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Once again Peter Hall has given us an interesting definitive paper concerned
with asymptotic expansions and bootstrapping. These comments are directed
toward issues that have arisen in our own work on the bootstrap. In particular,
we offer comments regarding hyperefficiency of bootstrap-based critical points
and probabilities, not for confidence intervals, but for the related problem of
prediction intervals. The questions arose in conjunction with a somewhat com-
plicated random coefficient trigonometric regression model [Olshen, Biden, Wyatt
and Sutherland (1988)], but our points can be made in a very simple context.
Also, our study relates only to a percentile-¢-like method.

We assume that we have iid random variables X, ..., X,,, Z with distribution
F. The X’s are thought of as a learning sample and Z a test case. The common
standard deviation is denoted by o, and it will be clear that without loss we may
take the common mean value to be 0. Qur arguments depend on two assump-
tions: (A) E{Z*} < o0 and (B) F” exists and is bounded.
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954 DISCUSSION

Define X = n7'E” X, and 8% = n7'L2 (X, — X )% Moreover, let 0 < a < 1
and define £, so that
(X-Z
(1) P{ < ta} = a.
o

We adopt the notation that P*{-} = P{-|X,,..., X,,} and denote bootstrapped
X and Z, respectively, by X * and Z*. Define ¢} so that

X*—Z*
2 : P*{————S—— < t;“} =a+0,(n7?).

The point of the bootstrapped prediction intervals is that we do not know L,
but we can infer ¢* by the bootstrap process and we can ask how close

(3) P{X_Zst;}

o

is to (1). In the confidence interval situation, Z is a nonrandom parameter. Also,
in that context, Hall indicates that under suitable assumptions

(4) td —t,=Oy(n7")

and

(5) (1) = @) =0(n71).
However, in the prediction context

(6) O,(n™Y) #tx —t,=0,(n"'?).

Peter Bickel has given plausibility arguments that notwithstanding, (5) persists
for prediction, and in fact it is not necessary to put the “correct” scaling S in (2)
for this to happen; the “incorrect” value o does not affect his arguments. The
three of us are preparing a note that deals with (5), while the left-hand
inequality of (6) is addressed in the remainder.

Our argument proceeds by contradiction, since we show that were (4) to hold
for prediction, then

(7) P* = {M < t,,} - P{X;Z < ta} = 0,(n"Y);

S

however, the left-hand side of (7) is shown to be in fact only O,(n~'/?). To begin,
assume that ¢, = t} + O, (n""). Compute

S
8) = Eg.P*{Z* > X* - St2 + O,(n")|X*)
= E;—p{l - Fn(y* - Sty + Op(n_l))}"

where E, is the empirical distribution of {X,..., X, }. In what follows, F, and F
both refer to distribution functions and to their corresponding probability
measures. It will be clear from the context which interpretation is intended.

X*—Z* L
P*{———— < t,,} =P*(Z* - X*> -8t}
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Continuing, we see that (8) can be rewritten
Ex.{1-F,(X* - St*) + 0,(n")}

*)?*—Z* . L
=P {Tsta}+0p(n )

X-Z o
=P{ . sta}+0p(n ).

This completes the first part of our argument. Now let ¢ be arbitrary, and write

X-z _ -
P{ g =< t} =ExP{Z > X - ot|X)
9) =1- ExF(X - ot)
=1 - Ex{F(-ot) + XF'(-ot) + O(X?)}
=1- F(-ot) + O(n™Y).

Next write
P*{u < t} =1- E)—(*Fn()?* - St) + Op(n—l)
(10) =1- F(-ot) — Ex.{F,(X* - St) - F(~ot)}
+0,(n7")
=1 - F,(—ot) - Ex.{F,(X* - St) - F(X* - St)
(11) —F(-ot) + F(-ot)}

+Ez.{F(—ot) — F(X* - St)} + O,(n7").

We borrow the notation and results of Dudley (1978). On page 900 of the cited
paper, he introduces the normalized empirical measure »,{-} = n/%(F,{-} —
F{-}) and the mean 0, set indexed Gaussian process Gp, that satisfies

E{Gp(A)Gp(B)} = P(A N B) — P(A)P(B)
for all pairs of index sets A and B. The expression (11) is thus seen to be
1 — F(-ot) — n"V2Eg.{v{[-ot, X* - St]}}
—E)—{.{()T* — St + ot)F'(—at) + O((X* — St + ot)“’)} +0,(n7")
=1-F,(-ot) — (X — St + ot)F'(—ot)
(12) -n"V2Ez. {v{[-ot, X* - St]}} + O,(n")
=1-F(-ot) — (X — St + ot)F'(—ot)
—n"Y?Ez.{Gp{[—ot, X* - St]}
+0,(n"Y) + n"V2Ez.{(Gp— »,){[—ot, X* - St]}}.
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According to Dudley’s (1978) Theorem 7.1, the last term of (12) is o,(n~'/?).
Next turn attention to the fourth term and note that
Var(Eg.{Gp{[—ot, X* - St]}})
< Var(Gp{[-ot, X* — St]})
= Var(E{Gp{[-ot, X* - St]}|X*,S})
+E{Var(Gp{[-ot, X* - St]}|X*,S)}

in view of the conditional variance formula. The first term of (13) is 0 because Gp
is a mean O process, while the second term is less than E{|F(—ot)—
F(X * — St)|} = 0(1). Therefore, in view of (9) and (12),

X-Z b A
SRS S

(13)

= F,(—ot) — F(—ot) + XF'(—ot) + (0 — S)tF'(—ot) + o,(n"'?),

which is of exact order n~1/2 in probability as a consequence of the central limit
theorem.
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Peter Hall’s paper gives a welcome and illuminating comparison of competing
bootstrap confidence intervals for a one-dimensional parameter. Though im-
portant, this one-dimensional case is very special in several respects. Techniques
such as Studentizing or accelerated bias correction do not generalize readily to
confidence sets for a multidimensional parameter. I will address two problems:
(i) how to construct analogs of second-order correct bootstrap confidence sets
when the parameter @ is vector-valued or infinite-dimensional and (ii) how the
general approach for multidimensional 8 relates to the one-dimensional methods
discussed by Hall.

1. Consider the following setting: The sample x,, has distribution P, , which
depends upon an unknown parameter A; the dimension of A may be infinite: Of
interest is the parametric function § = T(A), which need not be scalar-valued.
Let R, (6) = R,(x,,0) be a confidence set root for §—a real-valued function of
the sample and of 6. Let J,(-, A) denote the left-continuous cdf of R,. Suppose



