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EFFICIENT D,-OPTIMAL DESIGNS FOR MULTIVARIATE
POLYNOMIAL REGRESSION ON THE q-CUBE!

By Yong B. Lim aND W. J. STUDDEN
Louisiana State University and Purdue University

Polynomial regression in g variables of degree n on the g-cube is
considered. Approximate D-optimal and approximate D,-optimal designs for
estimating higher degree terms are investigated. Numerical results are given
“for n = 2 with arbitrary ¢ and for n = 3,4,5 and q = 2,3. Exact solutions
are given within the class of product designs together with some efficiency
calculations.

1. Introduction. Consider the polynomial regression model in g variables of

degree n on the g-cube. Thus it is assumed that for each x = (x,,..., x,) in the
g-cube,
(1.1) Z={x:|x]<1l,i=1,...,q},

a random variable Y(x) with mean X 0.f(x) = f(x)0 and variance o2 inde-

pendent of x can be observed. Here the regression functions f,(x) are known
functions of the form l_I;L X7y where m ; are nonnegative integers with sum less
than or equal to n. It is well known [e.g., Scheffé (1958)] that the number of such

. . +
functions is (" v q).

A design £ is a probability measure on Z. The information matrix is given by

(1.2) M(§) = [1(x)f(x)%(d).

If the design is implementable and N uncorrelated observations are taken, then
the covariance matrix of the least squares estimates 6 of 8 is given by

(1.3) Var(f) = %M‘l(g).

Much of the Kiefer type optimal design theory is concerned in minimizing some
functional of M~Y(§) over £.

The basic criterion of design optimality we shall use here is that of D-optimal-
ity (or D,-optimality) developed largely by Kiefer (1959, 1961a, b) and Kiefer and
Wolfowitz (1959, 1960). The D-optimality criterion is known by the celebrated
Kiefer—Wolfowitz theorem to be equivalent to the G-optimality criterion. So the
design £* is D-optimal iff the variance function d(x, ¢*) < K for all x € &,
where d(x, £*) = f(x)M™'(£*)f(x).
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In the case where interest is in only s of the K parameters in 8, it is
customary to decompose f into f' = (f/, f,’) where f, corresponds to the s
parameters of interest. Similarly the information matrix is decomposed into

Mll M12)

M=
(M21 My,

The covariance matrix of the s parameters is proportional to the inverse of

23(6) = M22(§) - M21(§)M1_11(§)M12(§)-

[Here we must interpret M;;' as a generalized inverse if rank (M;,) < K — s.]
Corresponding to the D-optimality criterion, we have the following theorem
[Kiefer (1961a), Karlin and Studden (1966b) and Atwood (1969)].

THEOREM 1.1. If M(£*) is nonsingular, then the following assertions,

(i) the design £* maximizes |Z ()|,
(ii) the design &* minimizes max,d(x, §) where d(x,§) = d(x, §) —
f(xYM;'(§)f\(x) and
(iii) max,d(x, £*) = s,

are equivalent.

To find the maximum of |2 (£)|, we use the result that

|M(§)|

. pX =,
(1 4) | s(£)| |M11(£)|

The model under consideration is invariant or symmetric with respect to the
group consisting of permutations and sign changes of the coordinates. The
invariance theorem [Kiefer (1959, 1961b) and Giovagnoli, Pukelsheim and Wynn
(1987)] which concludes that there exists a symmetric D- and D,-optimal design
is a very important tool for obtaining D- and D,-optimal designs either theoreti-
cally or numerically. All of the designs we consider will be symmetric with
respect to the preceding group.

An outline of this paper is as follows. In Section 2 we discuss the case n = 2.
Kiefer (1961a), Kono (1962) and Farrell, Kiefer and Walbran (1967) give a
complete description of a symmetric D-optimal design. We give a similar analysis
for estimating only the quadratic terms and simplify the corresponding geometri-
cal considerations. In Section 3 we give some numerical results for g = 2,3 and
n = 3,4,5. These results support the general idea that the D- and D,-optimal
design are “close to” product designs. Thus for the cubic regression in one
dimension we use four support points in our design while for g = 2, the D-opti-
mal design is on a nearly rectangular grid of 16 points. This motivated the use of
product designs in Section 5. Through the use of certain canonical moments we
are able to describe more or less explicitly the D- and D,-optimal product design.
These turn out to be fairly efficient. Section 4 has some preliminary discussion
and lemmas regarding the canonical moments.
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2. Quadratic D,-optimal design. Kiefer (1961a), Kono (1962) and Farrell,
Kiefer and Walbran (1967) give a rather complete description of the D-optimal
design when n = 2 and ¢ is arbitrary. Further considerations of a similar nature
are included in Lim, Studden and Wynn (1988) where an example involving a
factorial model of type 372" is analyzed. Here we describe the details for
estimating all of the quadratic terms. The analysis used here originates with
Kiefer (1961a). Our analysis of the resulting geometrical considerations is some-
what simpler.

The regression vector is f'(x) = (f{/(x), f//(x)), where f/(x) = (1, xy,..., Xg)
and fy(x) = (x%...,x2,%,%,,...,%,_1%,). The vector fy(x) contains all the
quadratic terms.

By the invariance theorem, there exist D- and D,-optimal designs which are
symmetric with respect to permutations and sign changes of x’s,i=1,...,q.
Both d(x, £) and d(x, §) are quartic functions when considered as functions of
each variable separately. Moreover they are symmetric with positive coefficient
for x%, so that their maximum can occur only at x;= +1 or 0. Thus the
symmetric optimal design must be supported on E, where E = {x: |x;/ = O or 1}.

For symmetric designs supported on E, we let

(21) u= [x}(ds) = [x{é(dx) and o= [alxe(ds).
It is then easy to show [see Kiefer (1961a)] that
M
22) |2,(8)]= “ﬁ% = 020 D2(y — ) u+ (g — 1)v — qu?).

Some algebra shows that |2 (£)| is maximized at

, (2¢°+q+5)+(g—-1)J4¢° +4g+9

4(g®+q +2)

(2.3)

and

(2.4) U*=(2q2—q+3)u*—(q+1)
. 242 .

Fori=1,2,...,q,let E; be the subset of E consisting of those ‘: 2! elements
with ¢ — i components of x being equal to zero. The following theorem char-
acterizes those sets of the form U?_,E, which can support a symmetric D -opti-
mal design.

THEOREM 2.1. The set Uf’_lEri supports a quadratic D-optimal design for
quadratic regression on the g-cube if and only if

*

U*

(2.5) 0<r<(g-1) <n<qg-1, nr=q.

1-u* =
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Proor. For ¢ supported on E the space of possible (u, v) is the convex hull
of {(i/q,i(i — 1)/(q(g — D)), i=1,...,q} since u = Lf_(i/q)&(E;) and v =
Y7 ,i(i — 1)/(q(g — 1)&(E;). It is not clear at this point that u* and v* in (2.3)
and (2.4) are of this form.

Let z, = i/q and 2z, = i(i — 1)/(q(q — 1)). Then

qg , 1
2y — 2.
qg-—1 qg-—-1

(2.6) 2z, =

Consider z; as a random variable on [0,1] and let ¢, and ¢, be the “first”

and “second” moments of z;. The set of all possible values or moment
v
1.0
0.84
Eqn. of bottom curve is
v = (4/3)u? — (1/3)u
0.6+
0.4-
0.2
0.0t ———
-0.2
L T T 4
0.00 0.25 0.50 0.75 1.00

U

F16.1. Moments of space of (u, v) and (¢, c, *q/(q — 1) — ¢,/(q — 1)) when q = 4.
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space of (¢}, q/(q — 1)c, —1/(q — 1)¢,) is the convex hull of (z,,z,) where
2, =q/(q — 1)zf — 1/(q — 1)z,. Note that z,=1 for 2, =1 and z, =0 for
z; = 0 or 1/q. The possible values for (u, v) are a subset of these corresponding
to 2, having mass only on 2z, = i/q, i = 0,1,..., q. Figure 1 provides a sketch of
both sets when ¢ = 4.

Since u* > (q — 1)/q, we have to choose r; to be ¢ which corresponds to
(1,1) in the moment space. Let L be the line which passes through (1,1) and
(u*, v*) and u, be the abscissa of the intersection point of L and the lower
boundary of the moment space (¢, ¢/(q — 1)c, — 1/(q — 1)¢,). Then

2.7) n T
. — < Uy < —
( 9 " q
iff (u*, v*) is in the convex hull of {(r/q, r(r, — 1)/(q(q — 1)), (ry/q,
ry(r, — 1)/(q(q — 1))),(1,1)}. Thus there exists a symmetric D,-optimal design
on E, UE, UE, It can be easily checked that

q—1u*—o*

2.8 = — .
( ) uo q 1 — u*
By substitution of (2.8) into (2.7), we get
u* — o*

Osrls(q—l)l—Srz, ry=gq.

u*
Substitute (2.3) and (2.4) into (u* — v*)/(1 — u*) and use y4q%2+ 4q + g <
2q + 1+ 4/(2q + 1). Then it follows that

u* — o*

1—u*
Thus r, < g — 1, which assures the existence of a symmetric D,-optimal design
on E,UE, \UVE_.QO

<1.

TABLE 1
Weights for a symmetric D- and D,-optimal design on E with a minimal support for quadratic
polynomial regression on the g-cube

D-Optimal Design D,-Optimal Design
g=2 £*(E,) 0.583 0.472
£ (E,)) 0.321 0.352
£ (Ep) 0.096 0.176
g=3 £*(E,) 0.510 0.417
¢*(E,) 0.424 0.475
£*(E,) 0.066 0.108
g=4 ¢*(E,) 0.451 0.366°
£4(E;) 0.502 0.562
£*(E,) 0.047 0.072
g=>5 £*(Ey) 0.402 0.324
¢*(E,) 0.562 0.625

£*(E,) 0.036 0.051
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The weights for a symmetric D,-optimal design with r, =0 and r,=q9 -1
are listed in Table 1 for 2 < ¢ < 6. These would be beneficial if fewer points in
the design are desired. For comparison purposes, included are the weights for a
symmetric D-optimal design from Kono (1962) and Kiefer (1961a). For estimat-
ing all of the quadratic terms only, more weight is on the center and E,_, and
less weight on the corners of the g cube.

3. Numerical D,-optimal designs. In this section we consider some
numerical results for g = 2,3 and n = 3,4, 5. For convenience we shall call £* a
numerical D,-optimal design if sup, d(x, £*) is found to be less than or equal to s
to five significant digits. The five digits is somewhat arbitrary. The results were
obtained on a CDC 6500 using single precision.

For ¢ = 2 and n = 3, Farrell, Kiefer and Walbran (1967) considered a sym-
metric design £ which puts mass w,/4 at (+1, +1), w,/8 at (1, +a) and
(+a, £1) and the remaining (1 — w, — w,)/4 at (+ b, + b) and showed numeri-
cally that |[M(£)| was maximized at

a = 0.3588, b = 0.4800, w, = 0.3677 and w, = 0.4610.

For this design £*, they also computed sup,d(x, £*) numerically and found
sup, d(x, £*) to be less than or equal to 10 to five decimal places.

We have done a similar analysis for the fourth and fifth degree regression on
the 2-cube. Resulting numerical symmetric D-optimal designs are listed in Table
2. We include the cubic case for completeness and comparison with Table 3. In
Table 2 a typical point is indicated. The full design is obtained by taking
permutations and sign changes of typical points. The divisors in the weight
column are the number of symmetric points.

TABLE 2
Numerical symmetric D-optimal designs on the 2-cube

Design Point Weight
n=3 11) 0.3677 /4
(1,0.3588) 0.4610/8
(0.4800, 0.4800) 0.1713/4
n=4 1,1) ‘ 0.2473 /4
(1,5811) 0.3508,/8
(1,0) 0.1582/4
(0.6442, 0.6442) 0.1203/4
(0.6854, 0) 0.0722/4
0,0) 0.0512/1
n=5 1,1) 0.1785/4
(1,0.7039) 0.2590,/8
(1, 0.2549) 0.2453/8
(0.7574,0.7574) 0.0939/4
(0.3208, 0.3208) 0.1079/4

(0.7446,0.1963) 0.1154/8
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TABLE 3
Numerical symmetric D,-optimal designs for the highest order coefficients
on the 2-cube
Design Point Weight
n=3 1,1 0.2606 /4
(1,0.3680) 0.4665/8
(0.5207, 0.5207) 0.2729/4
n=4 1,1) 0.1596 /4
(1,6170) 0.3382/8
1,0) 0.1516 /4
(0.6876, 0.6876) 0.1814/4
(0.7453,0) 0.0891 /4
0,0) 0.0801 /1
n=5 1,1) 0.1089/4
(1,7336) 0.2263/8
(1,0.2775) 0.2265/8
(0.7951, 0.7951) 0.1406 /4
(0.3393,0.3393) 0.1521 /4
(0.7829, 0.1922) 0.1456,/8

In each case we considered a perturbed symmetric product design. For
example, with ¢ =2 and n = 4 we use a design with a set of typical points
(1, 1), 1, a), 1,0), (b, b), (¢,0), (0,0)}. For n =5 we use {(1,1),
1, a), 1, b),(c, c),(d, d),(e, f)}. In each case the symmetry allows us to block
the information matrix according to the parity of the power of each component.
For g = 2, we divide f into 4 groups while we get 8 groups for ¢ = 3. For ¢ = 2
and n = 4,

fdy = (L, 27, x3, 2723, x{, 23),
fo = (xnx1x§,xf),
fé = (x2,x2xf,x§)
and
fé = (x1x2, x,%3, xfxz).

The determinant in each case was maximized on the CDC 6500 by using the
Newton-Raphson algorithm as a function of the eight or ten parameters in-
volved which gave the design £* in Table 2. sup,d(x, £*) was computed numeri-
cally and found to be less than or equal to 15 or 21 to five decimal places. As n
increases, numerical problems increase dramatically. For n = 5, an initial start-
ing design was even hard to obtain. For this a program ACED [Algorithms for
the Construction of Experimental Designs, see Welch (1985), page 146] was used
to distribute 30 observations on a grid of 1681 candidate points on
[-1,1] X [-1,1]. For n = 6, the ACED seemed to give an excellent starting
design. However, due to ill conditioning of high-degree polynomial models, our
optimization algorithm failed to produce an optimal design.
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TABLE 4
Numerical symmetric D-optimal design forn = 3 and g = 3

Design Point Weight
(1,1,1) 0.3142/8
(1,1,0.2970) 0.3942,/24
(1, 0.4215, 0.4215) 0.2649 /24
(0.5012, 0.5012, 0.5012) 0.0267 /8

TABLE 5

Numerical symmetric D-optimal design for the two
highest order coefficients forn = 3 and g = 2

Design Point Weight
a1 0.3241/4
(1, 0.3360) 0.4490/8
(0.4579, 0.4579) 0.2269 /4

Similarly, we get numerical D,-optimal designs for the highest order terms for
n = 3,4,5 and g = 2 and those are listed in Table 3. Comparing Table 3 with
Table 2, we note that the design points inside the 2-cube move toward the 4
corner points and the weights shift toward the inside design points.

Two further cases were considered. The D-optimal design for » = 3 and ¢ = 3
and the D,-optimal design for the two highest order coefficients for n = 3 and
g = 2 are given in Tables 4 and 5.

We remark that a symmetric numerical D-optimal design £¢* for ¢ = 2 and
n = 3 is unique. As in Farrell, Kiefer and Walbran (1967), this can be shown by
checking that {x: d(x, £*) — 10 = 0} is exactly the support of £* and a 27 X 16
matrix ||¢;(x;)|, where ¢;(x) is of the form [19_,x7~ with 1 <X9_,m; <86,
m; > 0 and x; € support £*, has full column rank. But for n = 4 and 5, the
D-optimal design may not be unique since the matrix ||¢,(x;)|| does not have full
column rank.

4. Canonical moments. In this section we describe some results concerning
canonical moments used in the next section.

For any arbitrary measure ¢ on [—1,1], let ¢, = [ ,x*dé(x). For a given
finite set of moments cy,...,c;_;, let ¢; denote the maximum of the ith
moment [! x'df(x) over the set of all measures £ having the given set of
moments ¢, ..., ¢;_;. Similarly, let ¢; denote the corresponding minimum. The
canonical moments are defined by

. ;= ————— 1=1,2,....
p; l+ l_
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The canonical moments p; range freely over [0, 1] and permit easy maximiza-
tion of |M(¢)| when g = 1. The remainder of the problem is converting the
optimum p; to the support points and the weights in the corresponding design.
Most of the proofs of the following lemmas are in either Studden (1982a,b) or
Lau (1983).

LEMMA 4.1. The design ¢ is symmetric iff py;.., = 3 for all i.

Let p; = 0 and define g; = 1 — p;, i > 0. Also define
(4'2) §i=Qi_1pi, l= 1,2,... .

Let a sequence of polynomials Wi(x), I > 0, be defined by taking them orthogo-
nal to d¢. Then the recursive relation for the orthogonal polynomials Wj(x) with
leading coefficient 1 is given in Lemma 4.2.

LEMMA 4.2. Let Wy(x) = 1 and Wy(x) = x. Then the orthogonal polynomi-
als W(x) for l > 2 satisfy the recursive relations

(4.3) Wyi(x) = (x+ 1= 2855 — 285, ) Wioi(x) — 485138 oW_(x).

Lemma 4.3 expresses the L, norm of an orthogonal polynomial Wy(x) in terms
of the canonical moments.

LEMMA 43. Forl=>1,

(4.4) [ W) de = 2785 -+ Sarob

Using Lemma 4.3, it can be easily shown that
moo r e
(45)  |M(&)| =TT [* W) de(x) = 27D TT Qoo sor)™™"

for g = 1.

There is a considerable amount of literature concerning the relationship
between the sequence of canonical moments { p;} and the corresponding design £.
[See Studden (1982a,b) and Lau (1983).] We state here only those results that
are pertinent to some of the D.-optimal product design problems. Lemma 4.4
follows from similar arguments to Lemrna 2.3 in Studden (1982a).

LEMMA 4.4. (a) The design corresponding to (3, p,, 3,1) concentrates mass
a,1 — 2a, a on the points —1,0,1, respectively, where a = p,/2.

(b) The design corresponding to (%, ps, 3, P4 3,1) concentrates mass a,
i —a,3— aa on the points -1, Vt,Vt, 1, respectively, where o =
P2Py/(2(qs + P2Py))s = Poly

(c) The design corresponding to (%, py, 3, Py, 3,1) concentrates mass a;, a,,
1 - 2a, — 2a,, ay, a; on the points —1,Vt,0,Vt,1, respectively, where a, =
P2P4Pe/(2(1 — 1)), ay = P3q2q4/(28(1 — 1)), t = Pyq4 + PsQs-
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5. D,-optimal product designs. Let
= {51 X €5 X +++ XE,: ¢, is a design on [—1,1]}.

Consider an arbitrary design n = £, X .- X¢,1in E,. Foreach j=1,...,q, let
W, ;(x) be the orthogonal polynomial of degree i with the leading coefficient 1
with respect to §;. Define

(5.1) N,

_ ( 1+ m)
l,m m .
Also denote M,(n) by the information matrix of a design n for the nth degree

polynomial regression model on the g-cube.

LEmMMA 5.1.
g n 1 Nyo1,n-i
(5.2) () =25 T | [ Wiy ag )]
j=ti=1l/-1
where K, , = 2q¥}_|iN, | ,_,.
PROOF. Recall that f(x) is the vector of N, , monomials x4 --- xl,

29_,l;<n. Let g(x) be the vector of length N, q‘ monomials W, y(x,) - - -
VV,q(q)(xq), 29_,; <n. Then it can be easily checked that there exists an
N, , X N, , lower triangular matrix A with |A| = 1 such that 8(x) = Af(x). So

63) M) =|[1) ) dn(@)| = fao)stey anto) |
Note that [g(x)g(x) dn(x) is a diagonal matrix since
f_llwi(j)(xj)W«n(xj)gj(dxj) =0

for any j and [+ i. Also there exist N,_, »—; components of g(x) like
W, Jox jo)l"[ G jOVVIj( (%) since I, , jOW’,j( (%) is a monomial of degree less than

or equal to n — i with ¢ — 1 variables. Thus

|M,(n)| =TI ]_[22’/‘/_11W,f(j,(xj)d§j(xj)

Y li<nj=1
q n . r1 Nq—l,nfi
= l—[ n [2%[ Wi (x;) dgj(xj)]
J=1i=1 -1
. q n 1 Nq—l,nfi
= st o T T1 [ / mgj)(x)dgj(x)] . o
j=1i=11-1

THEOREM 5.1. The D-optimal product design over the class of product
designs Z, is

(5.4) Mg =&mg X oo XEx o,
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in which the canonical moments of &, , are given by

1 .
p2i_1—2, t=1,...,n,
(5.5) g+n—i .
= i=1,...,n -1,
P = o (n - )
p2n=1'

Proor. By Lemma 5.1,

)] = 25 T1 T ' Wi ) e o)]

q—1,n—1

Note that

mas T1TT[[! W) dea)]

..... £ j=1i=1

- [maxn[f Wi a7

So it suffices to find a design £, which maximizes [T7[ fW2(x) d§(x)] -1
and then the D-optimal product design is

T’:,q= g:’q X oo Xg:,q

It can be easily checked that N, ; = E;=0Nq_1’ ; [Scheffé (1958)]. Using this
and (4.4), we get

[ wew )|

(5-6) (§1§2) b l(§1§2§3§4) T e (§1§2 §2n—1§2n)Nq71’0
= (§1§2) o l(§3§4) R (§2n—1§2n)Nq'0

n—-1 Nq’n, N,
= (P101P5) """ (43P5950) ™" -+ (Q2n-2P2n—1G20-1P2n) """
Simple algebra shows that (5.6) is maximized at

! 1
] =—’ l= b 7n7
p2l—1 2
N . g+n-—i
q,n—i .
Py = = ~ t=1,...,n—-1,
? Nq,n—i + Nq,n—(i+1) qg+2(n-i)
Dy, = 1.

The uniqueness of the D-optimal product design comes from p,, = 1. O
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For the g = 2 case, we get p,;=(n—i+2)/2(n—i+1), p,,_, =1 and
P3, = 1 from Theorem 5.1. In the following examples we illustrate the D-optimal
product design for 2 < n < 4 and ¢ = 2 by using Lemma 4.4.

ExAMPLE 5.1. Suppose n = 2. Then p, = 2 and p, = 1. By Lemma 4.4, the
corresponding design is

-1 0 1
5‘3‘,2:[ 3 1 3
8 4 8

and 7§, = £, X £, is the D-optimal product design.
EXAMPLE 5.2. Suppose n = 3. Then p, = %, p, = 3 and p; = 1. By Lemma
44,
-1 1
6 Ve
03 02 02 0.3
and 7}, = £, is the D-optimal product design.

-1 1

ga’tz =

EXAMPLE 5.3. Suppose n = 4. Then p, = %, p, = 2, p;= 2 and ps = 1. By

Lemma 4.4,
-1 JZ 0 V&

1 1
4 6 6 6 4

§z2 =

and n¥, = §f, X £}, is the D-optimal product design.

We consider the usual D-efficiency defined by

| M(5)| r“
5.7 D(§) = | —— ,
(5.7) () [IM@*”
where £* is a D-optimal design, and the G-efficiency defined by
(5'8) G(g) = Supxd(x, g)

to see how good D-optimal product designs are for ¢ = 2.
Let R,(x) be the orthonormal polynomial of degree i with respect to ¢ Py 23%
using (4.3) and (4.4), it can be easily checked that

RO(x) = 1)
1

(5.9) Rl = 2f%

1 1 / $a1-3821-2
ol _ — L ==="""R , 1> 2.
R[(x) x2 §2l_1§2l Rl—l(x) {21_1§2[ l—2(x) 2
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From (4.2) and (5.5), {;{, = (n + 1)/2n and {,,_;$,, = 5 for I > 2. So

Ry(x) =1,
2n
R(x) =
(5.10) ——
Ry(x) = n+ 1

R)(x) = 2xR,_\(x) — R,_o(x), I>3.
Since the variance function is invariant under linear nonsingular transformation
of f(x), d(x,n} ) can be written as
(5.11) d(x, "7:,2) = Z R?(xl)R‘f(-%):

Ogi; j<n
1+j<n
which can be calculated easily by using the recursive relations (5.10).
sup d(x, n} ,) was computed numerically on VAX 11/780. The D-efficiency for
3 < n < 5 was based on a numerical D-optimal design which as found in Section
3. As mentioned in Section 3, the optimization algorithm would not produce
numerical D-optimal designs for 5 < n < 12. Therefore, we could not get values
for the D-efficiency in these cases. However, by using the inequality

1-G(§) }
G($)

in Kiefer (1962b), a lower bound of the D-efficiency for 6 < n < 12 is given in

Table 6.

In the case where interest is in only the n — m highest order terms, i.e.,
(m + Dth,..., nth degree terms, we give a similar analysis.

(5.12) D(¢) = exp{—

TABLE 6
Efficiency of D-optimal product designs when q = 2

Degree n (x) x5 )° d(x} ,,x3 ) K G-Efficiency D-Efficiency
2 0,0) 7.000 6 0.8571 0.9952
3 (1,0.3103) 10.2260 . 10 0.9779 0.9937
4 0,0) 17.2500 15 0.8696 0.9922
5 (1,0.6989) 22.1270 21 0.9491 0.9928
6 (0,0) 31.3333 28 0.8936 0.8878°
7 (1, 0.8366) 38.0338 36 0.9465 0.9451°
8 (0,0) 49.3750 4 09114 0.9074>
9 (1, 8980) 58.0581 55 0.9473 0.9458"

10 (0,0) 71.4000 66 0.9244 09214
11 (1,0.9303) 81.2191 78 0.9487 0.9596°
12 (0,0) 97.4167 91 0.9341 0.9319°

ad(xl n x2 n) = Supx, Igd((xl’ x2)1 T’n 2)
PA lower bound.
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THEOREM 5.2. The D,-optimal product design for the n — m highest order
terms over the class of product designs =, is

M= £ X XEL

in which the canonical moments of ¢* are

1 .
Doi1 = 3 i1=1,...,n,
Dy = Nq,n i_Nq,m—i i=1 m
2 ’ T Ay )
(5.13) ! Nq,n—i_Nq, +Nqn i—-1 Nq,m—i—l
q+n-—i . ) )
=, i=m+1,...,n—-1,
P2 = U 2(n - )
p2n=1'

Here N, ,, is given by (5.1).

ProoF. Recall the computation formula for |Z(7)| and use (5.2). Then

| M ()|
M, (n)|

= 2K,,—K I 11—[ [fVV,fj)(x) dt; (x)] -
m [ IWE(x) dgj(x)]

|Z(n)| = 25" Hn

(5.14)

~Nyotme

_ 2xn—xm}j’l [1—[ [/mgj,(x) dt (x)]N o

11 [fwewe@)] ™|
The rest is analogous to the D-optimal product design case. O

As special cases, first we consider m= n — 1, i.e,, all the highest order terms.
By the substitution of m = n — 1 into (5.13) and then, simplification of the
resulting expression, we get

g—-1+n—-i

Py = > l1<i<n-1,
(5.15) * g-1+2(n-1i)

p2n =1

For the g = 2 case, interestingly the canonical moments correspond to the
D-optimal design for the nth degree polynomial regression on [—1,1]. For
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m = n — 2, i.e, all the highest and second highest terms, (5.13) is simplified to

_2n-i)’+3(g-5)(n-i)+ (g 1)(g-2)

Dy = . . ’
*o4n-i)’+4(q-2)(n-i)+ (¢ -1)(g-2)
(5.16) ISlSn_Q,
qg+1
Pon-1) = ;;_2’
p2n= 1.
For the g = 2 case, (5.16) reduces to p,; = (2(n — i) + 1)/4n —i),1 <i<n-—1

and p,, = 1.

The D -efficiency of the product design for g =2, m=n—-1,3<n <5 are
0.9727, 0.9569, 0.9605, respectively. Also the D -efficiency forg =2, m=1,n=3
is 0.9902. All the D efficiency are based on numerical D,-optimal designs in
Section 3.
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