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A MULTIVARIATE TWO-SAMPLE TEST BASED ON THE NUMBER
OF NEAREST NEIGHBOR TYPE COINCIDENCES

BY NoRBERT HENZE

University of Hannover

For independent d-variate random samples X,..., X, iid. f(x),
Yy,..., ¥, iid. g(x), where the densities f and g are assumed to be
continuous a.e., consider the number T of all k£ nearest neighbor comparisons
in which observations and their neighbors belong to the same sample. We
show that, if f=g a.e, the limiting (normal) distribution of T, as
min(n,, ny) = 0, n,/(n, + ny) = 7,0 < 7 < 1, does not depend on f. An
omnibus procedure for testing the hypothesis Hy: f = g a.e. is obtained by
rejecting H, for large values of T. The result applies to a general distance
(generated by a norm on R?) for determining nearest neighbors, and it
generalizes to the multisample situation.

1. Introduction. Let X,,..., X, ,Y,,...,Y, beindependent R%valued ran-
dom vectors (“observations, points”), d > 1. The distribution of X; has unknown
pdf f(x), say, and the distribution of Y; has unknown pdf g(x), say. We assume
that f and g are continuous a.e. with respect to Lebesgue measure. The
two-sample problem (TSP), which represents one of the classical problems of the
theory of nonparametric inference, is then to test the hypothesis

(1.1) Hy. f=g a.e.

versus the general alternative that f and g differ on a set of positive measure. Of
course, any reasonable test of (1.1) should meet the minimum requirements:

(a) The probability of an error of the first kind does not depend on f (the
testing procedure should be distribution free).

(b) As min(n,, n,) = oo, the test statistic is asymptotically distribution free
under H,,, and the limiting distribution is known.

(c) The test is consistent against general alternatives.

In the univariate case many tests for the TSP meeting the preceding require-
ments have been proposed, the most prominent of these being the tests
of Smirnov (1939), Wald and Wolfowitz (1940), Cramér and von Mises [see
Rosenblatt, (1952)], Lehmann (1951) and the empty box test of Wilks (1962).

A common feature of these procedures is that they only use the information
provided by the ranks of observations within the sorted list of the pooled sample.
Consequently, the respective test statistics are distribution free under H,, which
in turn implies property (a).

The multivariate case seems to have been studied far less fully. An intrinsic
difficulty for extending the tests of Smirnov and Cramér and von Mises to the
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MULTIVARIATE TWO-SAMPLE TEST 773

case d > 2 is the fact that monotonic transformations of the respective coordi-
nates do not necessarily carry an arbitrary distribution to the uniform distribu-
tion on the unit d-cube. This explains why the respective statistics are no longer
distribution free under H, in the multivariate case.

Bickel (1969), by applying Fisher’s permutation principle, shows that it is
possible to construct consistent distribution free multivariate Smirnov tests by
conditioning on the empirical cdf (ecdf) of the pooled sample. However, this test
lacks property (b) and is thus not satisfactory for practical purposes.

Friedman and Rafsky (1979) propose a multivariate two-sample test (multi-
variate run test) based on the minimal spanning tree of the sample points as a
multivariate generalization of the univariate sorted list. By conditioning on the
ecdf of the pooled sample, their procedure is distribution free, and the limiting
permutation distribution of the proposed statistic is shown to be normal. It is
not known whether the multivariate run test satisfies postulates (b) and (c).

Further proposals [Anderson (1966) and Weiss (1960)] lack a proof of con-
sistency, and a test of Lehmann (1951) involves postexperimental randomization
as an intrinsic factor, which is an undesirable feature.

In this paper we present a multivariate two-sample test that possesses
properties (a), (b) and (c). To state the procedure, let | - | denote a fixed but
otherwise arbitrary norm on R, and put

Z,=X,, 1<i<n,,
(1.2) =Y, n+1<i<n,
where n = n, + n, is the total sample size. Define the rth nearest neighbor to Z;

[denoted by N(Z,)] as that point Z; satisfying |Z, — Z;| < |Z; — Z| for exactly
r—1valuesof »,1 <v <n; v+ 1, j and write

(13) I(r) =1, if Z;and N,(Z;) belong to the same sample,

—-n;?

=0, otherwise.
The random variable to be studied is

n k
(1.4) T = E E I(r),
i=1r=1

which represents the number of all & nearest neighbor type coincidences. Rejec-
tion of H, is for large values of T}, ,. To make the procedure distribution free, we
may condition on the pooled sample and conduct an exact permutation test.

The purpose of this paper is twofold: First, the restriction to the Euclidean
metric imposed in previous work [Henze (1984) and Schilling (1986b)], which is
undesirable in view of the well-known problem of commensurability of the
different coordinates, is removed. Second, we give a proof of asymptotic normal-
ity of T, , under H, (Section 3) via almost sure asymptotic normality of the
conditional distribution of 7,, , given the pooled sample together with stochastic
convergence of the conditional variance of T,, , to a limit not depending on the
underlying density f. It is interesting to note that almost sure conditional
asymptotic normality follows as a special case from the work of Bloemena (1964),
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which seems to have been largely forgotten (see Section 2). Since the conditional
variance consistently estimates the limiting variance (which does not seem to be
computable except for the Euclidean case) the test, conducted as an approximate
permutation test, is applicable in case of a general norm.

Consistency is proved in Section 4. The test may be easily adapted to the
multlsample situation [Henze (1985)], and weighted versions of T, , are possible
in order to achieve high power against specific sequences of alternatlvw [see
Section 4 of Schilling (1986b)].

It is understood that the random variables X,, X,,...;Y,,Y,,... (and the
random variables U,,, ..., U,,, n € N, introduced in Section 2) are defined on a
common probability space whose formal description is left to the reader. Their
joint distribution will be denoted by P, (under H) or P, , (in case of a general
alternative). To avoid undefined expressions when taking limits, the sample sizes
n,, n, are tacitly assumed to be large enough whenever necessary (a lower bound
may depend on f, g and the norm | - |). I(A) denotes the indicator function of
an event A. For short, the dependence of events and random variables on n,, n,
will frequently be suppressed.

2. The permutation distribution of T}, ,. Let Z,,..., Z, be i.id. random
vectors in R? with common pdf f(x), whlch represent the pooled sample without
knowing sample identity. Independently of Z,,...,Z,, the distribution of
U, -+, U,,) having {1,2}-valued components U, ; is given by

-1 n
PU,=uz;1<i<n)= (,’,‘1) . if Y I(u; = 1) = n,,
i=1
=0, otherwise.

Z; is defined to have sample type “X” (“Y”),if U, ;=1 (U, = 2),1 <j < n. For
l1<i#j<n; r=1,..., k we introduce the events

AR = (2= N(2)}
= {“Z; is the rth nearest neighbor of Z;”},

lﬁ1= {U&i= U;J

{“Z; and Z; are of the same sample type”},

and put A{ = B;; = @, 1 < i < n. Clearly, under H,, T, , defined in (1.4) has

122
the same distribution as

n k
T r= Z Z‘ I(A(i;‘))I(Bij)’
i,j=1r=1
and the permutation distribution to be studied is the conditional distribution of
’f,, » given (the pooled sample) Z; = z;,, 1 < i < n. We may assume (this event
occurs with probability 1) that z,,...,z, are distinct pomts in R? having
uniquely defined neighbors. Conditionally on Z; = z,, 1 <i < n, I(A{}) = a{},
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where
a(r) = a(r)(zl’ . Zn)
= I(“z, is the rth nearest neighbor of 2,”), i # .

Letting a}; = £%_,a{?, we have

(2.1) a;€{0,1}, a;=0, 1<ij<n,

n
(2.2) Yali=k, 1<is<n.
j=1
In terms of graph theory, (a;}) represents the adjacency matrix of the directed
k-nearest neighbor graph (k-NNG) of z,,..., 2, and completely determines the
distribution of the random variable
n
(2.3) Ln,k = Z a;I(BU).
i, j=1
For convenience, let d(®) = £ af;, 1 <j <n,

@ = L5 (g p)? ® = atal
el =-,EZ(dJ —k) and v, _';"'Eazjﬂ

i, j=1

d(® is the indegree of the vertex z; in the k&-NNG of z,,..., z,. Using (2.2), we
have L,d{® = nk, and thus ¢ may be regarded as the variance of indegrees of
the £-NNG. By definition of a}}, it follows that v{®) = (1/k)L} ,_,0{"*), where
of+® = (1/n)L} ;-,a{Pal? is the proportion of all observations that are the sth
nearest nelghbor to their own rth nearest neighbor.

PROPOSITION 2.1. Let G, be a directed graph having vertices 1,...,n and
adjacency matrix (a;}), <, j<n satisfying (2.1) and (2.2), and let
m(n,, n,) = (n1(n1 — 1) + ny(ny — 1))/(n - 1),
q(ny, ny) =4(n, - 1)(ny — 1)/((n - 2)(n — 3)).
Then E[L, ,] = km(n,, n,),

Var(Ln",k)
(2.4) nn 2k
= k_rl—l:—gf(q(nlr n2)( n n—1 + (1 - q(nl’ n2))c$Lk) .

PROOF. Letting m;;=a; +aj;, Y=1, jm,j(l I(B;;)), we have L, , =
kn — Y. The statlstlc Y has been studied in a more general context by
Bloemena (1964) [see his definition (1.1.5)] so that the assertion follows easily
from formulas (3.5.6) and (3.5.7) of Bloemena (1964), observing that, in his
notation, m,, =k + d{®, m,, = 2kn, T(m;,—Q1/n)m,,)? = knc® and
L, mi=2kn(1 +oP).0O
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PROPOSITION 2.2. Let (G,) be a sequence of directed graphs as in Proposi-
tion 2.1. Assume that there is a positive constant €,1 < € < oo, depending only
on k such that

(2.5) sup d¥ <€, neN.
1<j<n

If n > oo with
(26) 0<as<ny/n,<b< oo,

for positive constants a, b, then
Var(L, )Ly, 5 — km(ny, ny)) =5 40, 1).

ProoF. The assertion is an immediate consequence of Theorem 4.1.2 of
Bloemena (1964). O

From Corollary S1 of Bickel and Breiman (1983) (which may easily be
generalized to kth nearest neighbors), it follows that condition (2.5) is satisfied
almost surely for the indegrees of the .-NNG of Z,,...,Z,. If n —» o and (2.6)
holds, we therefore obtain P; almost surely

@) limP(Var(’f‘n,k|Zl,...,Z) VAT, — km(ny, ny)) < HZ,, . ,z,,)

= ®(¢),
t € R, where ®(¢) is the cdf of the standardized normal distribution.

. The asymptotic null distribution of T,,, % In this section we derive the
hmltmg null distribution of T, ,. The main result (Theorem 3.4) and the
equality in distribution of T}, Tk and T _r under H,, imply that T,, , is asymptoti-
cally distribution free under H

In view of (2.7) it remains to investigate Var(T, #Zy,...,Z,) as n > . By
Proposition 2.2, this in turn requires a study of the random variables

(3.1) oW = — Z (D — )2
and
1 n
(3.2) , Ve = — ZlA;;A;;,
i, Jj=

where A} = Z,_II(A(')) D(k) =Xr AL

To state the hrmtmg behavior of C"“) and V®, let A be shorthand for
~ Lebesgue measure and write S(x, §) = {y € R% |x — y| < §) for the open | - |-
" sphere with radius & centered at x. 0 = (0,...,0) is the origin in R¢ and p
denotes d — 1-dimensional Hausdorff measure (surface area) normalized such
that p({x: |x| = 1}) = 1. Finally, let A' = A, A® = A"
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PROPOSITION 3.1.  As n — co, we have C{P -, ¢, where

: k
c§f’=c§f)(d,|'|)=1"k+% L calr:s),
r,s=1
1
(r, A(S, N S;)'N(S
Cu(r,8) = ”201011311.// ( Sz) (I\SZ)

X A(8;\ S,)‘exp[ —A(S, U S;)] du, du,,
I=min(r+i-2,s+j—2),
d=r—-1+i-2, e=s—1+j-2,
L= {(ul, u,) € [R?]%: 0 € S(uy, |u, — uzl)i N.S(uy, lu, — uzl)j},
Sp=8(Up, |un,l), m=1,2.

PrOOF. Straightforward algebra and symmetry give

1
E[cP]=1-Fk+ 7 Z (n-1)(n - 2)P(AP N AY).
r,s=1

Following the reasoning of Schilling (1986a), page 392, and Section 3
of Henze (1987), we get lim(n — 1)(n — 2)P(A{) N A(s)) =c,(r,s) and thus
lim E[C(”)] =¢® as n - . The proof of limVar(C¥) =0 as n —> o was
given in Sectlon 3 of Henze (1987) for the case k£ = 1. The general case k£ > 1 is
handled similarly. O

PROPOSITION 3.2. Asn — o, we have V¥ —p o{Y), where

1 k
vgf)=vg)(d,|-|)= ; Doo(r’s)’
r,s=1

o(ros) = [ L b(r=1,j, p(@)m(r,s — 1 - j, q(u)p(du),

lu|=1 ;=0
k =min(r - 1,s — 1),

A , u, -
p(n) = [s((;[g(:’ls)(] 1)], q(u) =2 -p(u),

b(m, j, p) = ('}l)p’(l -p)"7,  w(m,j,p)= (mmi ;’)p"‘(l -p).
The proof of Proposition 3.2 is given in Henze (1987). For the case of the
Euclidean norm, numerical values of ¢{¥’ and v{¥) are furnished by Schilling
(1986a). Since C{¥ and V¥ deal with problems of a local character not
depending on the “local intensity” of observations, it is not surprising that c(*
and v{® do not depend on f.
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PRrROPOSITION 33. Ifn— cowithn,/n - 1,0 <71 <1, then
Var(n=V2T, 4IZ,,..., Z,) —p of(7,d,| - |),
where

oZ(r,d,|-|) =4kr(1 - ’T)(T(l - 7)(1 + vgok)) + ('r - %)%g’)).

PrOOF. The result follows immediately from (2.4), Proposition 3.1, Proposi-
tion 3.2 and the fact that, as n = o0 with n,/n - 7, lim(1 — q(n,, n,)) =
4r-H% O

Using (2.7), Proposition 3.3 and a routine technique, we get the following main
result.

THEOREM 34. If n — co withn,/n — 7, then
n—1/2(Tn,k - km(nly n2)) —)9[ ‘/V(O7 ol?(’r’ d’ | ° l))’
limVar,(n‘lﬂTn,.k) =og(7,d,| ).

4. Consistency. In this section we consider the general setup of the begin-
ning of Section 1. The first result is a weak limit theorem for T}, ,.

THEOREM 4.1. Ifn — o0, n,/n— 1,0 <7 <1, we have

1
ETn,k —)Pl,g D( f’gy T),

where
D(f,8.7) = [(r(x) + (1 - 1)%€%(x))/(rf(x) + (1 = 1)g(x)) d.

REMARK. Here and in what follows, we put 0/0 = 0.

Proor. We show that

. 1
(4.1) ' liml'n_k'Tn,k:I =D(f,g;"'),
(4.2) ‘ limVar(;lk;Tn’k) = 0.

Only the case £ = 1 will be considered; the situation for £ > 1 follows similarly.
By symmetry,
E[n7'T, | = nin E[L(1)] + nen B[, 1,(1)],

with I(1) defined in (1.3), and so (4.1) is a consequence of the following lemma.
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LEMMA 4.2. Let x be a point of continuity of both f and g. If f(x) > 0, we
have

lim E[L(1)|X, = x| = rf(x)/(rf(x) + (1 - 7)g(x)).
If g(x), > 0, we have
lim E[I, , (DY, = z] = (1~ r)g(x)/(rf(x) + (1 r)g(x)).

ProOF. By symmetry, it suffices to prove the first assertion. Assume first
that g(x) > 0. Let w;= )\(S(O 1)), R, mm{|x -XJ: 2<i<n}, R,=
min{lx — Y|: 1 <j<n,}, V, = nlf(x)wde’ V, = n2g(x)wdR and put p
[¢/(n,w,f(x))]*9, where £ > 0 is any fixed real humber, From

P0y>a=(r—é ﬂyﬁbyrl

(x,p)

and the continuity of f at x, which entails
§
[ f»dy=—+o(n), n -,
S(x, p) n, ,

it follows that lim P(V, > §) = exp(—§). In the same way, lim P(V, > n) =
exp(—n), 1 > 0. The joint independence of X;,Y; implies that, as n,, n, > oo,
V./V, converges in distribution to a quotient @, say, of independent unit
exponential random variables yielding

lim E[I,(1)|X, = x] = lim P(R, < R,)
= lim P(V,/V, < n, f(x)/(n,8(x)))
= P(Q < f(x)/((1 = )&(x)))
= f(x)/(+f(x) + (1 - 7)g(x)),

as asserted.
The case g(x) = 0 will be reduced to the preceding considerations. To this
end, fix £ > 0 and take & > 0 such that

A(S(x,8)) <1 and g(y) <e/2, whenever |x —y| <3§.

Independently of XY, let J,,...,d,,W,,...,W,, be independent random
variables, JJ, being {0, 1}-valued with

P(dJ, =1) = (eX(S(x,98)) — &5)/(1 — &), 1<r<n,,
and W, having density
w(z) = (e — 8(2))/(eA(S(x,8)) — £5)I(z € S(x,8)), 1<v<n,,
where, for brevity, g5 = [, s) f(¥) dy. Putting
Y*=Y, if|Y,—x|<d8or|Y,—x|>8and J,=0

v v

=W, if|]Y,—x|>08and J,=1
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the density of Y,* is given by
g*(y) =¢ ifly — x| <89,
= 8(7)(1 — e\(S(x,8)))/(1 - &), ifly— x| 23,
l<v<n, X,,..., X,,Y*,...,Y,* are independent, and we have
(4.3) P(R,<R*)<P(R,<R,)),

where R} = min{|x — Y¥,*|: 1 < » < n,}. From the results obtained for the case
&(x) > 0 applied to X;, Y*, we get

lim P(R, < R*) = P(Q < 7f(x)/((1 — 7)e))
= 1f(x)/(rf(x) £ (1 — 7)),
and thus Lemma 4.2 follows using (4.3) and letting ¢ approach 0. O

To complete the proof of Theorem 4.1, let x,,x, be distinct points of
continuity of both f and g with f(x;) >0, 1 <j<2. By symmetry and
dominated convergence, to show (4.2) it suffices to demonstrate that

‘2
lim E[II(I)IZ(I)IXI =x, X, = xz] = H [”'f(xj)/(”'f(xj) +(1- T)g(xj))]'

This was proved in Henze (1984), page 270, for the case g(x;) > 0,1 <j < 2. The
modifications for the case min, _ ;_,8(x;) = 0 follow the lines given previously.
The details are omitted. O

The quantity D( f, g, 7) figuring in the statement of Theorem 4.1 is a member
of a general class of separation measures of several probability distributions
introduced and studied by Gyorfi and Nemetz (1975, 1977, 1978). From Theorem
1 and Corollary 1 of Gyérfi and Nemetz (1975), we have the following result.

PROPOSITION 4.3.  Let f; be a pdf on R?, andlet ;> 0,1 <j < s, X5.,7, = 1,
s > 2. Then
8 8 s
f Y fAx) | X omfi(x)de > 312
‘ Jj=1 Jj=1 J=1
Equality holds if, and only if, the probability measures corresponding to
fis+.. f, coincide.

We now turn to the proof of consistency of a multivariate two-sample test
based on T, ,, carried out as an exact permutation test.

To this end, let 2;,=x;, 1 <j<n,, and 2, ,, =y, 1 <! < n,, denote the
observed values of Xl,...,X,,l, Y,....Y,, and put z,=(2...,2,). Given
any level of significance a, 0 < a <1, the critical value c, x(z,; @) and the
probability of randomization 7y, ,(z,; a) for performing the test procedure
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are determined by
(4.4) 0< ‘yn’k(zn; a) <1,
(4‘5) P(Ln(zn) > cn,k(zn; a)) + Yn,k(zn; a)P(Ln(zn) = cn, k(zn; a)) =a,
where L, (z,) = L, , is defined in (2.3).
THEOREM 4.4. The test ¢, ,, defined by
<pnl,,,2(x1,...,xnl, Yiseros ynz)
=1, if Tn,k(xl,...,xnl, Yiseeos ynz) > ¢, (25 @),

= Yn,k(zn; a)’ lf Tn,k(xl""’xnl’ Y1seees ynz) = cn,k(zn; a)’

=0, if Ty (%15 eees Xy Yiseees y,,z) < ¢, wlzp; @),
and (4.4) and (4.5), is consistent at level a for testing Hy: f = g a.e.; i.e., if
(4.6) f(x) + g(x), on a set of positive measure,

we have, asn = oo, n,/n—>1,0<7<1,

im By o[ @, Koo+ os Xy Yisev o Yo

2

| =1

PROOF. Assume that (4.6) holds, and let Z; be as in (1.2), 2, = (Zy, ..., Z,).
Note that in contrast to Section 2, Z,,..., Z, are independent but no longer
identically distributed. From Corollary S1 of Bickel and Breiman (1983), gener-
alized to k-nearest neighbors, it follows that condition (2.5) is satisfied P; , a.s.
for the sequence of k-NNGs with vertices Z,,..., Z,, and thus Propositions 2.1
and 2.2 yield

4.7)  UzY(cp i(Zn @) — km(ny, nz)) ->®Y(1-a), PB,as,

ny, g

where
nyngy 2k
U= B a1+ W0, = 77 + (0= 0l me))GED

and where CV, = C®, V¥, = V/® are defined in (3.1) and (3.2), respectively
(the notational change indicates that Z,, consists of two different samples). The
inequalities 0 < V{®) <k, P, ,as,0<C®», <(€C+ k)?, P, . as. imply that

Un € B2 (0 4 B)la(msy )| 411 = @l m)|(6 4 B, B pas.

ny, ng —

n-—1
and on combining this with (4.7), we have

, 1 -
(438) 0 (2,5 0) = n 7y, 1) + n770p, (1),

where Op,,g(l) denotes a random variable that is bounded in probability when
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taking limits. The assertion now follows from
Ey o[ nnd Xireoos X Yir 0, X, )]

1 1
2 B b X Y ) > 6 (25 0)
Theorem 4.1, (4.8), Proposition 4.3 and the fact that, as n - o, n,/n - ,
lim(n~'m(n,, ny)) =72+ (1 - ). m|

5. Concluding remarks.

REMARK 5.1. For moderate or large sample sizes n,, n,, we may reject H, at
(approximate) level a if

Tn, k(zn) 2 C:’ k(zn; a);
where z, = (21,...,2,) = (X103 X Yiseevs Jp)s
C:’ k(zn; a) = km(nl’ n2) + unl,nz(zn)1/2¢_l(1 - a)’

with u, ,(z,) given by the right-hand side of (2.4). The practical implementa-
tion of this approximate permutation test requires the determination of all %
nearest neighbors [for efficient algorithms, cf. Friedman, Baskett and Shustek
(1975) and Rohlf (1982)].

REMARK 5.2. The performance of the test based on 7, , for finite sample
sizes (Euclidean metric) was assessed in Schilling (1986b) by means of Monte
Carlo experiments for various values of £ and d.

Acknowledgments. This work is based on a part of the author’s Habi-
litationsschrift [Henze (1985)] written at the University of Hannover. The
author wishes to thank Prof. Dr. D. Morgenstern for stimulating discussions, and
Prof. Dr. W. R. van Zwet for drawing his attention to the work of Bloemena.

REFERENCES

ANDERSON, T. W. (1966). Some nonparametric multivariate procedures based on statistically equiv-
alent blocks. In Multivariate Analysis 1966 (P. R. Krishnaiah, ed.,) 5-27. Academic, New
York.

BICKEL, P. J. (1969). A distribution free version of the Smirnov two-sample test in the multivariate
case. Ann. Math. Statist. 40 1-23.
BICKEL, P. J. and BREIMAN, L. (1983). Sums of functions of nearest neighbor distances, moment
bounds, limit theorems and a goodness of fit test. Ann. Probab. 11 185-214.
BLOEMENA, A. R. (1964). Sampling from a Graph. Mathematical Centre Tracts 2. Mathematisch
Centrum, Amsterdam.

FRIEDMAN, J. H., BASKETT, F. and SHUSTEK, L. J. (1975). Ah algorithm for finding nearest
neighbors. IEEE Trans. Comput. 24 1000-1006.

FRIEDMAN, J. H. and RAFsKY, L. C. (1979). Multivariate generalizations of the Wald-Wolfowitz and
Smirnov two-sample tests. Ann. Statist. 7 697-717.

GYORFI L. and NEMETZ, T. (1975). f-dissimilarity: A general class of separation measures of several
probability measures. Topics in Information Theory. Collog. Math. Soc. Jdnos Bolyai 16
309-321. Keszthely, Hungary.



MULTIVARIATE TWO-SAMPLE TEST 783

GYORFI, L. and NEMETZ, T. (1977). On the dissimilarity of probability measures. Problems Control
Inform. Theory 6 263-267.

GYORFI, L. and NEMETZ, T. (1978). f-dissimilarity. A generalization of affinity of several distribu-
tions. Ann. Inst. Statist. Math. 30 105-113.

HENZE, N. (1984). On the number of random points with nearest neighbor of the same type and a
multivariate two-sample test. Metrika 31 259-273. (In German.)

HENZE, N. (1985). A multivariate two- and multisample test based on the number of nearest
neighbour type coincidences. Habilitationsschrift, Univ. Hannover. (In German.)

HENZzE, N. (1987). On the fraction of random points with specified nearest neighbour interrelations
and “degree of attraction.” Adv. in Appl. Probab. 19 873-895.

LEHMANN, E. L. (1951). Consistency and unbiasedness of certain non-parametric tests. Ann. Math.
Statist. 22 165-179. ‘

RoHLF, F. J. (1982). Single link clustering algorithms. In Handbook of Statistics (P. R. Krishnaiah
and L. N. Kanal, eds.) 2 267-284. North-Holland, Amsterdam.

ROSENBLATT, M. (1952). Limit theorems associated with variants of the von-Mises statistic. Ann.
Math. Statist. 23 617-623. .

SCHILLING, M. F. (1986a). Mutual and shared neighbor probabilities: Finite- and infinite-dimensional
results. Adv. in Appl. Probab. 18 388-405.

ScHILLING, M. F. (1986b). Multivariate two-sample tests based on nearest neighbors. J. Amer.
Statist. Assoc. 81 799-806.

SMIRNOV, N. V. (1939). On the estimation of the discrepancy between empirical curves of distribu-
tions for two independent samples. Bull. Moscow Univ. 2 3-6.

WaLp, A. and WOLFOWITZ, J. (1940). On a test whether two samples are from the same population.
Ann. Math. Statist. 11 147-162.

WEIss, L. (1960). Two-sample tests for multivariate distributions. Ann. Math. Statist. 31 159-164.

WILKS, S. S. (1962). Mathematical Statistics. Wiley, New York.

INSTITUT FUR MATHEMATISCHE STOCHASTIK
UNIVERSITAT HANNOVER

WELFENGARTEN 1

D-3000 HANNOVER 1

WEST GERMANY



