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THEORETICAL COMPARISON OF BOOTSTRAP
CONFIDENCE INTERVALS
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We develop a unified framework within which many commonly used
bootstrap critical points and confidence intervals may be discussed and
compared. In all, seven different bootstrap methods are examined, each being
usable in both parametric and nonparametric contexts. Emphasis is on the
way in which the methods cope with first- and second-order departures from
normality. Percentile-t and accelerated bias-correction emerge as the most
promising of existing techniques. Certain other methods are shown to lead to
serious errors in coverage and position of critical point. An alternative
approach, based on “shortest” bootstrap confidence intervals, is developed.
We also make several more technical contributions. In particular, we confirm
Efron’s conjecture that accelerated bias-correction is second-order correct in a
variety of multivariate circumstances, and give a simple interpretation of the
acceleration constant.

1. Introduction and summary.

1.1. Introduction. There exists in the literature an almost bewildering array
of bootstrap methods for constructing confidence intervals for a univariate
parameter 8. We can identify at least five which are in common use, and others
which have been proposed. They include the so-called “percentile method”
(resulting in critical points designated by éB ack in this paper), the “percentile-¢
method” (resulting in éSTUD), a hybrid method (resulting in éHYB), a bias-cor-
rected method (resulting in éBc) and an accelerated bias-corrected method
(resulting in éABC ). See Efron (1981, 1982, 1987). [The great majority of nontech-
nical statistical work using bootstrap methods to construct confidence intervals
does not make it clear which of these five techniques is employed. Our enquiries
of users indicate that the percentile method (not percentile-¢) is used in more
than half of cases and that the hybrid method is used in almost all the rest.
Some users are not aware that there is a difference between hybrid and per-
centile methods.] Our aim in this paper is to develop a unifying theoretical
framework within which different bootstrap critical points may be discussed,
compared and evaluated. We draw a variety of conclusions and challenge some
preconceptions about ways in which bootstrap critical points should be assessed.
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Let § be our estimate of 8, based on a sample of size n and with asymptotic
variance n 02 Let 62 be an estimate of o2 There is a variety of “theoretical
critical points” which could be used in the “ideal” circumstance where the
distributions of n'/%(§ — 6)/6 and n/%(§ — 6)/6 were known. If we knew o,
then we could look up “ordinary” tables of the distribution of n'/%(§ — 6)/o,
and if o were unknown, we could consult “Studentized” tables of the distribu-
tion of n'/%(§ — 6)/6. Obviously we would commit errors if we were to get those
tables mixed up or to confuse upper quantiles with lower quantiles. Nevertheless,
if we insisted on using the wrong tables, we could perhaps make amends for some
of our errors by looking up a slightly different probability level. For example, if
we were bent on using standard normal tables when we should be employing
Student’s ¢-tables, and if we sought the upper 5% critical point, then for a sample
of size 5 we could reduce our error by looking up the 21% point instead of the 5%
point.

We argue that most bootstrap critical points are just elementary bootstrap
estimates of theoretical critical points, often obtained by “looking up the wrong
tables.” Bootstrap approximations are so good that if we use bootstrap estimates
of erroneous theoretical critical points, we commit noticeable errors. This ob-
servation will recur throughout our paper and will be the source of many of our
conclusions about bootstrap critical points. Using the common ‘“hybrid”
bootstrap critical points is tantamount to looking up the wrong tables, and using
the percentile method critical point amounts to looking up the wrong tables
backwards. Bias-corrected methods use adjusted probability levels to correct
some of the errors incurred by looking up wrong tables backwards.

There are other ways of viewing bootstrap critical points, although they do
not lend themselves to the development of a unifying framework. The distinction
between looking up ordlnary” and “Studentized” tables is sometimes expressed
by arguing that n'/%(f — 8)/o is pivotal if ¢ is known, whereas n'/%(§ — 6)/6 is
pivotal if ¢ is unknown [e.g., Hartigan (1986)]. However, it is often the case that
neither of these quantities is strictly pivotal in the sense in which that term is
commonly used in inference [e.g., Cox and Hinkley (1974), page 211].

Much of our discussion ranges around the notion of second-order correctness,
defined in Section 2.3. Our accelerated bias-corrected bootstrap critical point is
deliberately designed to be second-order correct and in that sense it is super-
ficially a little different from Efron’s (1987) accelerated bias-corrected point,
which is motivated via transformation theory. However, Efron conjectures that
his accelerated bias-corrected critical point is second-order correct and in each
circumstance where that conjecture is valid, his critical point and ours coincide
exactly. Indeed, one of the technical contributions of our paper is to verify
Efron’s conjecture in important cases—for the parametric bootstrap in multi-
variate exponential family models and for the nonparametric bootstrap in cases
where estimators can be expressed as functions of multivariate vector means.
Previously, verification of the conjecture was confined to univariate, parametric
models. We also provide a very simple interpretation of the acceleration constant
(see Section 2.4).
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We argue that second-order correctness is of major importance to one-sided
confidence intervals, but that its impact is reduced for two-sided intervals, even
though it is most often discussed in that context. There, interval length is
influenced by third-order rather than second-order properties, although second-
order characteristics do have an effect on coverage. Note particularly that the
difference between standard normal tables and Student’s ¢-tables is a third-order
effect—it results in a term of size (n~'/2)3 in the formula for a critical point for
the mean. We argue that percentile-¢ does a better job than accelerated bias-cor-
rection of -getting third-order terms right, provided the variance estimate 62 is
chosen correctly.

It is shown that as a rule, coverage is not directly related to interval length,
since the majority of bootstrap intervals are not designed to have minimum
length for given coverage. Nevertheless, it is possible to construct “shortest”
bootstrap confidence intervals, of shorter length than percentile-¢ intervals.
Curiously, these short intervals can have much improved coverage accuracy as
well as shorter length, in important cases; see Section 4.6.

We should stress that our theoretical comparisons of critical points comprise
only part of the information needed for complete evaluation of bootstrap
methods. Simulation studies [e.g., Efron (1982), Hinkley and Wei (1984) and Wu
(1986)] and applications to real data provide valuable additional information.
Nevertheless, we suggest that the theoretical arguments in this paper amount to
a strong case against several bootstrap methods which currently enjoy popular-
ity: the percentile method (distinct from the percentile-# method), the hybrid
method, and the bias-corrected method (distinct from the accelerated bias-cor-
rected method). It will be clear from our analysis that of the remaining estab-
lished techniques, we favour percentile-t over accelerated bias-correction,
although our choice is not unequivocal. Our decision is based on third-order
properties of two-sided confidence intervals (see Section 4.4), on a philosophical
aversion to looking up “ordinary” tables when we should be consulting “Stu-
dentized” tables (see particularly the example in the first paragraph of Section
4), and on a prejudice that computer-intensive methods such as the bootstrap,
which are designed to avoid tedious analytic corrections, should not have to
appeal to such corrections. There exist many devices for achieving second-order
and even third-order correct critical points via analytic corrections, without
resampling [e.g., Johnson (1978), Pfanzagl (1979), Cox (1980), Hall (1983, 1985,
1986), Withers (1983, 1984) and McCullagh (1984)], and it does seem cumbersome
to have to resample as well as analytically correct. On the other hand, accel-
erated bias-correction enjoys useful properties of invariance under transforma-
tions, not shared by percentile-¢. See for example Lemma 1 of Efron (1987).

Just as theoretical arguments are indecisive when attempting a choice be-
tween percentile-¢ and accelerated bias-correction, so too are simulation studies.
Efron [(1981), page 154] reports a case where percentile-¢ intervals fluctuate
erratically, and this can be shown to happen in other circumstances unless the
variance estimate 6?2 is chosen carefully. Conversely, simulations of equal-tailed
accelerated bias-corrected intervals for small samples and large nominal coverage
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levels can produce abnormally short intervals, due to the fact that those
intervals shrink to a point as coverage increases, for any given sample.

We should also point out that in some situations there are practical reasons
for using “suboptimal” procedures. In complex circumstances it can be quite
awkward to estimate o2 “utilitarian” estimates such as the jackknife may
fluctuate erratically. A “suboptimal” confidence interval can be better than no
interval at all. Our criticism of the percentile method and our preference for
percentile-t over accelerated bias correction, lose much of their force when a
stable estimate of o2 is not available.

Later in this section we define what we mean by parametric and nonparamet-
ric forms of the bootstrap, discuss a general model for the estimators 6 and 6,
and review elements of the theories of Edgeworth expansion and Cornish—Fisher
expansion. Much of our discussion is based on inverse Cornish-Fisher expansions
of bootstrap critical points and on Edgeworth expansions of coverage errors.
Related work appears in Bickel and Freedman (1981), Singh (1981) and Hall
(1986), although in each of those cases attention is focussed on particular
versions of the bootstrap. Our comparison of bootstrap critical points, using
asymptotic expansion methods, indicates among other things that there is often
not much to choose between computationally expensive critical points such as
0yyp and 05,0k and the simple normal-theory critical point; see Section 4.5.

Section 2 introduces theoretical critical points, and derives their main proper-
ties. Bootstrap estimates of those points are defined in Section 3 and their
properties are discussed in Section 4. Section 5 gives brief notes on some rigorous
technical arguments which are omitted from our work.

1.2. Parametric and nonparametric bootstraps. Assume that 6 and ¢ are
constructed from a random n-sample Z. In the parametric case, suppose the
density h, of the sampling distribution is completely determined except for a
vector A of unknown parameters. Use & to estimate A (e.g., by maximum
likelihood) and write 2 * for a random n-sample drawn from the population with
density A5. We call 2* a “resample.” In the nonparametric case, Z* is simply
drawn at random (with replacement) from %. In either case, let 6* and 6* be
versions of § and é computed in the same manner as before, but with the
resample £ * replacing the sample Z.

Two examples are helpful in explaining parametric and nonparametric ver-
sions of the bootstrap. Suppose first that we are in a parametric context and that
§ and 6 are “bootstrap estimates” (that is, obtained by replacing functionals of a
distribution function by functionals of the empiric). Assume that the unknown
parameters A are functions of location and scale of g, and that the statistics

n'/%(@ — 8) /0 and n'/%(§ — 8)/6 are location and scale invariant. Cases in point
include inference about § in an N(#, 02) population and about the mean 6 of
an exponentlal distribution. Then the distributions of n/%(* —§)/é and

n'/%(6* — 6)/6* (either conditional on % or unconditionally) are identical to
those of n'/%(§ — 8)/¢ and n'/%(f — 6)/8, respectively.

Next, suppose we wish to estimate the mean 8 of a continuous distribution,
without making parametric assumptions. Let 6 and 62 denote, respectively,
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sample mean and sample variance, the latter having divisor n rather than n — 1.
Then the distributions of n'/%(§* — 6)/6 and n'/%(6* — §)/6*, conditional
on %, approximate the unconditional distributions of n'/%(d — 6)/s and
n/%(d — ) /3, respectively.

During our discussion of bootstrap critical points we shall use these examples
to illustrate arguments and the conclusion.

We should point out that “bootstrap population moments,” on which depend
coefficients of bootstrap polynomials such as p;, and §; (see Section 4), have
different interpretations in parametric and nonparametric circumstances. In the
parametric case, bootstrap population moments are moments with respect to
density Aj; in the nonparametric case, they are moments of the sample Z. In the
parametric case we assume that [xhjs(x)dx equals the mean X of %. For
example, this is true if A, is from an exponential family and A is the maximum
likelihood estimator.

1.3. The “smooth function” model. All of our explicit calculation of Edge-
worth expansions will be in the context of the following model. Assume that the
data comprising the sample Z are in the form of n independent and identically
distributed d-vectors X,..., X,. Let X have the distribution of the X,’s and
put p = E(X) and X = n" 'L X,. We suppose that for known real-valued smooth
functions f and g, 6 = f(r) and % = g(u). Estimates of 8 and o2 are taken to
be §=f(X) and 6%= &(X), respectively. Examples include parametric in-
ference in exponential families and nonparametric estimation of means, of ratios
or products of means, of variances, of ratios or products of variances, of
correlation coefficients, etc. Rigorous Edgeworth expansion theory developed by
Bhattacharya and Ghosh (1978) was tailored to this type of model.

Vector components will be denoted by bracketed superscripts. For example,
X; = (XD,..., X{P). We write f; .. i)(x) for (32/3x® .. dx())f(x), a, .. i
for fi, .. y(B), By ..;, for E{(X — p)@ ... (X — p)%)}, ¢, for g;(p) and A(x)
for f(x) — f(p).

1.4. Edgeworth expansion and Cornish—Fisher inversion. Let A: R¢ - R
be a smooth function satisfying A(p) = 0. Then the cumulants of U = n'/2A(X)
are

k(U) = E(U) = n"'2A; + O(n"%?),
ky(U) = E(U?) — (EU)® = o2 + O(n~1)
and
ky(U) = E(U®) - BE(U?)E(U) + 2(EU)’ = n" %4, + O(n=?),
whereif a; .., = A . (), then o® = X¥a,au,;, A, = }¥¥a,p,; and
A, = EEZaiajakl"'ijk + 3ZZEEaiajakzl’«ikMﬂ-
In consequence,
(1.1) P(U/o < x) = ®(x) + n"’py(x)¢(x) + O(n7?),
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where —p,(x) = 67'A; + 367%4,(x% — 1) and ¢ and ® are the standard normal
density and dlstnbutlon functions, respectively [e.g., Wallace (1958)].
If we estimate o2 using 62 = g(X), then (1.1) becomes
(1.2) P(U/é <x)=0(x) +n V% (x)o(x) + O(n7?),
where with B = A/g1/2, b,1 i = B(il ip)(”’)’ Bl = 5):21)”#” and

B, = ZEEb-b-bkm,-k + 32222b‘b'bkl”ik”jl’

we have —ql(x) =B, + le(x —1). Let ¢; = g(,)(p) It may be shown that
b=a,0" andb =a;;0" 1(a;c +ac,)a and thence that

(1.3) pi(x) —qy(x) = (EEa, Cjbi% )

Clearly, if x,, y, and z, are defined by P(U/o <x,) = PU/é <y,) =
®(z,) = a, then
x,=2,—n Yp(z,) +0O(n?),
(1.4) Pi(2,) + O(n7")
ya = za - n_l/qu(za) + O(n_l)'
Results (1.1) and (1.2) are Edgeworth expansions; results (1.4) are (inverse)
Cornish-Fisher expansions. The definition z, = ® '(a) will be used throughout
this paper.
More generally, suppose that for some v > 1,

P(U/o <x) = 0(x) + ¥ n-p,(x)e(x) + O(n-¢+172),

i=1
P(U/s <x)=®(x) + Xy" n=7%q(x)é(x) + O(n~0+V72).
i=1

Then p; and g; are polynomials of degree 3i — 1 and odd/even indexed poly-
nomials are even/odd functions, respectively. The quantiles x, and y, defined
earlier admit the expansions

fomzat X py(2,) +0(n” ez,

i=1
Yu=24t E n”"%qy(2,) + O(n=*072),
i=1
where p;, and g; may be defined in terms of p; and g; for j < i. In particular,

pu(x) = —py(x),

(1.5) 2
Pa(x) =pi(x)pi(x) — 3ap,(x)" — py(x),

with similar relations for the g’s. The polynomials p, and gq; are of degree
i + 1 and odd/even indices correspond to even/odd functions.
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2. Theoretical critical points.

2.1. Introduction. In this section we work under the assumption that the
distribution functions

(2.1) H(x) = P(n'/*(§ - 0)/0 <x} and

K(x)=P{n"*(§ - 0)/6 < x}

are known. We discuss critical points which could be used in that ideal cir-
cumstance. Such points will be called theoretical critical points. Some of those
points will be clearly inadvisable, and that fact does a lot to explain difficulties
inherent in bootstrap estimates of the points (see Section 3). None of the critical
points introduced in the present section involves the bootstrap in any way.

2.2. Ordinary, Studentized hybrid and backwards critical points. Let x,,

H Ya) and y, = K (a) denote a-level quantiles of H and K, respectlvely
Suppose we seek a critical point 6(«) with the property, P{f < é( a)=alfo
were known, we could use the “ordinary” critical point

Oa(@) = 0 — n"%0x, _,.

If o were unknown, the “Studentized” point

Oseua(a) = — ™%y, _,

would be an appropriate choice. These points are both “exact” in the sense that

P{6 < éord(a)} = P{6 < éStud(a)} = a.

Should we get the quantiles x,_, and y,_, muddled, we might use the
“hybrid” point

0,.(a)=0—nV%x,_
hyb l1-a

instead of g, . This is analogous to mistakenly looking up normal tables instead
of Student’s ¢ tables in problems of inference about a normal mean. Should we
hold those tables upside down, we might confuse y, _, with —x_, and obtain the
“backwards” critical point

0,ou(a) =0 + n~%x,

Thus, 6, is the result of fwo errors—looking up the wrong tables, backwards.

2.3. Bias-corrected critical points. Bias corrections attempt to remedy the
errors in 6,,,. They might be promoted as follows. Clearly 0,.0(e) is an
inappropriate choice. But if we are bent on looking up the wrong tables
backwards, we might reduce some of our errors by using something else instead
of a. Perhaps if we choose B correctly, 0back( B) might not be too bad. For
example, choosing B such that —x; = y, _, will improve matters, for in that case
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0, . B) is just the exact critical point fs.a(«). More generally, if
—Xg=y_,+0(n"),

then 6,,,(B) agrees with 5, 4(a) to order n~! = (n"Y2)2 that is, to second
order. In that case we say that 6,,,(8) is second-order correct. [This discussion
has ignored properties of translation invariance which bias-corrected critical
points enjoy. See Efron (1987).]

We may look at this problem from the point of view of coverage error rather
than position of critical point. Suppose H and K admit Edgeworth expansions

H(x) = ®(x) + n™’py(x)¢(x) + O(n71),
K(x) = ®(x) + n™%qy(x)¢(x) + O(n").

Then x,=2z,—n""?p(z,) + O(n"') and so the interval (— oo, §;,,(a)] has
coverage

P{0 < éback(a)} P{nl/z(é -0)/6> —2z,+n"?p(z2,)
(2.2) +0(n™Y)}
a—n"V*p(z2,) + q(z.)}#(2,) + O(n7?).

Therefore, coverage error is proportional to p,(z,) + g,(z,) in large samples.
This function is an even quadratic polynomial in z,. Bias correction eliminates
the constant term in p,(z,) + q,(2,); accelerated bias correction eliminates all of
p«(2,) + q(2,) and so reduces coverage error of the one-sided interval from
O(n~'2) to G(n™1). This is equivalent to second-order correctness. We shall
show in Section 4 that bootstrap versions of bias-correction and accelerated
bias-correction operate in precisely the same manner. .
We deal first with ordinary bias-correction. Let G(x) = P(§ < x) and put

m=®"YG(8)} =2 {H(0)} = @ {} + n"%p,(0)$(0) + O(n"1)}
=n"12p,(0) + O(n~1).

Take 8 = ®(z, + 2m). Then 2g =2, + 2m and so

Xg =25 — n_l/zpl(zﬁ) +0(n™?)

=2z, t n_1/2{2p1(0) —pi(2.)} +O(n7Y).
The (theoretical) bias-corrected critical point is
Oue(@) = bpaa(B) = 6 + n7V% 2, + n77%(2p,(0) — py(2.)} + O(n7Y)].

The argument leading to (2.2) shows that the interval (— oo, ébc(a)] has coverage
P(6 <6, (a)} = a+n*2p,(0) - py(2.) — q:(2.)}(2.)

+0(n71).

This is the same as (2.2) except that the term 2p,(0) cancels out the constant
component of the even quadratic polynomial —{p,(z,) + g,(z,)}. [Note that
Pp,(0) = g4(0), since H(0) = K(0).]

(2.3)

(2.4)
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The quantity n~%2p,0) — py(z,) — q(2,)} appearing in (2.4) may be
written as —az2, where a does not depend on z,. To completely remove this
term from (2.4), replace 8 by any number 8, satisfying

(2.5) B, = ®{z,+2m + az2 + O(n™")}.
The argument leading to (2.3) shows that x; = z, + n™'/%qy(2,) + O(n™?"). The
(theoretical) accelerated bias-corrected critical point is
Oune(@) = Oyeq(B,) = 8 + 7% {2, + n~V?gy(2,) + O(n71)}
and the corresponding one-sided interval (— oo, abc(oz)] has coverage equal to
a + O(n™Y). Notice that f,,(a) = fg,,q(a) + O(n~3/2), since
ésmd(a) =6+ n_l/zé{za +n Y% (z2,) + O(n_l)}.

Therefore, §,;. is second-order correct.

2.4. The acceleration constant. We call a the acceleration constant. The
preceding argument explains why accelerated bias-correction works, but provides
little insight into the nature of the constant. We claim that a is simply one-sixth
of the third moment (skewness) of the first-order approximation to n'/%( 6 —0)/o,
at least in many important cases. For the “smooth function” model introduced
in Section 1.3,

d .
m/(0 — 0)/0 = (n2/a) ¥ (X = )%, + O,(n"72),
i=1
and so our claim is that
3

a=1iE {( n2/o) z(x w)a }
= n /21573 EZZaiajakmjk-

To check this, recall that
b = n'*60% = 6032;2{1’1(2«) + q(2,) — 2P1(O)}
(2.7) = 3EZaich"'ij - 2ZZZaiajakI"’ijk
—GZZZZaiajaumkuﬂ,

the last equality following from results in Section 1.4. [Note particularly (1.3)
and remember that c; = g,(r).] We treat parametric and nonparametric cases
separately.

(2.6)

CASE (i): EXPONENTIAL FAMILY MODEL. Assume X has density »
hy(x) = exp{Nx — y(X) }ho(x),

where ¢ and h, are known functions and A is a d-vector of unknown parame-
ters. Then ""(t) = l1/(1')(A)’ ,"'l] zIJ(U)(}\) and p‘uk ‘P(Uk)(x) Write M = (F‘U) and
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= (v,;) =M™, both dx d matrices. Inverting the matrix of equations
au(')/a)\(f) = p;;, we conclude that X /9" = v, ,, whence

(2)
a‘u<k)4’(ij)(}\) = zl: 3”(12) a)\(z)‘l’aj)(}\) = zl‘.”kz#ijl-

Remembering that g(p) =02=3Y% fa () (Y j(A) (see Section 1.4), we
obtain

Cr = g(k)(l-") = Z Z {f(ik)(p')f(j)(.“') + f(i)(p‘)f(jk)(au')}‘]/(ij)(A)

() ()5 (k)¢(,,)( )
= 22} zj:aiajk“'ij + ZL: %‘. Zl‘.aiaj"kzl"ijz-
From this formula for ¢, and the fact that
%Zkiap(filfjlfl:a, Vkl#;,z)ﬂpk ZZZ“ Al

[since (v;;) = (p;;)""'], we conclude that

(2.8) Y acp; = 22222“ Q0 + ZEZa GOt

i J k

Substituting into (2.7), we find that b = Y¥Ya;a;a,p,;;, which is equivalent to
(2.6).

CASE (ii): NONPARAMETRIC INFERENCE. Recall from Section 1.4 that
0% = 20 fo () i (B{ E(XOX D) — pOpD}.

If the products XVX®) are not components of the vector X, we may always
adjoin them to X. Let (i, /) denote that index £ such that X = X®X,
Then

g(p) =0 = X X fi () fp(m) (w5 = pOpD).
i

On this occasion, a little algebra gives us'the relation
g(k)(a“‘) = 22 Zatajkp'tj 2akzaip‘(i) + Z Z(k)aiajy
i g i i

where X% ;) denotes summation over values (i, j) such that (i, j) = k. From
this formula and the fact that B = g — B — pOpy if (G, Y =k, we
conclude that (2.8) holds. As before, that leads to (2 6).

2.5. “Shortest” intervals. Let 0 < a < }. Since we are assurmng that we
know the distribution of n'/%(§ — 6)/6, we may choose v, w to minimize v + w
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subject to
(2.9) P{-w<n"(§-0)/6<v}=1-2a.

We call I, = [0 — n~/%v,§ + n~'/%w] the “shortest” confidence interval. It
has the same coverage as the equal-tailed interval [ q(e), fswug(l — @)], but
usually (except in cases of near-symmetry) has strictly shorter length. If the
distribution of n'/2(§ — )/é is unimodal, then the shortest confidence interval
is equivalent to a likelihood-based confidence interval [Cox and Hinkley (1974),
page 236].

Suppose the distribution function K admits the expansion

K(x) = ®(x) + n %y (x)o(x) + n7g,(x)d(x) + O(n~32).

Put ¢,(x) = qi(x)$(x) for i>1, ¢y(x) = P(x), ¢yu(x)=(3/dx)'¢,(x) and
Vi = (21 _4)- A little calculus shows that the numbers v, w which minimize
v + w subject to (2.9), satisfy

14
v=2z_,+ Y n %, + O(n V2
i=1

v .
w=2z_,+ Y (=n"V%) v, + O(n~*V72),
i=1

where

(2.10) 0= —dides Uy = (%‘P%l‘l/(;zl - ‘on)‘l/all
and higher-order v;’s admit more complex formulae.

See Pratt (1961, 1963), Harter (1964), Wilson and Tonascia (1971) and Kendall
and Stuart [(1979), pages 125-129] for discussions of “short” confidence inter-
vals.

3. Bootstrap critical points.

3.1. Introduction. In this section we suggest that commonly used bootstrap
critical points are elementary estimates of theoretical critical points introduced
in Section 2. We argue that the bootstrap approximation is so good that
bootstrap versions of erroneous theoretical critical points are also erroneous.

Bootstrap versions of distribution functions H and K [see (2.1)] are

H(x) = P{n/*(§* — 0)/6 < x|%} and K(x) = P(n*2(6* - §)/6* < x|%},
respectively. For any distribution function F, define F~'(x) = sup{x: F(x) < a}.

3.2. Ordinary, Studentized, h}:brid and backwards critical points. Bootstrap
estimates of x, and y, are £, = H™(a)and §, = K~ Y(a), respectively. Bootstrap

versions of 6, 4, fsuas éhyb and 0,,, are obtained by replacing true quantiles x,,
and y, by these estimates:

éom)(“) =f- n—l/zﬂfl—a» éSTUD(a) =f- n_1/2691—m

éHYB(a) = é_ n_l/zé.fl_a, éBACK(a) = é\ + n_l/26an.
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In the existing literature, 6,5 and 6, ACK are usually motivated using other
arguments. For example, some statisticians employ G '(«) as a critical point,
where

G(x) = P(§* < x|7)

is the conditional distribution function of §*. This is often referred to as the
percentile-method critical point, although any one of fyrp, Gsrun, éHYB and
O pack could be called percentile-method points. Since G(x) = H{nl/ %x - 0)/6),
then G~ (a) is none other than 0BACK(a) Our argument views this as an
erroneous choice, since it is the bootstrap version of “looking up the wrong
tables, backwards”; see Section 2.2.

Sometimes statlst1c1ans argue that the appropnate quantile is § — ¢ 1 — o> Where
£, _, is the (1 — a)-level quantile of 6* — 6:

£ .= sup{x: P(é* -f< x|%) <1- a}.

This is tantamount to saying that the conditional distribution of §* — 4 is a
good approximation to the distribution of 6 — 8. Since P6* — § < x|Z) =
H(n'/?x/6), then § — £, is none other than f;y(«). We view this as an
incorrect choice, since it is the bootstrap version of “looking up the wrong
tables.” On the other hand, our argument suggests that GSTUD is a reasonable
choice when o is unknown and g, a good choice when o is known.

3.3. Bias-corrected critical points. Recall that theoretical versions of bias-
corrected and accelerated bias-corrected critical points were just Bback( B) and
0back( B,), respectively. To obtain bootstrap analogues we simply replace B and
B, by their bootstrap estimates B and B, and use 6,y instead of 4, .

To define B, remember that B = <I>(z + 2m), where m = ¢~ 1{G(l9)} The
bootstrap estimate of G is of course G and so we take M = @~ 1{G(ﬂ)} and
,B ®(z, + 2m). [Efron (1982, 1985, 1987) uses the notation z, instead of r.]

To estimate the acceleration constant a, remember that

a=n""%p(z2,) + q(z2,) - 2p,(0)},

where p, and g, are even quadratic polynomials appearing in Edgeworth
expansions of H and K. Some coefficients of these polynomials may be functions
of unknown characteristics of the distribution. Replace those quantities by their
bootstrap estimates and call the resulting polynomials i)l and cjl, respectively.
As we shall see in Section 4, the polynomials p, and ¢, appear in Edgeworth
expansions of H and K. Put

d = n_1/22;2{ﬁ1(za) + él(za) - 2131(0)}’
(3.1) 5 -
Bo=o[m+ (R+2z){1-a(m+2)) "]
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Of course,
Mot (R4 z,){1—a(Mm+2,)) " =z,+ 2+ @22+ 0,(n7")

and so (3.1) compares directly with the definition (2.5) of 8,. The argument of ®
in (3.1) could be replaced by any one of many quantities satisfying z, + 2/ +
dz2 + O, (n™"), without upsetting the main conclusions we shall reach about
_properties of accelerated bias-correction. The particular choice (3.1) was moti-
vated by Efron (1987) via considerations of transformation theory and is emi-
nently reasonable.

Bootstrap versions of bias-corrected and accelerated bias-corrected critical
points are

éBC(a) = éBACK(Ié) and éABC(a) = éBACK(:é )’

respectively. It is readily seen that 0BC is identical to the bias-corrected point
proposed by Efron (1982); work in the next section shows that OABC is identical
to Efron’s accelerated bias-corrected point, at least in many important cases.

3.4. The acceleration constant. Recall from Section 2.4 that in the cases
studied there, a = n”'?46 3L a;a,a,u, ;. Our estimate of a is of course

a=n""21672 Y33 6,6, 5,

where the “hats” denote bootstrap estimates. We shall prove that this estimate
of a coincides with that given by Efron (1987). Section 4 will show that éABc is
second-order correct and together these results confirm Efron’s conjecture about
second-order correctness of his accelerated bias-corrected critical points, at least
in the cases studied here.

The reader is referred to Section 2.4 for necessary notation.

CASE (i): EXPONENTIAL FAMILY MODEL. Efron’s estimate is

gy = n™ 2 1O(0) (§9(0))

where §)(0) = (8/3t)f¢(5\ + t7)|,20, A is an estimate of A (e.g., maximum
likelihood estimator, although it could be something else) and 7 is obtained from
the d-vector 7 = () defined in the following, on replacing A by A

3/2

. 3
7O = Lri;(N) 550

Now

30 u®
;\(1) = E p® gAD %akl‘kf= zk:l*jkak»
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whence, since (»;;) = (; j)_l,
TON) = X Xl p, = a;.
J k

It is now relatively easy to prove that

o2 ifl=2,
1
(0/0t) b(A + tr)mo={ T ¥ Yaaaun;, ifl=3,
i J Kk

and so the theoretical version of dg; is just our a. In consequence, dg; = 4.

CASE (ii): NONPARAMETRIC INFERENCE. Efron’s estimate is

fu)(fu) ™

i=1

-
where
d : _
U= lim [{{(1- )X +AX) — ((D)]a" = T (X~ X)) ,(X).
N j=1

Notice that

n d d n
_ v T\ — 7\ 7\()
n~! Z Uk2= E E f(i)(X)f(j)(X)n ! Z (Xk_X) (Xk _X) ! ’
k=1 i=1j=1 k=1
which is simply the bootstrap estimate 6> of 6> = XX f;(1)f ;(#)r;,, obtained
by replacing all population moments by sample moments. Similarly, n~'YU? is
just the bootstrap estimate of YYY.a,a;a,p, ;. Therefore, dg; = 4.

3.5. “Shortest” intervals. Recall that the numbers v and w used to con-
struct the “ideal” shortest interval I, = [ — n='/%v,§ + n~/%6w] in Section
2.5 were defined to minimize v + w subject to K(v) — K(—w) = 1 — 2a. Their
bootstrap estimates are defined as follows. For each x such that K(x) > 1 — 2a,
choose y = y(x) such that K(x) — K(—y) is as close as possible to 1 — 2a. Take
(6, @) to be that pair (x, y) which minimizes x + y. The shortest bootstrap
confidence interval is then

IL=[6-n"%5,6 +n %0|.

Buckland (1980) has given an informal treatment of shortest bootstrap con-
fidence intervals, although of a different type from those here. See also Buckland
(1983).

4. Properties of bootstrap critical points.

4.1. Introduction. Throughout this paper we have stressed difficulties which
we have with critical points that are based on “looking up the wrong tables.” To
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delineate our argument, it is convenient to go back to one of the simple examples
mentioned in Section 1.2. Suppose our sample is drawn from an N(0,¢?)
population and we estimate 6 and ¢ via maximum likelihood. As we pointed
out in Section 1.2, the distribution functions H and H are identical in this case
[both being N(0,1)], and the distribution functions K and K are identical (both
being scale- changed Student’s ¢ with n — 1 degrees of freedom) Therefore,
G(0) = H(0) = H(0) = 1, whence m=®YG(f)} =0, and p,=p,=¢§, =
= 0, whence

4= n_1/22;2{ﬁ1(2a) + 4y(2,) — 2131(0)} =0.

A

In consequence, B = 8 = ﬁa =8,=a, éStud(a) = éSTUD(a) =6- éy,_, and
éord(a) = éORD(a) = éhyb(a) = éHYB(a) = éback(a) = éBACK(a)
= ébc(a) = éBc(a) = éabc(“) = éABC(a) =6- 60X 4

Thus, each of the bootstrap critical points 0ypr Osack g and ypc is
tantamount to looking up standard normal tables, when we should be consulting
Student’s ¢-tables. Only §STUD is equivalent to looking up the right tables. See
also Beran [(1987), Section 3.4].

The situation is not so clear-cut in other circumstances, although the philo-
sophlcal attractions of éSTUD are just as strong. In this section we use Edgeworth
expansion theory to elucidate and compare properties of bootstrap critical
points. We show that fspyp and 5 are both second-order correct, but argue
that while second-order correctness has a major role to play in the theory of
one-sided confidence intervals, its importance for two-sided intervals is di-
minished. There, third-order properties assume a significant role in determining
confidence interval length, although second-order properties do have an influence
on coverage. The difference between Student’s t-tables and standard normal
tables is a third-order effect. We argue that third-order properties of 0STU'D are
closer to those of 4 than are those of 0,pc. For example, the expected length
of the two-sided interval [0STUD(a), 0STUD(1 — a)] is closer to the expected length
of [5,4(), Osuq(1 — @)] than is the expected length of [fypc(@), Oppc(l — @)]. In
the example at the beginning of this section, 0STUD got third-order properties
exactly right; 0ABC got them wrong.

We show that the mean length of bootstrap confidence intervals is often not
directly related to coverage. However, our examples demonstrate that in the case
of equal-tailed two-sided 95% intervals for a population mean based on bootstrap
critical points, fspyp leads to intervals which tend to be conservative in the
sense that they have longer length and greater coverage than their competitors.
(This generalization can fail in the case of distributions with exceptionally large
positive kurtosis.) Oddly, the shortest bootstrap intervals introduced in Section
3.5 have both shorter length and smaller coverage error than equal-tailed
intervals based on gyyp, in the case of our examples. For example, shortest 95%
bootstrap confidence intervals for a population mean have almost 50% smaller
coverage error, in large samples, than their equal-tailed competitors based on

Ustup-
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4.2. Edgeworth expansions and Cornish—Fisher inversions. Edgeworth ex-
pansions of the form

H(x)=0(x) + i n=2p(x)é(x) + O(n-C+V/2),

(4.1) y
K(x) = 0(x) + ¥ n~"%q,(x)o(x) + O(n¢*2)

i=1
have bootstrap analogues
(4.2) ﬁ(x) = (D(x) + Agln—i/zﬁi(x)qb(x) + 0p(n_(”+1)/2),
(4.3) K(x) = o(x) + gln_m‘fi(x)‘#(x) + 0,(n=0+V2),

in which p; and §; are identical to p; and g; except that unknown quantities in
coefficients are replaced by bootstrap estimates. [See Hall (1986); technical
arguments are outlined in Section 5.] Likewise, Cornish-Fisher inversions of
theoretical quantiles, such as

x EH_I a)=2z + n—i/2p. 2 + O n—(v+l)/2 ,
a o i\ “a

i=1
Yo=K Ha) =2, + X n7"%g(2,) + O(n=*D72),
i=1

have analogues

(4.4) £, = ﬁ—l(a) -z, + Z n~%p.(z,) + Op(n_(”+1)/2),
i1=1

(45)  %=KNe) =2+ B n " Gu(z,) + On710).
i=

Polynomials p,, are related to p; and §;, are related to §; in the usual manner.
For example, the bootstrap analogue of (1.5) holds; that suffices for our purposes.

4.3. Expansions of bootstrap critical points. We begin with bias-corrected
points. By (4.2), noting that 5,(0) = 0 since p, is odd, we have

25 =2, + 2 =z, + 20 H(0)}
=z, + 2071 + n71/2p,(0)$(0) + O,(n"¥?)}

=2z,+n"?2p,(0) + O,(n~%2).
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Therefore, by (4.4),

2
=25+ Yy n~'?p,(z5) + 0,(n"%2)

i=1
=z, + n V¥ pu(z.) + 25:(0)} + n7 Y Pu(2.) + 2P1x(2.)5,(0)}
+0,(n"2).

Also, & = n™ %2 py(2,) + 4i(2,) — 2P(0)} and

(4.6)

zg =+ (M +2,){1—a(h+2,)} "
=z, + 210 + 4(22 + 22,m) + %2 + O,(n™%?)
=2z, + n7 VY Py(2,) + 4i(2,)}
+n 7 Di(2,) + 4u(2.) H{Pi(2a) + di(24) — 284(0)}2. " + O,(n=372).
Therefore, by (4.4),

2
£5 =25 + X n?py(2z) + O,(n"%?)
i=1

=z, + n72{py(2,) + 4i(2,) + Pu(z,))}
+n Y({p(z,) + 4i(2,)}
X[{B1(2a) + di(2a) — 28:(0)}22" + Plu(2a)] + Par(22))
+0,(n"%?).

(4.7)

Together, results (4.4)—(4.7) give expansions of all the quantile estimates used
to construct the six bootstrap critical points. Using those formulae and noting
that p,;, = —p, and §,; = —4, [see (1.5)], we obtain the expansions

Oorp(@) = 6 + n V%{z,+ n"%p(z,) + n Py(z,)} + 0,(n7?),
Osrup(a) = 6 + nV%{z, + n"'%(z,) + n gy (z,)} + 0,(n7?),
éHYB(a) =0+ n‘l/zé‘{za +n2%p(2,) + n_lﬁm(za)} + 0,(n7?),
Back(@) = 0+ n71%6{z, = n7Vpy(2,) + n7'Pu(2,)} + Op(n72),
fsc(a) =0 + n=% [z, + n=2(25,(0) — py(2.)}
+n Y hu(za) = 20{(2)P1(0)}] + O,(n7?),
éABC(a) =6+ n_l/zé‘{za +n"%4,(2,)
+r7((Bi(za) + di(za)}
x[(B(za) + di(22) — 25:(0)) 2" = Pi(2a)]
+Pn(2,))} + 0,(n72).
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Of course, Py, (x) = p(x)p}j(x) — 3xp,(x)? — py(x), with a similar formula for
§op; see (1.5). )

Expansions of the “ideal” critical points 6, and g, may be derived
similarly but more simply; they are

ba(a) =6+ n"%{z, + n'?p\(2,) + n"'py(2,)} + O(n72),
0Stud( ) = 6+n1% {z +n~ 12 q,(2,) +n” Q21(za)} + 0, (n—2)

Comparing all these expansions and noting that p, = O (n”'?) and ¢, =
g, + O, (n"'/?), we conclude that |0STUD Oseudl and |0ABC 0..ql are both
o (n‘3/ 2), Therefore, fgryp and 6,5 are second-order correct, while yyp,
03 ack and 0BC are usually only first-order correct. This is exactly the behaviour
noted in Section 2 for the theoretical versions of these critical points. Bootstrap
approximations to theoretical critical points are so good that they reflect the
inferior properties of points such as éhyb, 0, and 6, _.

If it so happens that the polynomials p, and g, are identical, then of course
the hybrid critical point is second-order correct. Indeed, in that case the hybrid
and accelerated bias-corrected critical points are third-order equivalent. To see
this, observe from the preceding expansions that

éHYB(a) - éABC(a)
“32%6{pi(2,) + du(2.)}
x [{ﬁl(z.,) + d4i(2.) — 28,(0)}2." = Pi(2.)] + Op(n72).

When p, = g, we have py(x) = §y(x) = C, + C,x? for random variables €, and
C, and for all x. Therefore,

{ﬁl(za) + él(za) - 2131(0)}201_1 _ﬁi(za) = 26223 * 2;1 - 262201 = O'

In consequence, Oy yp(a) — Gypc(a) = O,(n"?), implying that 0y and b, 5 are
third-order equivalent. This circumstance arises when 6 is a slope parameter in
general regression problems, such as multivariate linear or polynomial regression.
Although regression problems do not fit easily into the discussion in this paper,
it is nevertheless true that hybrid and accelerated bias-corrected cntlcal points
for slope parameters are third-order equivalent.

Unlike the other bootstrap critical points, 00RD is designed for use when o is
known, and so should be compared with 0°,d rather than 0s..a- When viewed in
these terms oy, is second-order correct, since |fopp — b,ql = O,(n~3/2).

EXAMPLE 1: NONPARAMETRIC ESTIMATION OF MEAN. Let Y,...,Y be
independent and identically distributed observations from a continuous
univariate population with mean 6 = E(Y)), variances ¢% = E(Y, — 0)?
standardized skewness y = ¢7°E(Y, — 0)° and standardized kurtosis
k=o*E(Y, - 6)*- 3. Sample versions of these quantities are § = n~'YY,
2=n"N(Y,-Y)? $=63"5(Y,-Y)® and R=46"*n"'N(Y,- V) -3,
respectively. The polynomials which interest us are on this occasion
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pi(x) = —3v(x* - 1),

q(x) = §v(2x* + 1),

po(x) = —x{Fr(x? — 3) + Hy*(x* — 1022 + 15)},
gx(x) = x{Lr(x? — 3) — Hy2(x* + 222 — 3) — 1(x% + 3)}

[see, e.g., Geary (1947), Petrov (1975), page 138]. Polynomials p,, p,, ¢, and §,
are identical to their theoretical counterparts, except that y and « are replaced
by ¥ and &, respectively. Noting that ¥ = y + O,(n™*/?) and & = k + Oy (n™'?),
we may derive the following expansions of critical points:

Osrun(@) = 6 + n™V% [z, + n/239(222 + 1)
+n7lz - &k(22 - 8) + Sy*(422 - 1)
+1(22+3)}] + 0,(n72),
Opyp(a) =8 + n~V% [z - n"1214(22-1)
+n7lz,{d(22 - 8) - v*(222 - 5)}] + O,(n7?),
Opack(@) =6+ n~% [z + n~ 21 -9( 1)
+n7'2,{ % k(22 — 3) — £y2(222 - 5)}] +0,(n7?),
Ouc(a) = 6 + /%2, + n~/219(222 + 1)
+n72,{ k(22 - 3) - v?(222 - 9)}] + 0,(n7?),
Oppc(@) = 6+ nV%
(4.8) X [za +n"219(222 + 1)
+nlz {&e(22 - 8) + &y(22 + 11)}] + 0,(n7?),
Oga(@) = 6 + n~V%
X [za +nV21y(222 + 1)
+n- za{ —'112‘K(22 - 3) + ;52-72(423 - 1) + }(zf, + 3)}]
+0,(n7?).

Similar expansions may be derived for éom) and 0,

(4.9)

EXAMPLE 2: ESTIMATION OF EXPONENTIAL MEAN. Let Y,...,Y, be inde-
pendent and identically distributed observations from the distribution with
density hy(y) = 0 %exp(—0~'y), y > 0. The maximum likelihood estimate of 6
is the sample mean § = n7'LY, and is also the maximum likelihood estimator
of o (=60). As noted in Sectlon 1.2, the distribution functions H and
H are identical, and the distribution functions K and K are identical,
in this case. Therefore, bootstrap critical points are identical to their
theoretical counterparts. The polynomials are p,(x) = —(1/3)(x% — 1),
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Do(x) = —(1/36)x(2x - 11x% + 3), q(x) = (1/3)(2x + 1) and gy(x) =
—(1/36)x(8x* — 11x% + 3). In consequence,
éSTUD(a) = Stud(a)
=0+ n7V%{z, + nV25(222 + 1) + n7 1 42,(1322 + 17))
+0,(n7?),

Ouyn(a) = 0+ n7%(z, — 02 5(20 = 1) + 07 gz (22 - 7)) + O)(n7D),
Ooack(@) = 0+ n %z, + n7/24(22 - 1) + 17 gz (22 = 7)) + O,(n7),

Oac(@) = 0+ 0™ %6{z, + n 24224 1) + gz (22 +9)) + O,(n72),

Oupc(a) =0+ n % {z +n7121(222 + 1) +n ssza(ISz + 17)}

+0,(n72).

Therefore, gy and f\pc are both third-order correct. This contrasts with the
parametric example which we treated in Section 4.1, where we showed that §,5.
failed to be third-order correct.

4.4. Lengths of two-sided equal-tailed intervals. Each of the critical points
Osruns Guys, 05 ACK> OABC and f,,, admits an expansion of the form

(4.10) b0(a)=0+n 1/2‘{2 + Z n=/%, (za)} + 0,(n™%?),

where §, and §; are even polynomlals and §, is an odd polynomial. The
two-sided, equal-tailed confidence interval I(1 — 2a) = [6(a), §(1 — )] there-
fore has length

I(1-2a)=0(1-a) - 6(a)
=2n""%{z,_,+n"%(z_,)} + O ),(n=%2),

Note particularly that second-order terms have cancelled entirely. Equal-tailed
intervals based on f,;y5 and OBACK always have exactly the same length, but
usually have different centres.

In the case of fg,,,, the polynomial 8, is of course deterministic; we write
it as s, g,,q- The version §, gryp of §, in the case of fypyp is derived by
replacing unknowns in the coefficients of Sy stua DY their bootstrap estimates.
This means that the lengths Ig, (1 — 2a) and lgryp(1 — 2a) of the intervals
[OStud(a), 0s0ua(1 — @)] and [fsrun(a), srup(1 — )] differ only by a term of
O,(n~ 2). In general, none of the other bootstrap intervals track the “ideal”
equal tailed interval [f,,4(a), fsea(l — )] as closely as this; the error.in length
is usually O (n'3/ 2). In the case of accelerated bias-correction and nonparamet-
ric estlmatlon of a mean, this is clear from comparison of expansions (4.8) and
(4.9).

The closeness with which the interval Igpyp(l — 2a) tracks I, 4(1 — 2a) is
even plainer if we base our comparison on mean interval length. Since

(4.11)
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E(88; grup) = 085,50 + O(n™1) = E(8)8p,g0uq + O(n™1), then E{lgryp(l —
2a)} = E{lguq(l — 2a)} + O(n~%?), whereas in general, E{l,po(1 — 2a)} =
E{lguq(1 — 20)} + O(n™%2).

4.5. Coverage. Let 6(a) be a critical point admitting expansion (4.10) and let
s, and s, denote the theoretical versions of §, and §,. Put U(a) = n'/*(§(z,) —
s(2,), S=nY%f-0)/6 and T=S8+ n"'U(a). The confidence interval
(— 00, 8(a)] has coverage

7(a) = P{0 < §(a)}
(4.12) = P{O <T+z,+ Eln“’ﬂs,.(z,,) + op(n—s/z)}

2
= P{T > —z,— Y, n_i/2si(za)} + 0(n=3%%),
i=1
assuming that the O,(n~3/?) term makes a O(n~%') contribution to the prob-
ability. (See Section 5.)

We may deduce a more concise formula for the coverage = by developing an
Edgeworth expansion of the distribution of T. That expansion is very close to
the one we already know for S [see (4.1)]; indeed,

(4.13) P(T<x)=P(S<x)—n‘tux¢(x) + O(n"32)

uniformly in x, where u = u(«) is a constant satisfying E{SU(a)} = u + O(n™")
as n — oo. (See Section 5.) It may now be shown after some algebra that

m(a) = a + n"V*s)(2,) — a)(2,) )} ¢(2,)
(414)  —n"isy(2.) 2, + 81(2.) {@l(2.) — au(2)24)

—ai(2,) — 85(2) + u2,)9(2,) + O(n%2).
We should stress that the polynomial s, — g, appearing in the coefficient of the
n~1/2 term is even. This observation is important when calculating the coverage
of equal-tailed two-sided confidence intervals.
The simple “normal theory” critical point fy,(a) = § + n~/%z, is based
on the fact that n'/%(§ — 0)/6 is approximately normally distributed. It has
coverage

Thom( @) = @ = n7V7q)(2,)¢(2,) + n7'ga(2,)8(2,) + O(n™%?).

The most important point to notice from (4.14) is that the coverage error
7(a) — a is of order n~! for all a if and only if s, = g,; that is, if and only if the
critical point 6(a) is second-order correct. Critical points which fail to be
second-order correct lead to coverage errors of order n~'/2, rather than n~1, in
the case of one-sided confidence intervals. '

Note too that the term of order n~'/2 in (4.14) is exactly as it would be if the
bootstrap critical point é(a) were replaced by its theoretical version. Indeed, the
theoretical version of 0(«) satisfies

o) = 6 + n_l/zé‘{za +n V%,(2,) + O(n‘l)}
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and
P{0 < é\theor(a)} = P{S > —z,—n Y%(2,) + O(n‘l)}
= a+ 1 12s(z,) - qi(z,)) + O(n7Y),
by (4.1). This reinforces the theme which underlies our paper: bootstrap ap-
proximations are so good that bootstrap versions of erroneous theoretical critical
points are themselves erroneous.

The situation is quite different in the case of two-sided intervals. Notice that
the polynomial s, — g, appearing in (4.14) is even and that the order n~32
remainder in (4.14) may be written as n~%%r(z )¢(z,) + O(n"2), where r
is an even polynomial. Therefore, the equal-tailed interval I(1 — 2a) =
[0(a), (1 — «)] has coverage

‘”(1 - (X) - W(a) =1-2a- 2n_1[%81(21_a)221_a + sl(zl—a)
(4.15) X {ql,(zl—a) - ql(‘zl—a)zl—a} = qy(2,_,)

—sy(21_a) + u2,_,]$(2,_,) + O(n 7).

The issue of second-order correctness has relatively little influence on coverage in
this circumstance. Of course, the precise form of §;, does have some bearing on
the coefficient of order n~! in (4.15), but it does not affect the order of
magnitude of the coverage error.

Formulae (4.14) and (4.15) may be used to develop approximations to coverage
error of bootstrap confidence intervals in a wide variety of circumstances. We
shall treat only the examples discussed in Section 4.3.

EXAMPLE 1: NONPARAMETRIC ESTIMATION OF MEAN. (See Section 4.3 for
notation and other details.) Here the value of u is (k — 2y?)y~!s(z,) and in
consequence the versions of 7(a) in (4.14) reduce to

mgrup(@) = a — n7(k — 3v%)1z,(222 + 1)¢(z2,) + O(n™32),
maye(@) = a — n7V%1y22(2,)
—n7'z,{ — &x(722 - 13)
+4v2(324 + 622 — 11) + 1(22 + 3) }o(2,) + O(n™%2),
Toack(@) = a —n71/? év(ﬁ + 2)¢(2a)
—n7l2,{ &r(22 + 5) + Ay (24 + 222 - 9)
+1(22 + 3)}o(2,) + O(n™%2),
mpc(@) = a — n721y20(2,)
—n‘lza{ 2—14x(z§ + 13) + 7—1272(23 - 222 - 41)
+1(22 + 3)}o(z,) + O(n™2),
7apc(@) = a — n'lza{ ix(5z§ +13) — 1y%(222+ 5) + }(zz + 3)}¢(2,,)
+0(n=%7%).

Of course, g, q4() = a.
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TABLE 1
Length and coverage of two-sided 95% intervals in nonparametric case. The column head s(z,_,) is
proportional to the amount by which interval length exceeds 2z,_,n"'/?3; the column headed
t(2,_,) is proportional to coverage error m(1 — &) — m(a) — (1 — 2a). Standardized skewness and
kurtosis are denoted by y and «, respectively.

Type of

critical point s(2;_ ) (length) t(2,_,) (coverage error)
STUD —0.14k + 1.96y% + 3.35 —2.84k + 4.25y2
HYB 0.069¢ — 0.15y2 1.13x — 4.60y% — 3.35
BACK 0.069¢ — 0.15y?2 —-0.72¢ — 0.37y% — 3.35
BC 0.069x + 0.072y2 —1.38x + 0.92y2 — 3.35
ABC 0.069x + 0.81y2 —2.63¢ + 3.11y2 — 3.35
Norm 0 0.14x — 2.12y%2 — 3.35
Stud —0.14x + 1.96y2 + 3.35 0

Coverage probabilities of two-sided bootstrap confidence intervals are more
meaningful when they are compared with interval length. We shall do this in the
case of two-sided 95% intervals. Observe from (4.11) and (4.14) that interval
length /(1 — 2a) and coverage m(1 — a) — m(a) of an interval [d(a), §(1 — a)]
may be written in the form

I1-2a) =2n""%{z,_,+n's(2,_,)} + O,(n7?),
7(1—a)—7(a) =1-2a+n"2¢(z,_)9(z,_,) + O(n~?)

for polynomials s and ¢ For the case of 95% intervals, « = 0.025 and 2,_, =
1.95996. Table 1 relates interval length and coverage error in this circumstance.
The simple “normal theory” confidence interval Iy, (1 — 2a) = [§ -
n~%z,_, 0 + n"/%z,_,]is included for the sake of comparison. The coverage
of the interval (— o0, § + n~'/%z,] equals

(4.16)

Trom(@) = & = n7V25y(225 + 1)(z2,)

+n_1za{ l—lzn(zg - 3)
—&v¥(24 + 222 - 8) — 1(22+ 3)}o(2,) + O(n™%?).

If skewness y and kurtosis k are both zero, then fyrup gives rise to two-sided
confidence intervals with coverage errors O(n~2), not just O(n~'). All the other
equal-tailed bootstrap confidence intervals have coverage errors O(n~'). Indeed
when y = k = 0, other bootstrap intervals undercover by an amount
3.35n"'¢(1.96); see Table 1. The term —3.35 appearing in the third column of
Table 1 arises from the difference between the standard normal distribution
function and an expansion of Student’s ¢ distribution function. In the case of
distributions with nonzero skewness or kurtosis, we see from Table 1 that serious
undercoverage can occur if we use @y When k < 0 and if we use f5,c¢ when
k> 0.

It is clear from Table 1 that in large samples, intervals based on éSTUD usually
tend to be longer and have greater coverage than intervals based on any of the
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TABLE 2
Length and coverage of two-sided 95% confidence intervals in exponential case. Notation as for
Table 1. See (4.16) for definitions of s and t.

Type of
critical point s(2;_,) (length) t(2, _,) (coverage error)
STUD, ABC, Stud 3.64 0
HYB -0.17 —-8.24
BACK -0.17 —2.44
BC . 0.70 -1.21
Norm 0 —4.29

other equal-tailed bootstrap intervals, and than the normal-theory interval. This
generalization only fails in cases of large positive kurtosis and indicates that the
interval [ fgpyp(0.025), 5run(0.975)] is conservative in many circumstances. Nev-
ertheless, there is no general relationship between coverage error and interval
length. For example, in the case of distributions with nonzero skewness the
ordinary bias-corrected interval tends to be shorter than the accelerated bias-
corrected interval, but has smaller coverage only when k < 1.74y2.

EXAMPLE 2: ESTIMATION OF EXPONENTIAL MEAN. (See Section 4.3 for nota-
tion.) We shall content ourselves here with an analogue of Table 1; see
Table 2. This shows that equal-tailed two-sided intervals based on Oy,
Ogack, Opc and ., tend to have shorter length and lower coverage than
intervals based on 6,4, f5rup and f,pc. The latter three critical points are all
third-order equivalent, but although 6,4 = fsrup, these points are not exactly
the same as éABC.

Of particular interest is the fact that equal-tailed intervals based on the
normal theory critical point éNom appear to have better coverage properties
than intervals based on the computationally expensive bootstrap point éHYB.

4.6. “Shortest” intervals. Some of the properties of theoretical “shortest”
confidence intervals were discussed in Section 2.5. Bootstrap analogues of those
intervals were introduced in Section 3.5 and have similar properties. In particu-
lar, the bootstrap estimates © and @ of v and w satisfy

3
b=2_,+ 2 n % +0,(n"?) and
j=1

3 .
D=z ,+ ¥ (-n"V2) 5+ 0,(n2),
j=1

where ¢, is the bootstrap estimate of v;. (See Section 2.5 for a definition of v;.)

Interval length is
n V%(6+ ) = 2n_1/26(z1_a + n"*ﬁz) + 0,(n™5%)

4.17
(417) =2n"Y%(z,_, + n"'v,) + O,(n"2)
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and mean interval length is
E{n'%(6+ )} = E{(2n7'%(2,_, + n7'8,)} + O(n™%?)
= E{2n""%(2,_, + n"'0,)} + O(n"%?)
= E{n""%(v+ w)} + O(n""?2).

Coverage probability may be found by an argument similar to that leading to
(4.15) and is B, = 1 — 2a + n™2uz, _ #(2,_,) + O(n~3?), where on the present
occasion u is given by

E{Sn'?(6, - v,)} = u + O(n"1).

Length of the shortest bootstrap confidence interval is less than that of the
equal-tailed interval Iy by an amount of order n~3/2. This is the same order
as the difference between standard normal and Student’s ¢-critical points for the
mean 6 of an N(#, ¢?) population.

EXAMPLE 1: NONPARAMETRIC ESTIMATION OF MEAN. (See Section 4.3 for
notation.) Here v, = — 1y(2z7_, - 3),

(4.18) v, =2, {— (2, — 3) + Hv*(2027_, — 21) + 1(22, + 3))
[see (2.10)] and u = — 1(x — 2y%)(222_, — 3). Therefore, coverage is
By=1-2a—n"1i(rk— 2y?)z,_ (222, — 3)é(2,_,) + O(n=%?).
If
BZ =1-2a- n_lé(": - %Yz)zl—a(zzlz—a + 1)¢(zl—a) + O(n_3/2)

denotes coverage of the equal-tailed interval Igpyp(l — 2a) = [éSTUD( a),
fsrup(1 — )] and B, =1 — 2a denotes nominal coverage, then the ratio of
coverage errors (B, — fB,)/(B; — B,) converges to (222_, — 3)/(222_,+ 1) as
n — oo. This quantity is always positive for B, > 0.78, and equals 0.38, 0.54 and
0.72 in the important cases B8, = 0.90, B, = 0.95 and B, = 0.99, respectively.
Therefore, the “shortest” confidence interval not only results in a reduction in
length compared with the equal-tailed interval Igrp(1 — 2a), but also a reduc-
tion in coverage error, at least in large samples.

Substituting formula (4.18) for v, into formula (4.17) for interval length and
comparing with formula (4.11) for length of equal-tailed intervals, we see that
interval length has been reduced by an amount n=%%(4/9)sv%2, _, + O,(n"?),
compared with the equal-tailed interval Igyp(l — 2a).

EXAMPLE 2: ESTIMATION OF EXPONENTIAL MEAN. Here the shortest
bootstrap interval and Igryp(1 — 2a) both have zero coverage error. The former
has length shorter by an amount n~%2(16/9)0z, _, + O,(n"?).

5. Technical arguments. Technical arguments are distinctly different in
parametric and nonparametric cases. A detailed account will be published
elsewhere. In the nonparametric case, many technical arguments are expanded



952 P. HALL

versions of proofs from Hall (1986). For example, result (4.3) for » = 1 appears in
Proposition 5.1 of Hall (1986); inverse Cornish-Fisher expansions such as (4.5)
are given in Section 3 and in step (iii) of the proof of Theorem 2.1 of Hall (1986);
coverage expansions such as (4.12) and (4.14) appear in step (iv) of the proof of
Theorem 2.1 of Hall (1986). In some respects, the parametric case is simpler than
the nonparametric one treated in Hall (1986), since the population from which
the bootstrap resample £* is drawn is continuous.

Result (4.13) follows from the fact that all but the second of the first four
cumulants of S and T are identical up to (but not including) terms of order n~=3/2
and that ky(T) = ky(S) + n 2u + O(n"?%). To understand why the fourth
cumulants agree, it is helpful to notice that E{S*U(a)} = 3u + O(n~!) if S and
U(a) may be approximated by sums of independent random variables (which is
the case under the “smooth function model” introduced in Section 1.3, for
example). Note that E(S?) =1+ O(n™1).
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DISCUSSION

CHONGEN Bar! AND RICHARD A. OLSHEN' 2
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Once again Peter Hall has given us an interesting definitive paper concerned
with asymptotic expansions and bootstrapping. These comments are directed
toward issues that have arisen in our own work on the bootstrap. In particular,
we offer comments regarding hyperefficiency of bootstrap-based critical points
and probabilities, not for confidence intervals, but for the related problem of
prediction intervals. The questions arose in conjunction with a somewhat com-
plicated random coefficient trigonometric regression model [Olshen, Biden, Wyatt
and Sutherland (1988)], but our points can be made in a very simple context.
Also, our study relates only to a percentile-¢-like method.

We assume that we have iid random variables X, ..., X,,, Z with distribution
F. The X’s are thought of as a learning sample and Z a test case. The common
standard deviation is denoted by o, and it will be clear that without loss we may
take the common mean value to be 0. Qur arguments depend on two assump-
tions: (A) E{Z*} < o and (B) F” exists and is bounded.
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