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Given a random sample of size n from an unknown continuous distribu-
tion function F, we consider the problem of estimating F nonparametrically
from a decision theoretic approach. In our treatment, we assume the
Kolmogorov—-Smirnov loss function and the group of all one-to-one monotone
transformations of real numbers onto themselves which leave the sample
values invariant. Under this setup, we obtain a best invariant estimator of F
which is shown to be unique. This estimator is a step function with unequal
amounts of jumps at the observations and is an improper distribution
function. It is remarked that this estimator may be used in constructing the
best invariant confidence bands for F, and also in carrying out a goodness-of-fit
test.

1. Introduction. Given a random sample of size n from an unknown con-
tinuous cumulative distribution function (cdf) F, we consider the problem of
estimating F. To evaluate the discrepancy between F and its estimator, several
loss functions are available in the literature. Aggarwal (1955) considered the
Cramer-von Mises type of loss functions

(1.1) L(F, F) = [IF(x) - F(x)I$(F(x)) dF(x),

where 1 is a specific function of F(x) and r is a positive integer, and obtained
best invariant estimators under the group of all one-to-one monotone transfor-
mations. In particular, he showed that the sample cdf is the best invariant
estimator under the preceding loss function with ¢(x) = [x(1 — x)]~*. Using a
similar approach, Phadia (1974) derived a set of best invariant one and two sided
confidence bands for F. Only recently, Brown (1984) gave a formulation and
obtained some partial results when F' is not assumed to be continuous.
Phadia (1973) assumed a noninvariant loss function of the type

J(F=E)y(F)aw,

where W is a known nonnull measure on R!. Without assuming the continuity of
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F, he obtained minimax estimators. In particular, he showed that the sample cdf
is minimax when y(x) = [x(1 — x)]~!. (For the invariant loss function (1.1), it is
an open question whether the best invariant estimator is minimax [see Ferguson
(1967)]. Recently, Yu (1986a, b) announced some partial results in this direction.)
Another type of loss function which is also invariant under the group of
transformations is the Kolmogorov—Smirnov loss function given by

(1.2) L(F,F) = sgp|F(x) - F(x)|.

This loss function is difficult to handle analytically and until recently no results
were available on the estimation of F' using this loss function. Recently, Brown
(1984) reported the best invariant estimator under this loss function, but only for
the case n = 1.

Our objective in this paper is to obtain the best invariant estimator under this
loss function for any finite sample size.

2. The main result. We consider the following decision theoretic structure:

F: F is a continuous cumulative distribution function defined
F = . 1 ,
on the real line R

g { ®: @ is a right continuous cumulative distribution function on}

R! such that 0 < ®(— ) < ®(+ ) <1

The loss function is given by L(F,®) = sup,|F(x) — ®(x)| for F € # and
dev.

Z is the sample space for samples of size n, ZC R". Let & be a decision rule,
8: & - /. Define the risk function of the decision rule 8 (or F') by

R(F,8) = E(L(F,5(-))) = E(L(F, F)).

Let x, <x, < .-+ <x, be an ordered sample from F € #%. Since the vector of
order statistics is sufficient for F, it is enough to consider only the estimators
which are functions of the order statistics. Also, it is well known [see, for
example, Aggarwal (1955) or Ferguson (1967) for a formal proof] that the only
procedures which are invariant under the group of transformations
G = {g‘p: gq;(xh ] xn) = (q)(xl)y cee q)(xn)) and ¢ is a}

continuous strictly increasing function from R' onto R’

are of the form
. n+l
(2‘1) F(x) = Z ujl[ X1, %)) (x))
j=1
where 1,(-) is the indicator function of the set A, the u;’s are constants,
xo= —o0 and x,, , = +00. Clearly, F €.&/. Thus, to find the best invariant
estimator, we have to determine the u,’s suitably.
Our main result is

THEOREM 1. Let x, <x,< --- <x, be an ordered sample from F € %.
Then, under the loss function L, the action space &/ and the group of
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TABLE 1
Optimal values of u;

i 1 2 3 4 5 6 7 8 9 10
1 0.3750
2 0.2929
3  0.2441 0.4013
4 0.2072 0.3366
5 0.1903 0.2956 0.4295
6 01724 0.2608 0.3759
7 0.1567 0.2338 0.3351 0.4448
8 0.1483 0.2166 0.3024 0.3989

9 0.1361 0.1966 0.2766 0.3644 0.4553

10  0.1263 0.1817 0.2567 0.3350 0.4175

11 0.1212 0.1708 0.2362 0.3106 0.3858 0.4613

12 0.1148 0.1611 0.2222 0.2888 0.3568 0.4295

13 0.1096 0.1517 0.2075 0.2697 0.3327 0.3994 0.4662

14 0.1050 0.1440 0.1954 0.2537 0.3131 0.3763 0.4373

15 0.1000 0.1358 0.1854 0.2391 0.2952 0.3538 0.4117 0.4705

16  0.0960 0.1317 0.1756 0.2255 0.2789 0.3336 0.3885 0.4442

17 0.0914 0.1246 0.1666 0.2670 0.3183 0.3693 0.4206 0.4732

18  0.0904 0.1198 0.1604 0.2065 0.2537 0.3027 0.3512 0.4008 0.4501

19  0.0869 0.1151 0.1545 0.1971 0.2423 0.2880 0.3347 0.3814 0.4290 0.4762

20  0.0821 0.1109 0.1470 0.1882 0.2313 0.2756 0.3195 0.3639 0.4088 0.4544

25" 0.0718 0.0942 0.1236 0.1557 0.1897 0.2247 0.2609 02972 0.3338 0.3707
0.4076 0.4446 0.4815

“The second row for n = 25 contains values for u,, i = 11, 12 and 13.

transformations 9, the best invariant estimator of F is unique and given by
(2.1), where the constants u; are

for n=1, u,=3/8 and uy,=1-u, =5/8,

for n=2, u,=1-1/y2, u, =1/2, us=1-u, =1/y2,
2
for n>3,

(2.2) ui=l-u,., ;, Jj=12,...,[(n+1)/2].
The values of u; for j < n/2 are given in Table 1 and for j > n/2 can be
calculated from (2.2).

REMARKS. The estimator is of course a step function with positive masses at
the observations only. Like most of the best invariant estimators and the
minimax estimator referenced earlier, it is also an improper distribution function.
However, unlike them, the amounts of jumps at the observations are not
constant but increase toward the midpoint. It is also symmetric about the
middle.

For the sample sizes n = 1 and 2, we have exact results. For n > 3, the task
becomes very difficult, and therefore we have used an algorithm to compute the
u;’s on a computer. It would be interesting to discover a formula to calculate the
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sizes of jumps as in the case of the abovementioned estimators. However, it is
doubtful whether any such formula can be discovered in a closed form.

To prove the theorem, we need several preliminary results.
Since F is assumed to be continuous, by using the probability integral
transformation we may rewrite the risk of F € &7, given in (2.1) as

R(F,8) = E[L(F,5(-))] = E|sup|F(x) - n; udp, ey (%) ]
(2.3) = E|suplt - nilujl[ 3o (t) ]

=n! [ (3, 5) dy = nle(a),

where 17 = (uly-"a un+1)’ 5’ = (yly'“) yn)1

n+1
(2.4) (u,y)= Sl.':p t— Zl udp, o (¢)
j=
and
(2.5) Q={YERNO =)<y < <Y<Yy =1}

The expectation in the third equation is taken with respect to the uniform
distribution on I" = [0,1]".

Next we note that the supremum in (2.4) is achieved at ¢ =y, for some
1=0,1,2,...,n + 1. Define the distances between ¢ and the estimator by

U; = Yi_1s fori=1,2,...,n+1,
Yicpe1 — Ui_p_q, fori=n+2,...,2n+ 2.

o L@y-|
We thus get l(ﬁ’ 5’) = maxlsis2n+2{|li(a: y)l}

Fori=2,...,2n+ 1and fori = 1,2n + 2 when u, # 1 — u,,, define @, by
27) Q@) = {5 €@, 5) > 1(& ), j# i, j=1,....,2n + 2},

on which (&, y) = l,(u, y).
When i = 1,2n + 2 and 4, = 1 — u,, ;, we define

Ql(ﬁ) v SZ271-4—2("7) = {5’ € SZ|ll(ﬁ9 5’) = l2n+2(ai 5’)}
Note that the ©,’s are disjoint sets and U?"}2Q, = Q.

LEMMA 1. The risk function @(u) is strictly convex for

ieA={uel"'0<uy <uy< -+ <u,,<1}.
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ProOF. Let #,@ € A, ## & and A € (0,1). Since by (2.6) all l(u, y) are
affine functions in u, for any fixed y € Q we have

MNz+@Q-MNa,y) = m?x{|l,-()\ﬁ +(1=Na, y)}

max {AL(#, 3) + (1 - M)i(@, 7))
(2.8)
< Amax|l(, 7)| + (1 - A)mjaxll,(é, y)

=AM(@, y) + (1 - M), y),

and equality occurs if and only if y € Q,(&) N Q,(®) for some given i.

Since u # w, it can be shown that there is an index i for which Q,(Z) # Q,(®)
and strict inequality in (2.8) will hold for y on a set of positive measure in .
Thus,

e(AZ+ (1 -A)@) = fﬂl()\ﬁ +(1-M\)a, 7)dy

<>\fgl(ﬁ,y)dy+(1—A)fﬂl(a,y)dy‘

=Ap(2) + (1 - A)o(a),

proving the lemma. O

Since the problem is invariant under reflection which maps x; - 1 — x,_,,,
the minimum of the convex function () will occur at a point % invariant under
this reflection. Taking into account the definition of I, this means that the
minimum of ¢ occurs at a point satisfying &, = 1 — &,_,, ,. Thus introduce new
variables

zeU,={(2,29,...,2,)0<2 <2,< -+ <2,<1)

with m =

n+1
2

Define a mapping #(Z) from U, to A as follows: If n is even, u; =z,
1 =1,2,....mu;=1-u,_;,5,i=m+2,...,.n+1and u,,, =1/2;if n is
odd, u;=2;, i=12,...,m and u;=1—-u, .5, i=m+1,...,n+ 1. Let
P(2) = (u(2)).

Since the mapping u(Z) is a linear mapping, it follows from Lemma 1 that
¢(2) is strictly convex on U,. Thus [see, for example, Roberts and Verberg
(1973), Theorems A and B, page 123] any local minimum of ¢(#) is also a global
one. From the abovementioned symmetry, this minimum occurs at some point
u(Z). Moreover, if grad ¢(z) = 0 for some z, then u(Z) is the minimal point of
().

The next theorem gives expressions for the grad ¢() and grad ¢(z).
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THEOREM 2. Let ¢(u) and Q,(u) be as defined in (2.3) and (2.7), respec-
tively. Then

de(u)
du,

where V(Q,) stands for the volume of the set Q;, i=2,...,2n + 1, and with

V() = V(Qyp10) = 3 V(@ U Qy,15). In addition, if ¢(Z) is as previously de-

fined, then @(Z) is differentiable at any z € U, interior of U,, and

- 99(2)
az,

Moreover, this formula is also valid on 3U,, = U,, — UL when the derivative is
interpreted as a one sided derivative.

(29) = [V(Qk) - V(Qn+k+1)]1 k=23,...,n,

(2.10)

= 2[V(Qk) - V(Qn+k+1)]7 k= 1123~"1 m.

PrROOF. For k =2,3,..., n denote by Au, a (n + 1)-dimensional vector with
Au, at the kth position and zero elsewhere. By using (2.7), we have

#(7 +Buy) - 9(a) = [ [Ua + Bu, 5) - U3, 3)] &y

2n+2

Y [AXa, 5)dy
i=1 "%,
2n+2

A,ldy + A,ldy|,
Z [-/;Zinﬂ{ L '(2,\9,’ k y]

i=1
where A, l(7, 7) = I(@ + Ba,, 5) — (@, 7), Q; = (&) and Q! = Q,(@ + Bu,).
Fori#korn+k+1land yeQ,NQ, l(u+ By, y)=I1(a+ 1By, y)=
l(u, y) = l(u, y) and, therefore, A,l(%, y) = 0. For y € Q, N Q}, by (2.6)

Akl(ﬁ, 5’) = lk(ﬁ + A_uk, 5’) - lk(ﬁ, 5’)

(2.11)

(2.12)
= (up + By = ypoy) — (U — %o1) = Auy,.
Similarly, for y € @, .1 N QL ri1
Al(z, y) = —Au,,.
Thus, (2.11) can be written in the form

(P(l_l + —uk) - (p(l_l) = Aukl:./s; nﬂ,dy_ '/;2 Ao d}?]
'k 'k n+k+1 n+k+1

2n+2

+ Al(u,y)dy
(2.13) El fsz,\sz; i 3) dy
= Auk[V(Qk N QI/e) - V(Qn+k+1 N Q;z+k+1)]
2n+2

+ X [ 8@ ) dy.

i=1 "&N\E
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Obviously, by (2.6) and (2.7),
limO[V(Qk N Ql/e) - V(Qn+k+1 N Qr/z+k+1)] = [V(Qk) - V(Qn+k+1)]'

Auy,—

It can be shown that
2n+2

Y [ A3, 5)dy = 0((Aw,)?).
i=1 i\ Q)

We omit the details. Finally, (2.13) implies (2.9) and, by using the chain rule,

(2.9) yields (2.10). O

ProoF or THEOREM 1. From (2.3), it follows that in order to determine the
best invariant estimator, we have to find a % minimizing @(&) on A. Strict
convexity of ¢(%) (Lemma 1) and the symmetry imply that this unique mini-
mum occurs at a vector u of the form #(z), where z is the unique minimum of
¢(z) on U,,. Using (2.10), it can be shown that this minimum does not occur on
aU,,. Since ¢(Z) is differentiable, this z is the unique solution of the equation
grad ¢(z) = 0 or equivalent to the solution of the system of equations

(2.14) V(2,(8(2))) = V(Qp1141(8(2))),  k=1,2,...,m.

For n = 1, this solution recapitulates the result of Brown (1984).

For n = 2, thesets Q;, i = 1,2,...,6, are sketched in Figure 1. Equation (2.14)
reduces to V(Q,) = V(Q,), leading to the quadratic equation 2z% — 4z, + 1 =0,
which yields the solution z, =1 — 1/2.

For n = 3, this calculation leads to a system of two equations in two variables
each of order 3, which cannot be solved analytically. But since @(Z2) is convex
and (2.10) gives the explicit formula for grad ¢(Zz), the unconstrained gradient
search procedure can be applied to find the minimum of ¢(Z). The calculations
of optimal z’s, for n < 20 and n = 25, were performed on the computer, using
IMSL routine ZXCGR, based on a conjugate gradient algorithm described in

Y3

o]
W
2

2 n,\m,. -

,,,l\-

F

R
ot --—\c-

pf—=-—=-=--

1)
“L

Fic. 1.
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Powell (1977). The data in Table 1 are calculated under stopping criterion
|grad (2)| <1078, 0O

REMARK. Using this best invariant estimator in place of the sample distribu-
tion function, one may construct the best invariant confidence bands, as in
Phadia (1974), under the Kolmogorov—-Smirnov loss function. However, the
calculations are difficult. Partial results have been obtained by the authors.
Furthermore, one may use this estimator in constructing a test statistic, similar
to the Kolmogorov-Smirnov statistic, to carry out a goodness-of-fit test. This
idea will be developed in a separate paper.
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