to one with F = Z((— o0, o0)). Obviously, here the
interval [a, b], — o0 < a < b < o0, may be substituted for (a, b) without chang-
ing the problem or the nature of the results.

A major focus of this study is on discrete reformulations of the preceding
situation. One such reformulation involves specifying a set E = {£;: i=
1,...,m} C (— o0, 0) and considering

(2.1.2) %, =%y(E) = (F: F is a discrete c.d . supported on E}.

Without loss of generality we assume & < §, < -+ <§,.

In (2.1.2), the support set E of the multinomial distribution F € %, is
specified in advance. A different discrete formulation involves the assumption
that F be multinomial, with an unknown support contained in a specified
interval I C (— o0, 00). Then the set of possible distributions is

(21.3)  Fp(I) = {F: F is a discrete c.d.f. with finite support contained in I}.

As before, a formulation with distributions Zp((— 00, 00)) is equivalent to one
with distributions %,((0,1)). However, the formulation with distributions
Zn([0,1]) is not equivalent to that with distributions #1((0, 1)). This (annoying!)
technical fact must be kept in mind in handling nonparametric situations. A
surprising instance of this nonequivalence is presented in Examples 4.1.4 and
4.1.5.

The remainder of the paper concentrates on formulations involving the sets of
distributions described previously. It should be clear that there are other,
nonequivalent formulations which may sometimes be of interest. For example, it
may be that & is the subset of %), consisting of distributions supported on at
most % points, with £ a known number specified in advance (see Remark 4.1.3);
or it may be that #= %, U %), etc. Decision-theoretic results for such alternate
formulations can often be easily deduced from corresponding results for the
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formulations (2.1.1)-(2.1.3), described previously. For this reason we make no
further comments about these or other alternate formulations for % except for a
few special remarks.

2.2. Action space. We wish to consider two varieties of estimation problems.
The first variety involves estimation of the unknown c.d.f. The second involves
estimation of an invariant functional of the c.d.f.—to be specific we consider
estimation of the median of F.

The appropriate action space for estimation of F € ¥ is

(2.2.1) &, = {a(-) @ a: R —» [0,1] and a is nondecreasing} .

Two special features of this space are worth noting.

REMARK 2.2.1. Every F € ¥ is a c.d.f. and hence satisfies
(2.2.2) lim F(x) =0, lim F(x) = 1.
o0 X — 00

o
However, ./, contains estimates a(-) which do not satisfy (2.2.2). Such esti-
mates are often referred to as defective distribution functions. In order to
construct a satisfactory theory it is necessary to include defective distribution
functions in the action space. This necessity was recognized long ago. [See, for
example, Aggarwal (1955).] For the conventional formulation with %= %, and
invariant loss functions such as L,, L; (defined later) the best invariant estima-
tor &, does not satisfy (2.2.2). It follows that no invariant estimator satisfying
(2.2.2) can be admissible, even when one limits consideration to estimators taking
only actions in &/, which do satisfy (2.2.2).

The desirability of allowing actions which do not satisfy (2.2.2) can be
understood from another point of view. Since the loss functions to be adopted
are bounded, the standard decision-theoretic formulation yields the existence of
a minimal complete class if the action space is closed in a suitable topology. See,
e.g., Brown (1977). For the problems to be considered, a suitable topology is
either the topology of weak convergence of distribution functions or the topology
of pointwise convergence. In either case the compactification of functions satisfy-
ing (2.2.2) includes also functions not satisfying (2.2.2). (Note that 7, is
compact in these topologies.)

REMARK 2.2.2. The functions % are right continuous; however, the actions
in 2/, need not be right continuous. This freedom of action is not always
required. If a € &/, let a® denote the right-continuous version of a. Suppose the
loss function L satisfies

(2.2.3) L(F,a) = L(F, a®),

for every F € #, a € &,. Then there is no loss of generality in restricting
actions to be right continuous. (2.2.3) is satisfied in the conventional nonpara-
metric formulations, which have # = %,. However, in some discrete formulations
(2.2.3) fails to hold. Some estimators which are not right continuous can then be
admissible. See Example 7.1.3. Since we will consider such formulations we
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assume the action space is not limited to right-continuous functions. The
desirability of allowing actions which are not right continuous is particularly
clear in connection with the loss functions L} or LY defined in Section 7.1. As
was the case in Remark 2.2.1 one reason for allowing non-right-continuous
actions when (2.2.3) is not satisfied is to guarantee the existence of a minimal
complete class.

The second variety of estimation problem to be considered involves estimation
of the median of F. For such problems the action space will be simply

(2.2.4) A, =[-00,].
[There would be no difference in our result is we chose instead the more usual

space %7y = (— o0, 0); however, =/, seems technically preferable since it is
compact in the natural topology.]

2.3. Loss function. Many loss functions have been proposed for the conven-
tional problem of estimating an unknown continuous c.d.f. We have chosen to
investigate the analogs in discrete formulations to three of the most popular of
these loss functions.

The first two loss functions are of the Cramér—von Mises type; the first being
a scaled version and the second being the standard version, as follows:

(F(t) - a(t))*

(2.3.1) L(F,a)= /m dF(t),
(2.3.2) L,(F,a) = j (F(t) — a(t))? dF(t).

The third loss function is the familiar Kolmogorov—Smirnov loss,
(2.3.3) Ly(F, a) = sup|F(t) — a(t)|.

We denote the risk function corresponding to L; by the symbol R;: thus
R,(F,8) = Ex(L,(F,¥8(-)). When the value of i is clear from the context we
write R instead of R,.

All three of these loss functions are fully invariant under monotone transfor-
mations of the interval I when & is also invariant (i.e., when %= %, or %p).

All three of these loss functions are well defined in the continuous and discrete
formulations fo be considered. [In the integrand of (2.3.1) use the obvious
convention 0/0 = 0.] Admissibility results for these losses are given in Sections
3, 4, and 5, respectively. Section 7 contains some results for some natural
variants L) and L} of L,. [See (7.1.2) and also (7.1.3).] In discrete formulations
the admissibility results for L} and L} differ from those for L,.

For estimating the median we use the loss function

(2.34) L(F,a)=inf{|b - |: F(a™) <b< F(a%)}.
The results described later would not be altered if we were instead to use
(2.3.5) Ly(F,a) =I(L(F,a)),
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where [ is an increasing function. Section 6 contains admissibility results for
estimation under the loss function L, or L;.

2.4. Estimators.

Continuous problems. For problems involving continuous c.d.f.’s [i.e., F=
Z(a, b)] we will be investigating admissibility of the best invariant procedure.
This procedure will be denoted by the generic symbol 8,. The following para-
graphs give a more precise description.

Let x4, < -+ < x,) denote the order statistics corresponding to the sample
x = (xy,...,%,) and let xo = — 00, x,,;) = +00. Then any nonrandomized
invariant and right-continuous procedure has 8(x) = d,(t), where

(2.4.1) dx(t) = wi if x(l) <t< x(i+1),‘i = 0,..., n.

For the best invariant procedure §,, the numbers w; are chosen to minimize

(242) RU,8) = [+ [L(U,8(x)) ¥ dU(x),
i=1
where U(t) = (0 V t) A 1 denotes the uniform c.d.f. on (0,1). Obviously, the
choice {w;} yielding the best invariant procedure depends on L.
Aggarwal (1955) calculates the best invariant procedure under losses L, and
L,. For L, the procedure §, is the sample c.d.f.,

(2.4.3) F(t)=n! éx(x,squ) —a () (say),

so that §, is given by (2.4.1) with w; = i/n.
For L, the procedure §, is given by (2.4.1) with

(2.4.4) w,=(i+1)/(n+2).

Call the corresponding estimate B(¢). Note that, as already mentioned, this
procedure corresponds to a defective distribution—i.e., lim,_ _ B.(¢) =
1/(n + 2) > 0 and also lim,_,  B(f) =(n+ 1)/(n + 2) < 1.

The derivation of the best invariant estimator for the Kolmogorov—Smirnov
loss is messier. Direct calculation (by hand) from (2.4.2) yields

(2.4.5) | forn=1, wy=2 0, =2.

Values of w for 2 < n < 25 have recently been numerically calculated and tabled
by Friedman, Gelman and Phadia (1988). In this case we use the notation
8y(%) = 1,(t).

For estimating the median the best invariant procedure can easily be shown to
be the sample median. When n is odd the sample median is uniquely defined, so
that

(2.4.6) 8o(%) = Z(n+12)-

However, when n is even the best invariant estimator is not uniquely defined,
and is either x,, 5 O X, 2 ), Or any fixed randomization between them. Thus,
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8, is any (randomized) estimator of the form

2.47) 8o(x) = x(, 125 with probability =,
(2.4. = X(n+2,2, With probability (1 — 7).

(Note that = is a constant. If # were to depend on x the resulting estimate
would still be a sample median, but would not be invariant.) The problem of
estimating the median also has a left-right symmetry. If this symmetry is taken
into account, then for n even the only fully invariant procedure is the procedure
of the form (2.4.7) with 7 = 1. The admissibility results of Section 6 apply to any
procedure of the form (2.4.7), not merely the procedure with 7= = 1.

Discrete problems. For L, the natural analog of 8, in discrete problems is §,
itself. Thus, we will be studying (and, in fact, proving) the admissibility of the
sample c.d.f. F,, under the loss L,. [It should be noted that the definition (2.4.1)
of 8, has been appropriately stated so that if, say, x, ;) <x;= - =
Xivjy < Xajery then oafxg) =,y =@ - 1)/n and afx;) = o, =
(@ +Jj)/nl]

For L, and %#=%,(E) the immediate analog of §, is again &, itself.
However, it is obvious that this estimator is inadmissible. Note that F(£,,) = 1.
Hence, the estimator

0, ift < ¢,

(24.8)  84(t) = Bi(¢) = {B2), xS E<xpy §SE<E,,
1, ift>¢§,,

is at least as good as §,, and is better whenever F gives positive probability to
£,,- Consequently, when %= %,, and L = L, we study (and prove) the admissi-
bility of 8.

Similarly, if #= %#,([0,1]) and L = L, the appropriate estimator for study is

0, t<o,
(2.4.9) 8 =PBl(t)={B(t), 0<t<1,
1, t>1.

When %= %,((0,1)) one can use either §, or §; as defined in (2.4.9). They are
equivalent since R(F, §,) = R(F, §}) for all F € %#,((0, 1)), because Prp({1}) = 0.

A similar pattern appears in connection with Kolmogorov—Smirnov loss L,. If
F= %, the appropriate estimator is

0’ t < gl!
(2.4.10) 8 =v(t) ={v(t), & <st<§,,
1, t>¢,,

where, here, v,(t) is the best invariant estimate when #=%, and L = L,.
Similarly, for #= %,([0,1]) the appropriate estimator is also y/(¢) [with 0 = £,
and 1 = §,, substituted in (2.4.9)]. When %= %,((0, 1)) the estimators 8, and &,
defined in (2.4.9), are equivalent since Ly(F, 8(x)) = Ly(F, 8/(x)) w.p.1.

For the problem of estimating the population median (L = L,) we use the
sample median §,, as defined in (2.4.6) and (2.4.7).
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TABLE 1
Admissibility of the procedure 8, or 8 according to class of distributions and loss function

Loss function: L L, Lj and Ly L, L,

1

Defined in equation: (2.3.1) (2.3.2) (7.1.2) and (7.1.3) (2.3.3) (2.3.4)

Admissibility

results in: Section 3 Section 4 Section 7 Section 5 Section 6

Distributions

Fy A A ' I Aifn=1 A
?ifn>2

Fp(0,1]) A A I Aifn=1 A
?ifn>2

Zp((0,1)) A ? 1 ? A

(See Remark 4.1.3)
F Aifn=1,2" I I : ? Iif n even
Iifn > 32 Aifn=1
? otherwise

(A = admissible, I = inadmissible, ? = admissibility unknown.)
“These results were proved by Yu (1986, 1987) and appear in these papers.

2.5. Summary of admissibility results. Table 1 summarizes the admissibility
results known to date according to class of distribution and loss function. With
one very important exception the results mentioned in the table are proved in
this paper. That exception is the result(s) for continuous distributions F, and
scaled Cramér-von Mises loss L,. Those results were proved by Yu (1986,1987),
following the appearance of a preliminary version of the current manuscript.

The classes of distributions are as defined in Section 2.1. The procedures §,
and §; are described in Section 2.3. As noted there the modified best invariant
estimator §; is to be used for the combinations (%, L,), (%, Lj),
(Zp((0,1]), L,y) and F([0,1], L,); otherwise the best invariant estimator §, is to
be used. The loss function L is a variant of L, and is defined in Section 7.

3. Admissibility results for loss L,.

3.1. Admissibility of the sample c.d.f. for #,; or ;. It has already been
noted in (2.4.3) that the sample c.d.f. is the best invariant estimator of the
population c.d.f. under the scaled Cramér-von Mises loss L,. The main result of
this section is that this estimator is admissible under this loss in all of our
discrete formulations.

THEOREM 3.1.1. Let L = L,, = %,,. Then the sample c.d.f. 8, [defined in
(2.4.3)] is admissible.

. PROOF. Recall the notation §y(x) = a,(¢) and let 8(x) = d(¢). It will be
shown that

R(F,8) < R(F,5,),VF € %,

3.1.1
( ) implies d,(t) = a,(t) for t = £,,..., £, and all possible x.
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Since R(F,8) depends only on d(t) for t=§,...,&, the assertion (3.1.1)
implies R(F, 8) = R(F, §,) and thus shows that &, is admissible.

The proof of (3.1.1) proceeds by induction on m. The assertion is trivially true
when m = 1, for then %, contains only the one c.d.f. F(¢) = x(;.¢,(¢). For this
cd.f. R(F,8, =0 and R(F,8) =0 if and only if d(§) =1 = a, ) for all
possible x.

Now assume (3.1.1) is valid for (m — 1) and R(F, 8) < R(F, §,) for all F € %#,,.
It follows from the truth of (3.1.1) for (m — 1) that

(3.1.2) d.(t) = a,(t) whenever #{x,,...,x,,t} <m -1,

where # {-} denotes the cardinality of the set. To verify (3.1.2), apply (3.1.1) to
Z; having support set {£{,...,£,,_,} D {xy,..., x,, t}. Since F € %y, implies
F € #,,, it follows that R(F, 8) < R(F, §,) for all F. € %). Assertion (3.1.1) for
(m — 1) then implies d (t) = a(t) for {x,...,x,,t} C {&,...,&,_1}. This
yields (3.1.2).

Note that if n < m — 2, then (3.1.2) implies (3.1.1). Hence, what follows
concerns only the case where n > m — 1.

Suppose still that R(F, 8) < R(F, §,), F € %,,. Write Prp{£{,} = p;; so that to
each probability vector p = (p,,..., p,) there corresponds a distribution F, €
%u- Then

(13)  0<a= [ [(R(E,8) - R(E,5)) TI " db,

where P= {py,..., Py P;20,i=1,...,m—1,and p,=1- X" 'p, > 0}.
A is thus the difference in risks integrated over the improper prior [17'p; ! dp;.
(In what follows we will thus be minimizing this integrated risk difference over
that part of the sample space not previously determined by the induction
hypothesis. This integrated risk difference will then be finite and so can be
uniquely minimized by using the formal Bayes rule for each sample point

currently under consideration.)

Let
(Fp(g) - a)2
P59 " B - @)
Then
A= f LEFp{ g:lpj[l(p,ax(«fj); &)
—l(p, d.(¢); 51')]} "ij1 pi ' dp;
(3.1.4) .

Sf '/;,Eﬁ;{milpj[l(l’:ax(gj);gj)

Jj=1

i=1

~tpae)i8)]) TL o o
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since I(p, a(§,,); €,) =0 < Up,d(§)); §;). For each possible sample x, let
N = Mp(x) = #{x;: x; = §}. In the obvious way, let a,(§) = a,(£) for n(x) =,
and similarly for d,(-). Let N;={n: 7, >1 for 1 <k <m, k+j},
J=1,...,m — 1. Note now that if n & N,, then I( p, a,(¢,); £;) = I(p, d,(§,); §,)
by (3.1.2). Consequently, the expectation appearing in (3.1.4) can be rewritten as

615 T Z( )[2(p. a,(8); &) - Up. (s &), TT o,

J=1 n€N,
where (") denotes the usual multinomial coefficient.
It is important that

S [ a(6)s &) — i p.di(8): )]

m m-—1

xp; I1 pp I1 pi ' dp; < o0,
k=1 i=1

(3.1.6)

for every n € N,. To verify (3.1.6), observe that

m m-—1
p,-kl'llp l_Ip,\ = p;p}r ﬂp"' !
(317) m—1
= ;.71 ’?{" ]._Ip?i_!'

i
For n € N; the exponents of p;, p, and every p, on the right of (3.1.7) are
nonnegative. Calculating as in (3.1.9) then verifies (3.1.6). [For the case where
n=,1n...,m,) €N, it is important to also note, as will be done, that
a,,(él) = 0, so that {(p, an(gl); §) =p,/1 - py).]

It follows from (3.1.6) that

A< Z Z( )f f[lp, (&); &) — U p, dy(£)); )]

-1
Xp;pin H p}tdp,;.

Let o, = Z,,ln ;- The multiple integral in (3 1 .8) can be evaluated when 3 € N,
j= 1 — 1, and n; # 0 as a standard exercise. [See, e.g., Ferguson (1973)]
Makmg the substltutlon u=Y}_,p, yields

Zk-lpk (5 )) (kalpk dn(gj))z
R A Y A (i

m—1

(3.1.9) xp;pi 11 Pt~ dp;
i

= C("j’n)/ol L l)t)(l_—(u) &) us(1—u)" % du,
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where C(g;, n) is an appropriate positive number. The expression on the right of
(3.1.9) is uniquely maximized when

e

(3.1.10) P T L
o
B ;J = an(gj)°

When 1 € N, and %, = 0 the multiple integral on the left of (3.1.9) has the value
—oo unless d,(§,) =0 =a,(§). Hence, in this case also (3.1.9) is uniquely
maximized by d,(§,) = «,(§;). Recall that, by assumption, A > 0. Thus, the
preceding results show that actually A = 0 and d,(§;) = a,(§;), j=1,...,m — 1.
It then follows trivially that also d,(£,,) = a,(£,) = 1..This verifies the induc-
tion hypothesis (3.1.1) and completes the proof. O

The preceding proof is a variant of the general stepwise Bayes argument
described in Brown (1981). The primary variation in the argument occurs
because the point ¢ appears in the reinterpretation (3.1.2) of the basic induction
hypothesis (3.1.1). [The appearance of ¢ in (3.1.2) and the dependence there on
#{x,,..., x,, t} rather than, say, on #{x,,...,x,)}, is consistent with the gen-
eral results of Brown (1981). However, it was not explicitly observed there
because no examples were considered in which the loss function has a structure
like L, requiring integration over an additional variable (¢).]

The remainder of the proof is actually fairly straightforward. The assumption
of a formal multiple beta prior follows the pattern of previous proofs, such as
Cohen and Kuo (1985), involving noninvariant loss functions. In fact, the
calculation in (3.1.9) echoes a formally similar expression which appears in the
derivation in Aggarwal (1955) of §, as the best invariant procedure.

Admissibility when % =%, follows directly from Theorem 3.1.1 and a
general observation about admissibility formally stated in Theorem 3.1.2.

THEOREM 3.1.2. Suppose § is an estimator such that for any {£,,...,§,} € S
the estimator 8 is admissible for the problem with loss L and %=
Fuéy ..., ¢,)). Then 8 is admissible for the problem with loss L and %=
Fp(S).

Proor. T};e theorem follows immediately from the definition of admissibil-

.....

COROLLARY 3.1.3. Let L = L, and = %5(S) for any S C (— o0, ). Then
the sample c.d.f. 8, is admissible.

Proor. This follows directly from Theorems 3.1.1 and 3.1.2. O

3.2. Concerning admissibility for #,. Corollary 3.1.3 would seem to lend
strong support to the conjecture that the sample c.d.f. §, is admissible also when
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F = Z,. However, it does not prove the conjecture since it is logically possible for
an estimator to be admissible in all discrete problems and inadmissible in the
continuous problem. The situations for L, and L, provide partial examples of
this phenomenon. For L, the estimator 8§ is admissible for %,([0,1]) but not
admissible for %([0,1]). For L, and n even the symmetric, invariant sample
median §,, defined by (2.4.7) with = = }, is admissible in all our discrete
formulations but is inadmissible when %= %,. There are more trivial invariant
problems in which this admissibility-inadmissibility phenonemon is obvious.
Suppose, for example, that one wishes to test whether F is discrete or continuous
under conventional 0-1 loss. Then the procedure which always decides that F is
discrete is admissible (in fact, optimum) when %= %, but is inadmissible (in
fact, worst possible) when %= %.

After the preceding was written Yu (1986, 1987) proved the surprising and
significant results that §, is inadmissible for L, and %, when n > 3 but is
admissible for n = 1,2.

4. Admissibility results for loss L,.

4.1. Discrete settings. For reasons' already discussed in Section 2.4.2 we
investigate in discrete problems admissibility under L, of the modified procedure
84 defined in (2.4.8) and (2.4.9). The first main result parallels Theorem 1.

THEOREM 4.1.1. Let L = L,, #=%,,. Then &, defined in (2.4.8), is admis-
sible.

Proor. The proof is extremely similar to that of Theorem 3.1.1, but with
one subtle difference. The induction hypothesis (3.1.1) is replaced by the state-
ment

R(F,8) < R(F,8§),V F € ZFy({&,..., &) with {§{,..., &}
(411) c {¢,...,¢,) and &, =&, implies d(t) = B(t) for
(X2, C{&,..., &0}

The subtle difference here lies in the condition that £/, = £,,.
The proof now proceeds by induction on m. Each stage of the induction
involves only values of x, ¢ for which

(412) ‘{xl,...,x,,, t, ‘Sm} = {gll,"',gr,n’}’

since values with {x,,..., x,, ¢, §,,} G {(§,..., &5} will already have been consid-
ered at an earlier stage of the induction. One proceeds as in the proof of Theorem
3.1.1 The appropriate definition of / is now, of course, I( p, d; §) = (F,(§) — d)2
‘The expression (3.1.4) remains valid with £/ and B, replacing §; and a, since
&, = ¢, so that B/(§)) = 1. Alter slightly the definition of N; to become
N;={m:m,>1forl <k <m—1, k +#j}. In this manner one proceeds through
the proof with only minor differences until (3.1.9). The right side of (3.1.9) now
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reads

(4.1.3) C(oj, n)f[(u _ 181;(51))2 _ (u _ d"(sj))Z] u(1 — u)n—oj du.

This expression is also valid when 7 € N; and 7, = 0. It is uniquely minimized
when

(414) d,(§)=(g+1)/(n+2)=8(¢), Jj=1...m -1

The theorem then follows in the same manner as Theorem 3.1.1. O

When %= %[0, 1]) admissibility follows by a variation of the argument used
in Corollary 3.1.3., as follows.

COROLLARY 4.1.2. LetL = L, and = %,([0,1]). Then 8, defined in (24.9),
is admissible.

PROOF. Suppose
(4.1.5) R(F,8) < R(F,8) forall Fe #5[0,1]).

Write 8(x) = d(t). Let x = (x,...,%,) be a possible sample point and let
t' €[0,1]. Let E = {£,...,&,) O {x1,..., %, t/,1}. Consider the problem with
F =%,/ (E). § is admissible in this problem by the statement of Theorem 4.1.1,
but the proof of the theorem shows even more—namely, that (4.1.5) for all
F € #(E) c #5([0,1]) implies

(4.1.6) d(t) = B/(t) forallte E.
Thus, § = 8] since (4.1.6) holds for all possible x and all ¢ € [0,1]. O

REMARK 4.1.3. The preceding proof does not verify that 8; is admissible if
F=F5(0,1)). It fails to apply because 1 & (0,1), so that F#(E) ¢ Z((0,1)).
[As previously noted, over #((0,1)), 8; and &, are equivalent so all assertions
here concern both estimators.]

Intuition suggests that a procedure admissible in #([0,1]) should also be
admissible in %((0, 1)). Indeed, we have as yet found no natural examples where
a procedure is admissible in %;([0,1]) and not in F#1((0,1)). However, Example
4.1.5 suggests that this intuition may be faulty. Cognizant of Example 4.1.5 we
nevertheless conjecture (somewhat uneasily!) that 8; is admissible for #;((0,1))
because we have failed to find an estimator dominating §, for the cases n = 1,2, 3.

Define #§™(S) € F1(S) to be the subset of #(S) consisting of distributions
supported on at most m points. The same intuition which suggests that admissi-
bility for #5([0, 1]) implies admissibility for F((0, 1)) also suggests that admissi-
bility for F§™([0,1]) implies admissibility for #5™((0,1)). However, Examples
4.1.4 and 4.1.5 taken together show this latter implication is false when n <
m— 2.
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EXAMPLE 4.1.4. Admissibility of 8; for #§™([0,1]) and n < m — 2.

Let L = L,, F=%§™([0,1]), n < m — 2. Then §; is admissible. To see this,
consider &= %;,(E) in Theorem 4.1.1, where 1 € E c [0,1] and #E < m. Then
the induction step (4.1.1) need be carried only through stage m’'=n+2<m
since all possible values of x, ¢ have # {x,,..., x,, ¢,1} < n + 2. These priors are
all concentrated on F§™([0,1]). It follows that &, is admissible in %y (E) c
F5™([0,1]). The reasoning of Corollary 4.1.2 can then be applied to prove
admissibility of 8] in F5™([0, 1]). ,

[8; is not admissible if n > m — 1. The procedure 8(x) = d,(¢) with

d(t) =1, if #{x,...,x,} >m—land t> x,,
(4.1.7) ]
= B/(t), otherwise,

is better.]

ExXAMPLE 4.1.5. Inadmissibility of 8] (and §,) for Z5™((0, 1)).
Let L = L, and #=%5"((0,1)), m > 1. Then &} (and §,) is inadmissible
even among invariant procedures. To see this, let §”(x) = B//(-), with

m™! 1+ m‘1
n+2 n+2 n

(4.18) B() = B(e) + 3 Xean®

Then, with Prp({¢;}) = p; as before, elementary calculation yields

-1 m 2 -1 2
Y — pi m
R(F,8) - R(F, &) 2( +2) i§1n+2 n+2)

(4.19)

m~! 0
> >
“\n+2 ’

since Y™ , pZ > m™!. Thus, 8" is better than 8] and &,. I do not know whether §”
is itself inadmissible or whether it is possible to improve on § by an amount
significantly larger than (m~!/(n + 2))%

REMARK 4.1.6. The procedure §; was motivated in Section 2.4 as the
minimal modification of 8, necessary to compensate for an obvious inadequacy
of 8, The preceding considerations suggest the possibility of instead using
8,(x) = d(t), with

d(t) = B(t), ift<x,,

4.1.10
( ) =1, if ¢t >x,.

(Note this estimator is not right continuous.)
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Arguments like those in the proofs of Theorems 3.1.1 and 4.1.1 show that §, is
admissible for #= %,,. Hence, for any S C R, it is also admissible for #= %#,(S)
by Theorem 3.1.2. (On the other hand, it is invariant in problems to which
invariance applies; hence, when %= %; it is not admissible since then §, is the
best invariant estimator.)

4.2. Inadmissibility of 8, for #,. When %= %, the best invariant estima-
tor is inadmissible. This is shown by the following theorem, which gives an
explicit formula for an estimator that improves on §,,.

Define, for 2, t € R,

()= 1, z=<0<¢

(4.2.1) =-1, t<0<zg,

= 0, otherwise,
and

t)y=1, <t
(4.2.2) xA(t) z=

=0, 2>t
Note that §,(x) = B(-), where
(4.2.3) Bt) =1/(n+2) + ¥ x,(t)/(n+2).
i=1

THEOREM 4.2.1. Let L = L,, = %;. Define 8(x) = d,(-) by
(42.4) d(t) = B(t) + L 5.(8)/2(n +1)(n +2).
i=1

Then

nPrp(X < 0)Prp(X > 0)
4(n+1)(n+2)7°

(4.2.5) R(F,8,) — R(F,8) =

Hence, §, is inadmissible.

REMARK 4.2.2. Here is a way to visualize B(¢) and its relation to d,(¢)
defined in (4.2.4). Think of B(¢) as the c.d.f. corresponding to a distribution
giving mass 1/(n + 2) to each of the points — o, x;, %,, ..., X,, ©. To produce
d(t), modify this distribution as follows: For each x; >0, i = 1,..., n, take
mass 1/2(n + 1)(n + 2) from — oo and move it to 0. For each x; < 0 take this
amount of mass from + oo and move it to 0. d () is the c.d.f. of the resulting
mass distribution.
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The preceding description (due to a referee) shows that d(t) can be inter-
preted as the result of a kind of “shrinkage” from + co to 0 of the mass for 8,(¢).

REMARK 4.2.3. Since R(F,§,) = 1/6(n + 2) the fractional saving in risk
from using §, is

R(F,8) — R(F,8) _ 3nPrp(X < 0)Pry(X > 0)
=T R(F,8,) T T 2t D(n+2)

(4.2.6)
3n

=8rntD(n+2)

This is 1/16 for n =1 or 2 and decreases for larger n. Hence, the maximum
fractional saving in risk is not large. We do not know whether 8 is admissible or
whether it is possible to find some other estimator dominating 8, which provides
a significantly larger maximum fractional saving in risk.

ProOF OoF THEOREM 4.2.1. Both ‘B(:) and d,(-) are equivariant under
monotone transformations of the line which leave the origin fixed. And, of
course, L, is invariant under such transformations. Hence, it suffices to verify
(4.2.5) when

F(t) = U,(t) = min(1,max(0, ¢ + p)), p=0,

the uniform distribution on (—p,1 — p). The following formulas involve only
routine, direct evaluations:

(427) @, = [ [ [£(6)x,() dU,(x) dU,(») dU,(¢) = p(1 = p)/2,
(428)  a = [ [t(6)x.(t) dUy(x) dU,(¢) = p(1 - p),

(429) a;= [ [5.(¢) dU,(x) dU,(¢) = 0,

(4210) a,= [ [U(0)8.(2) dU(x) dU,(2) = p(1 = p)/2,

(4211) as= [ [ [5.(6)5,(2) dU(x) dU() dU,(2) = (1 = ),

(4212) ag= [ [¢X(t) dU,(x) dU(2) = 2p(1 - p).



ADMISSIBILITY IN NONPARAMETRIC ESTIMATION 1583

Let a =1/2(n + 1)(n + 2). Then for F = U,,
R(F’ 80) - R(F,a)

/

=K

(F(t) S+ 2) = 5 xx(t)/(n+ 2))

i=1

—(F(t) = 1/(n+2) - Txx(t)/(n+2) - afo,.(t))Z} dF(t)

- B( [[2a 8 (0 F0) - 1/(n+2) - Txu(0)/(n +2)

(4.2.13) —a?(Ltx(0))'] ar()
= 2a(na, — (na; + na, + n(n — 1)a,/(n + 2)))

—a%(nag + n(n — 1)ay)

=p(1 - p)[2a(n/2 - (n+ n(n-1)/2)/(n +2))
—-a*(2n + n(n - 1))]

=p(1 —P)[an/(n +2) — o®n(n + 1)]
=p(1 = p)n/4(n +1)(n + 2)%

as claimed in (4.2.5). O

5. Results for Kolmogorov-Smirnov loss L,. The only results we have
for L; concern the case n = 1, of no interest in applications. Progress towards
results for n > 2 was blocked in the first place by our ignorance of the precise
numerical description of §, when n > 2. After the first draft of this paper was
written Friedman, Gelman and Phadia (1988) produced a numerical table de-
scribing 8, for n < 25. However, it is still not clear to me whether §, is
admissible for n > 2.

The proof when n =1 of admissibility for #= %, is, as usual, a stepwise
Bayes argument. The structure of this argument is slightly different from
previous arguments in Theorems 3.1.1 and 4.1.1 because n = 1 and because of a
qualitative difference between L, and the various Cramér-von Mises type losses
considered earlier: When the support of F' is given in the stepwise Bayes
argument to be the two points {¢,, £,,}, then under L, the Bayes procedure is
determined uniquely at all §; € {£,,..., §,,}, whereas under L, or L,, etc., it is
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determined uniquely only at £, and £,,, and must be determined for £;, 2 < i <
m — 1, at future steps of the argument.

THEOREM 5.1.1. Suppose n =1, L = Ly, = %. Then §§ is admissible.

ProOF. Suppose R(F,8) < R(F, §)) for all F € #,,. Write 8(x) = d (). As
before, let F,(£;)) = p;, i = 1,..., m. Choose a such that

5/8 a 1, o«
(5.1.1) [ =1 - p)*dp= [ p**'(1 - p)*dp/2.
0 0
Consider S, = {F,: p = (p;,0,...,0,1 — p,)}. For F € S,
(5.1.2) Ly(F,d(-)) < |p, — d(&),
with equality for all F € S, if and only if
d(t) =0, t<§,
(5.1.3) = d(&), §i<t<é,,
=1, t=¢,.

Note also that Ly(F, d(+)) is continuous in p, for F' € S,. Thus, by a standard
calculation, for F, € S, as above,

[RA(E,,8)ps(1 - p,)" dp,
= ,/:(Ipl - d(&x}(gl)lpl +lpy - d(sm)(51)|(1 - p1))P‘11(1 - pl)adpl
> [1(ps 8Py + lpy ~ 8~ 2)pS(L ~ £1) "oy

= /:Ra(Fp’ 80)P1(1 - pl)adpl-

[The second inequality in (5.1.4) follows from (5.1.1).] In view of (5.1.3) there is
equality throughout (5.1.4) if and only if

(5.1.4)

(5.15) d(el}(') = Ygll('), d(fm)() = Y,E,m()'
It follows that d satisfies (5.1.5) since Ry(F, §) < Ry(F, &;).
Now let

Gz(t) = O’ t< gl,
’ £1 -<- t < gi’

3
8
=%’ £i3t<£m,
1, t>¢,,i=2,...,m—1.

(5.1.6)

Then in view of (5.1.5)

0 < Ry(G;,8;) — R«(G;,8)
- (5.1.7) = 1(sup|Gi(2) = ¥{(£)] — sup|G,(¢) ~ d(2)])
= 1(—sup|G,(¢t) - d;,(t)l) <0.
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It follows that d;(8) = v(2), i=2,...,m — 1. This together with (5.1.5) shows
d = v/, so that 8’ is admissible. O

COROLLARY 5.1.2. Letn =1, L = L, %= %,([0,1]). Then & is admissible.

Proor. This corollary follows from Theorem 5.1.1 as did Corollary 4.1.2
from Theorem 4.1.1. O

REMARK 5.1.3. As was the case in Remark 4.1.3, admissibility of §; when
F = F((0,1)) does not follow from the proof used for Corollary 5.1.2, and we do
not know whether §; is admissible in this case. There seems to be some basis for
thinking that the situation here parallels that in Section 4 and so for conjectur-
ing that &, (and §}) is inadmissible for %.

6. Results for estimating the median with loss L,.
6.1. Admissibility of 8, in discrete settings.

THEOREM 6.1.1. Let L = L,, = %,,. Then the sample median &, as de-
fined in (2.4.6) and (24.7) is admissible.

PROOF. A direct proof involves a stepwise Bayes argument of many steps.
However, all these steps can be combined into a much simpler induction
argument, proving a more general result.

It is convenient, as in the proof of Theorem 3.1.1, to consider the problem in
multinomial form with p;, = Pp({{;}) and 0, = #{x;: x;,=§;, i=1,...,n}. The
vector p = (py,- .., D,,) describes F, and the vector n = (n,,...,n,,) € N(n, m),
which has a multinomial (n, p) distribution, is a sufficient statistic.

In the statement of the induction hypothesis we will consider loss functions
which also depend on 7. Specifically, we consider losses of the form

(6'1'1) L(F’ d, 'I) = l("l)L.;(F’ d)’

where I(7) > 0 for all possible 7. We will also consider sample quantiles other
than the sample median. It is necessary here to use a precise, and slightly
restricted, definition of sample quantiles. For 0 < a < 1 the set of ath sample
quantiles is A (7), as follows: If a =i/(n + 1), i =1,...,n, then A7) con-
tains the unique point £; for which ©/_/n; <i <X/ ;. If a = 0 or 1, respec-
tively, then A(n) = {§) or {({,), respectively. If i/(n + 1) < a <
G+1)/(n+1),i=0,...,n,then A(n) = A, /i1 (M) Y Ais1)/n+ (M)

An ath quantile estimator is any (randomized) procedure & [to be also
denoted as 8(n) and 8(-|n)], for which

(6.1.2) 8(A(m)n) = Pry(A(n)n) = 1.

The sample median §,, defined in (2.4.6) and (2.4.7), is, of course, a } quantile
estimator. For later use in connection with randomized procedures, define

L(F, 8(n), n) = [L(F, a,n)8(daln).
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Here is the induction hypothesis:

H(n, m): Fix n, m. Then for any loss function of the form

(6.1.3) (6.1.1) any ath quantile estimator &* say, is admissible.

o Furthermore, if R(F,8) < R(F, 6*) under the loss (6.1.1) for
all F € %, then § = §*.

For any n, H(n,1) is trivially true since there is really only one quantile
estimator, namely, 8({£,}|7) = 1. This estimator has risk 0 and is admissible, and
no different estimator has risk 0.

Now consider H(n, m), m > 2, and assume H(n’, m’) is true for n’ = n,
m’ <m —1and for n’ < n — 1, all m’. Suppose 8* is an ath quantile estimator,
and

(6.1.4) R(F,8) < R(F,8*), VFe%,.

By symmetry it suffices to consider the case a < 1. In particular, (6.1.4) holds for
all F=F, having p,=0. It then follows from the assumed validity of
H(n, m — 1) that
(6.1.5) 8(n) = 8*(n) whenever 1, = 0.
[It is important here that §*({{,,}, n) = 0 when 7,, = 0, because of the assump-
‘tion that a < 1.] Because of this,

0 < R(F,8*) — R(F,9)

- X (3)(5(1”"3*(11),11)-E(Fu?(n),n))f[lp?'

nE€N(n, m)

= Pn > (#)(E(Fﬂs*(n),n)

{n€N(n, m): 1,21}
(6.1.6)

—E(Fﬂ?(n),n))(ﬁlpf) N

=Pn X (n " 1)[#5(3(1", 8*(n + en),n + ey)

ne€N(n—-1,m)
_ m
_L(F,8(n +e,),n+ em))] e
i

where e, denotes the mth unit vector. Define the new loss function
L'(F,a,n) = (n/(n, + 1))L(F, a,n + e,,) and the procedures §* and &’ on
N(n — 1, m) by 8*(n) = 8*(n + e,,) and 8'(n) = 8'(n + e,,). Then (6.1.6) im-
plies, by continuity, that

o< T ("3 ETFE s,
neN(n-1,m)

(6.1.7) _
—L'(F,8(n),n)) i=l'11p3"'-
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The assumed validity of H(n — 1, m) then yields from (6.1.7) that §*'(n) = 8'(q),
n € N(n — 1, m), since 8*(n) is a min((n + 1)a/n,1) quantile estimator. Thus,

(6.1.8) 8*(n) =8(n), Yne N(n,m)>n, > 1.

(6.1.5) and (6.1.8) imply that 8 = §*, which proves the validity of H(n, m). The
validity of H(n, m) for all n, m obviously yields the assertion of the theorem as
a special case. O

REMARK 6.1.2. The proof of Theorem 6.1.1 shows the validity of H(n, m), a
much more general fact than that actually claimed in the theorem. This added
generality has an ironic backlash.

Note that the validity of H(n, m) also implies, for example, that x,, =
min{x;: i=1,...,n} is an admissible estimator of the population median.
Obviously, x,), while admissible, is not a very worthwhile estimator. We have,
consequently, proved &, to be admissible in a manner which does not give any
information as to whether §, is also a worthwhile estimator. (It nevertheless
probably is.)

The preceding observation emphasizes a commonplace fact. Merely to show
that an estimator is admissible does not guarantee it is a worthwhile estimator.
Other aspects of the performance of any admissible estimator must also be taken
into account.

COROLLARY 6.1.3. Let L = L,, = %,. Then the sample median as defined
in (2.4.6) and (2.4.7) is admissible.

Proor. This follows immediately from Theorem 6.1.1 and Theorem 3.1.2. O

6.2. Concerning admissibility for #,. Let %= %,. For n =1, §, is admissi-
ble since it is the best location invariant estimator for the problem in which % is
restricted to the set of uniform distributions on (6 — 3,60 + }), — o0 < 6 < co.
For n odd, n > 3, it appears reasonable to conjecture that §, is still admissible.
For even n, §, [defined by (2.4.7) with any #, 0 < 7 < 1] is not admissible. This
inadmissibility is closely related to the nonuniqueness of §,. 8, will be shown to
be dominated by a noninvariant version of the sample median. It may be that
some noninvariant version of the sample median is admissible.

THEOREM 6.2.1. LetL = L,, = %, and let n be even. Let §, be defined by
(2.4.7). Then §, is inadmissible. A better estimator is

8(x) = X(nr2),2p U X(niyn <0
(6.2.1) =0, U Xnyp <0< Xnizy2)

= x(n/2), if x(n/2) > 0.
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ProOF. The proof resembles that of a qualitatively analogous result in
Farrell (1964). As in the proof of Theorem 4.2.1 it suffices to consider the case
F = U, the uniform distribution on (—p,1 — p), 0 < p < 1. Note that R(U,, §,)
is independent of the choice of = in (2.4.7), as can easily be seen from the
left—right symmetry of the integrals defining R(U,, 8,). By symmetry, it suffices
to choose p < ; and then to choose 7 = 1 in the definition of 8, and to show
R(U,, 8) < R(U,, §,) with strict inequality for p > 0. Then m = U, (3) = 0and
for0 <p < i, '

R(Up’ 80) - R(Up’ 8)

- —|m-0 dU, (x,
(6.2.2) x(,,/z)SOSx((n+2)/2)('m X(n /)l |"”f I)H p(xl)

+f ces f (|m - x(n/2)| = |m - x((n+2)/2)|)ndUp(xi)

X(n+2)/2)<0
>0,

since both integrands in (6.2.2) are positive. When p = 0 then RU,, 8) =
R(U,, 8) since then 8 = §, with probability 1. O

7. Modified loss functions for discrete problems. The loss functions
L,, L,, L, considered previously, are conventionally defined only for F o In
Section 2 we extended the conventional definition in the apparently obvious
manner to also apply when F € #,. Corresponding admissibility results were
then presented in Sections 3-5. However, there are other ways to transfer the
definitions of L; from %, to #%,. We will consider in detail only the loss
function L, since this is the most tractable of the three. First the modified loss
functions will be defined and then admissibility results will be presented.

7.1. Modified loss functions. We have so far been discussing estimation of
F(-), the right-continuous version of the c.d.f. It can be argued that it is more
suitable (as well as more aesthetic) to estimate the symmetric version of the
c.d.f., defined by

(7.1.1) . F(t) = (F(t™) + F(¢%)) /2.
Instead of the loss function Ly(F, a) = [(F(t) — a(t))? dF(t) one then considers

(7.1.2) Ly(F,a) = [(F(¢) - a(t))" dF(t).

Of course, when F € %, it is true that Ly(F,a) = LY F, a). However, when
F € #}, the two losses are not equal [and they are not equivalent in the sense
that Ly(F, a) = y(F)Ly(F, a) + A(F) for some functions y(-) > 0, A(-)]. There
is consequently no a fortiori reason to expect that admissibility under one loss
should imply admissibility under the other; and we shall see that it does not.
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The loss L, can be modified in a different fashion. Note that L, can be
written for F € %, in the equivalent form

(7.1.3) Ly(F,a) = jo Y(u - a(FY(u)))’ du,

by making the substitution u = F(t) in the integrand. This expression also
makes sense for discrete problems, with the obvious definition of F~!, namely,

(7.1.4) F\(t) = sup{x: F(x) <t} = inf{x: F(x) > ¢}.
See Ferguson (1967), page 216, for a related formula.

If F is discrete it is no longer always true that Ly(F, a) = Ly(F, a). In fact,
simple calculations show that for all c.d.f.’s,

(7.1.5) Ly(F,a) = Ly(F,a) + A(F),
where

A(F) = Y (F(t") - F(t))° 2.

{t: F(T*)>F(t™)}

REMARK 7.1.1. It follows from (7.1.5) that admissibility under loss L} is
equivalent to admissibility under loss L#. Consequently, in the next section we
explicitly consider admissibility only for the loss Lj.

REMARK 7.1.2. The same sort of arguments used to justify the modifications
Lj and Ly of L, could be used to motivate consideration of

Ly(F, a) = sup|F(t) — a(t)|
or
Ly(F,a) = sup |w— a(F Y(w))

O<w<l1
in preference to L;. However, it is not the case here as it was in (7.1.5) that
LY(F,a) = LYF, a) + A(F) for some Ay-). Hence, admissibility under L} is
not necessarily equivalentj to admissibility under LZ'.

ExAMPLE 7.1.3. It was noted in Remark 2.2.2 that 7, contains estimates
which are not:.right continuous. The possible desirability of including such
estimates in the action space can easily be seen in connection with the losses Lj
or L} since the problem can then be understood as one of estimating F which
itself is not right continuous. However, even when the loss is L,, so that one is
estimating F, it is desirable to allow estimators which are not right continuous.
One reason for this is illustrated by the following simple example.

Let = %,(I) and L = L,. Consider the no data decision problem (n = 0!).
Let:x, € I and

(7.1.6)
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Then the (nonrandomized) estimate 8* = a, is admissible even though a, is not
right continuous.
To prove this assertion, let

F, (t)=0, t<ux,

Il
= o

(7.1.7) , x<t<y,
' ,oo 2y,
and note that
Ry(F, ,,8) =0 forallx <x,<y
if and only if 6 = §*.
With considerably more effort one can prove §**'= a(¢) is admissible under
loss L, with #= %p((— o0, )), where

a(t) =4 <0,
(7.1.8) =1 ¢t=0,
=3, t>0.

[Note that this is the best invariant estimator for the special problem in which
F=FpN{F: F07) < ;< F0%")}.]

As previously noted we wish to consider carefully admissibility for discrete
problems with L = Lj. For L} and &%= %, the best invariant procedure is, of
course, still §y(x) = B(-) since L, and L} are equal when F is continuous.
However, when F is discrete L, and Lj are no longer always equal. Since the
problem with loss L} can be viewed as a problem of estimating F, the symme-
trized version of F, it thus seems natural to investigate admissibility of the
symmetrized version of §,. It is also necessary to take into account the end
points of the domain of #. Thus, for #=%,, we will investigate (and disprove)
admissibility of

B£7)/2, t=§,
(7.1.9) 8 = Br(2) = (BAt7) + B(t"))/2, & <t<i,,
(B¢7) +1)/2, t=4t,

When %= %,([a, b]) [or #((a, b))] the estimator is defined similarly with a in
place of £, and b in place of £,,. [Of course, in the case of F#((a, b)) the special
values at ¢ = @ and ¢ = b are irrelevant.]

REMARK 7.14. The choice to investigate 8}, as defined in (7.1.9), seems
natural on the basis of symmetry, but is otherwise a somewhat arbitrary choice.
We could instead have decided to investigate admissibility of §, itself, or rather
of 8§ as defined in (2.4.9). [Incidentally, while we can prove the inadmissibility in
this problem of the estimator in (7.1.9), we have not been able to prove the
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inadmissibility of the estimator (2.4.9) in this problem, although we suspect it is
indeed inadmissible.]

One might observe that L) and %,((a, b)) are invariant under monotone
transformations of (a, b), and ask, “ Why not decide to investigate admissibility
of the best invariant estimator with respect to L} and %#,(a, b)?” The answer to
this question is that for #= %, there is no best invariant estimator under L.
(This fact actually holds for all of our discrete problems involving estimation of
the c.d.f., not merely for the L, problem. To understand this fact, note that the
group of strictly increasing monotone transformations is far from transitive on
%5 so one should not expect there to exist a best invariant estimator. It is then
easy to produce examples showing that no best invariant estimator exists.)

7.2. Inadmissibility of 8}’ for loss L, and L}. The results here in all cases
are similar to those for L, and % = %#. (Perhaps this supports the claim that L}
is the best transfer to discrete settings of the loss L,.) Recall that &; is now
replaced by 8§'(x) = B/(-), with B” defined in (7.1.9). The function {(¢) which
appears later was defined in (4.2.1).

THEOREM 7.2.1. Let L = L} or L. Define 6*(x) = d,*(-) by
(7.2.1) dx(t) =B/(¢) + X &.(8)/2(n +1)(n + 2).
i=1

Then
nPry(X < 0)Prp(X > 0)
4(n+1)(n+2)°

(7.2.2) R(F,8) — R(F,8*) >
> 0.
[Note that (7.2.2) is the same as (4.2.5).]

ProOOF. Suppose #= %,,. Note that

(7.2.3) BI(t) = h(t) + X x.(t)/(n +2),
i=1
where “
‘ 1 .
h(t) = Dk ift=¢,
i 1 'f
_n+29 1£1<t<£mr
ft=¢,,

T 2n+o)’ !
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and
xi(t) =0, ift<ux,
=3, ift=ux,
=1, ift>x.

Define a{, a;, aj, a4, a; as a,, ay, a,, a5, ag in (4.2.7)-(4.2.12) but with an arbi-
trary dF replacing dU, throughout, and with x’ replacing x and F replacing
U,(?) in the integrand of a,; and define a} by

(7.2.4) af = j ¢(t)h(t) dF(x) dF(¢).

Direct calculations yield that )
aj=p(1-p)/2=aj,

(7.2.5) a;=p(l-p) = a3
ag=2p(1-p)

[as in (4.2.7)-(4.2.12), where p = Prp(X < 0)]. Also,

aj = — [Prp({£))Prr(X > 0) + Pro({£,})Pre(X < 0)] /2(n + 2)
< 0.

Let R” denote the risk function corresponding to LY. Let a = 1/2(n + 1)(n + 2),
as in Theorem 4.2.1. Then, as there,
R"(F,8;) — R(F, )

(7.2.7) na} + naj + n(n — 1)a{
= 2a| naj —
n+2

(7.2.6)

so that
R"(F,8) — R(F,8) = p(1 = p)n/4(n + 1)(n + 2)°
(7.2.8) —2anat/(n + 2)

>p(1 - p)n/4(n + 1)(n + 2)°.

This verifies (7.2.2) in this case. The result for L is identical because of the
relation (7.1.5) between Ly’ and Lj. The proof when &= %([a, b]) or #((a, b))
is identical except that a, b replace £, £, in the definition and evaluation of a}.
[Of course, when #= Z((a, b)), a} = 0 since Pry({a}) = 0 = Prp({b}).] O
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