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CONVERGENCE RATES FOR EMPIRICAL BAYES ESTIMATION
IN THE UNIFORM U(0,6) DISTRIBUTION

BY YosHIKO NoGgami

University of Tsukuba

Let {(X;,0,)} be a sequence of independent random vectors where X,

has a uniform density U(0, §;) for 0 < 6, < m (< ) and the unobservable 6,

are i.i.d. G in some class ¢ of prior distributions. In the (n + 1)st problem we

- estimate 6,,, by t,(X,..., X,, X,,,,) = t,(X), incurring the risk R, =

E(¢,(X) — 0,.,)% where E denotes expectation with respect to all random

variables {(X,, 6,)}?*]'. Let R be the infimum Bayes risk with respect to G.

In this paper the author exhibits empirical Bayes estimators with a

convergence rate O(n~/2) of R, — R and shows that there is a sequence of

empirical Bayes estimators for which R,, — R has a lower bound of the same
order n~1/2,

1. Introduction. Since Robbins (1955, 1964), empirical Bayes (EB) prob-
lems have been developed in great detail in the literature; for examples, see
Johns and Van Ryzin (1971, 1972), Van Ryzin and Susarla (1977) and a recent
paper by Robbins (1983). Hannan and Macky (1971), Singh (1974, 1976) and
many other authors have discussed (rates of) risk convergence under exponential
families of distributions. For nonexponential families of distributions Susarla
and O’Bryan (1979) have discussed EB interval estimation for the parameter 6 of
a uniform distribution U(0, §) and Fox (1970, 1978) has considered EB squared-
error loss estimation problems without rates.

In this paper the underlying distribution is U(0, §) for 0 < § < m (< o0),
where 6 is distributed according to a prior G in some class ¢ of distributions and
the author exhibits EB estimators with a rate O(n~1/?) of risk convergence and
shows that there is a sequence of EB estimators for which a lower bound of the
risk convergence has the same order n~!/2, Independently of the author’s work,
Wei (1983) has established EB estimators for 8 [ € (0, o0)] using kernel functions
[see Parzen (1962)] with a rate near O(n~'/2?) under the assumption of infinite
differentiability of the marginal pdf of X and with a rate near O(n"!) under
further strong assumptions on the marginal distribution of X. The rates in this
paper are obtained withcut differentiability of the marginal pdf of X. In Section
5 one example of prior distributions is given which does not satisfy Wei’s (1983,
1985) assumptions, but satisfies the assumptions in this paper.

2. The empirical Bayes problems. Let X be a random variable distrib-
uted according to cdf F; given 6. The §; are ii.d. random variables distributed
according to the unknown prior distribution G. Let Xj,..., X, be n ii.d. past
observations with each X; distributed according to the marginal cdf K(x) =
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[Fy(x) dG(0). Hereafter we let X denote the (n + 1)st observation X, ,, distrib-
uted according to F . Let = indicate a defining property. The EB estimation
problem is to estimate 6 =6,., by using all n + 1 observations X =
(X,,..., X,, X). Let E denote expectation wrt the product measure on the space
of (X,,..., X,,(X, 0)), resulting from K" and the joint distribution of (X, @).
With X = x, let ¢;(x) denote the Bayes estimator for the prior G given by

() () = [012) aG(9) [1() aa(0),

where fy(x) is the pdf of X, conditionally on 8. The risk of an EB estimator ¢,
for 4 is

R, = R(t,,G) = E((t,(X) - 0)’)
and the Bayes envelope is
R = R(¢g,G) = il;fR(¢,G).

When R, and R are both finite,
(2.2) (0<) R, - R = E(¢6(X) — t,(X))".

We call a2 7B estimator asymptotically optimal (a.0.) when R, — R — 0 as
n— oo.\V il find convergence rates for (2.2).

We use une following notational conventions. [A] denotes the indicator
function of the event A. Let A and Vv denote infimum and supremum. Let E,
and E denote expectations wrt the conditional product measure on the space of
(Xy,..., X,,(0)x)) given X = x and the marginal probability measure of X,
respectively. We denote E (Y — E (Y))? by Var,Y. Let — ; denote convergence
in distribution and —, denote convergence in probability.

3. An upper bound for R, — R. Let m be a positive finite number and
suppose that the support of G is included in the interval (0, m). Let fy(x) =
07[0 < x < 8] for 8 € (0, m). We shall exhibit a.o. estimators with an upper
bound O(n~1/2) for (2.2).

Let k(x) be the marginal pdf of X, which is of the form, for x > 0,

(3.1) k(x) = [f(x) da(0) = ["07d6(0),

and assume 0 < £(0) < oo. Also let the prior distribution G of 6 satisfy
(K(X)(l - K(X))

(3.2) VD)

)=M(<oo)

and define by ¢ the class of priors satisfying the preceding assumptions.
Fox (1978) observed that K(x) = xk(x) + G(x) because Fy(x) = 6 x[0 <
x < 0]+ [x = 0]. Hence, from (2.1) we have the following Bayes estimator:
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When k(x) > 0,
(3.3) ¢a(x) = (1 = G(x))/k(x) = x + Y(x),
where

Y(x) = (1 - K(x))/k(x).

Let £ be a positive number depending on n such that 0 < 2 <1and & — 0 as
n — oo. We also let K,(y) = n"'L7_,[ X, < y] and

Jj=1

k(y)=h YK, (y+h)-KL(y))
= (nh)™! i [y<X;<y+h]

If we define G, (x) = K (x) — xk,(x), then we get an estimate for ¢5(x):
(34) ¢u(x) =0V {(1 - Gy(x))/ka(2)} Am=0V (2 +y,(x)) Am,
where
Yal(x) = (1 = K,(2))/ky(x).
Since we shall use Lemma A.2 of Singh (1974) to obtain an upper bound for
R, — R, we restate it here.

LEMMA 3.1. Lety, zand L be in (— o0, 0) withz + 0 and L > 0. If Yand Z
are two real random variables, then for every y > 0,

Y b
E(y /\L)

S-3
where E here means the expectation wrt the joint distribution of (Y, Z) and
at=aifa>0; =0ifa<O.

%

. Y
< v+(y— 1 |z|_7{E|y — Ylv + ('_
2

+ 2-<v—l>*LY)E|z - Z|7},

In (3.3) and (3.4), let ¢;(x) = v/w and ¢,(x) =0V (V/W) A m. In view of
(2.2) with ¢, replaced by ¢, and by applying Lemma 3.1, we find

(0<) R, -~ R < E{Ex(W(X) - y,(X)| A m)*)
< E[8k%(X){Ex(K(X) - K, (X))’
+(3m?/2)Ex (k(X) - k,(X))}].
Since
E(K(x) - K,(x))" = n"'K(x)(1 - K(x))

and

E,(k(x) — k,(x))" = Var,(k,(x)) + (E,(k,(x)) — k(x))?,
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the preceding inequality reduces to

o K(X)(1 - K(X))
(0O<)R,-R<8n E( (T )

(3.5) +12m¥ E(Vary(k,(X)) /k*(X))

+E((Ex (kX)) — k(X)) /kX(X))}.
But, since % is a decreasing function, we have
(3.6) Var,(k,(x)) < (nh) k().
Also, since
(0 <) (k(x) — E (k,(x)))/k(x) <1,
we can easily verify that
(3.7) E{(k(X) ~ Ex(k,(X)))*/k*(X)} < hk(0).
(3.5)—(3.7) and (3.2) give

THEOREM 1. For any prior distribution G € 4, we have

(0 <)R,— R <8Mn~' + 12m*{m(nh)~" + k(0)h}.

From Theorem 1 we obtain that, with a choice of 2 = n~'2 and for some
positive constant c,,

(3.8) sup (R, — R) < ¢,n™ /2,
Ge¥9

4. A lower bound for R, — R. Throughout this section, we assume that
G is the degenerate distribution at § = 1. Defining 0/0 as 0 we have ¢g(x) =
[0 < x < 1]. For sufficiently large n, let 8 be some positive number such
that 1 > § > h. Letting

B = [(1 - K,(x))/ky(x) < 1]
and

Sulx) =1 -2 — {(1'- K,(x))/k,(x)}
we obtain from (2.2) that
(4.1) R,- R > E(Ex({2(x)B)[0 <x <1-8]).

Let u=%7,[X;<x] and v =X} ,[x < X;<x + h]. Then, E u = nx,
Var,(u) = nx(1 — x), E,v = nh and Var,(v) = nh(1 — h). Letting

Y=(u-nx)/ynx(1 —x) and Z=(v-—nh)/Jnh(1 —h),
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we obtain
Q-xWV1-hZ+h?x(1-x)Y
(nh) V21 —hZ +1 '

To get a lower bound for R, — R we shall use (4.1) and the fact that for fixed
x, \/Eﬁg'n(x)B -, N©O,1 - x)?%) as nh > oo. Here, N(c, d) denotes the normal
distribution with mean ¢ and variance d. We then apply a convergence theorem
[cf. Loéve (1963), 11.4, A(i)]:

(4.2) If U, >, U, then liminf EU? > EU2.

Vnh§,(x) =

Lemma 4.1 will allow us to prove the preceding convergence in distribution
needed for the proof of Theorem 2. Let A° denote the complement of a set A.

LEMMA 4.1. If his a function of n such that (1 > 8 >) h > 0 and nh > o
as n — oo, then we obtain that for 0 <x <1 —§,

E B> 0 asn— oo.

ProoF. Throughout the proof, assume that 0 < x <1 — . Let
W=1-[X;<x]-h'x<X,<x+h]
and
W=n') W,.
j=1
Then, since E,W;= —x and Var (W) = n~'Var(W,) < (nh)~', Chebyshev’s
inequality leads to
E,B°=E,[W-EW> x] < (x?rh) ',

which tends to zero as n = c0. O

LEMMA 42. When h is a function of n such that (1>8>) h— 0 and
nh—> cocasn—> o, for 0 <x <1-34,

(4.3) ynh$,(x)B -, N(0,(1 - x)°).

PROOF. Since as n — oo, h?Y —,0, (rh) %1 -hZ—>,0 and Z -,
N(0,1) and since by Lemma 4.1, E.B— 1 for 0 <x<1—§ as n > o0, we
obtain the asserted result by applying Slutsky’s theorem [Serfling (1980), page
19]. O

THEOREM 2. If G is the degenerate distribution at 6 = 1, then for any e > 0
and (1 > 8 >) h > 0 such that nh > oo as n — oo, we have for sufficiently large
n’

(4.4) R,— R> {3711 - 8% —&}(nh)"".
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PrOOF. Applying (4.2) to (4.3) gives that liminf E ((nh){2(x)B) > (1 — x)?2
for 0 < x < 1 — §. Thus, by Fatou’s lemma

liminf E{E,{((nh)§2(X)B)[0 < X <1 - §]}}
> E{liminfE  {((nh){2(X)B)[0 < X <1 - 8]})

> fol_s(l —x)dx

=371(1-8%).
Finally, (4.1) and the definition of liminf give us (4.4) O

From Theorem 2 we can see that there exists a G € ¢ such that with a choice
of h = n~'/% and for some positive constant c,,

een™V2<R,- R,

which is the same order as the upper bound (3.8). Hence, the rate of risk
convergence for the priors in ¢ cannot be improved beyond n~'/2,

5. Example. Let g(6) be the pdf of G(8). For 0 < m < + o0, we define
g(0) =4m72[0<0<27'm] + 4m (1 - Om ')[2"'m < 0 < m],

which is the triangular distribution on (0, m).
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