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ROBUSTNESS OF ESTIMATORS FOR DIRECTIONAL DATA

BY DA1JIN Ko AND PETER GUTTORP

Virginia Commonwealth University and University of Washington

Some standard robustness concepts, developed for linear data, are found
wanting in the case of directional data. We introduce a standardized bias
robustness allowing for uniform robustness considerations of statistics for
bounded parameter spaces. Specifically, we verify the nonrobustness in this
sense of the directional mean, the directional dispersion and the maximnum
likelihood estimator of the concentration parameter of the von Mises—Fisher
distributions.

1. Introduction. Despite much recent research or the robustness of estima-
tors of location and scale for linear data, the robustness of estimators for
directional data has not been investigated comprehensively. Mardia (1975) and
discussant mentioned some aspects of robustness. Collett (1980), Fisher, Lewis
and Willcox (1981) and Kimber (1985) studied outliers in directional data, Lenth
(1981) used the M-estimator to robustify the circular mean, Barnett and Lewis
(1984) reviewed their work and Fisher (1985) studied spherical medians. Wehrly
and Shine (1981) and Watson (1986) evaluated the robustness of the directional
mean, which is the maximum likelihood estimator of the location of the von
Mises—Fisher distribution, via an influence function introduced by Hampel
(1968, 1974) and concluded that the estimator is robust since the influence
function is bounded.

In this paper we study measures of robustness using the influence function
and introduce the concept of standardized bias robustness. We derive the
relationship between unstandardized bias robustness and standardized bias
robustness and compute the influence functions of the directional mean and
dispersion and the maximum likelihood estimator of the concentration parame-
ter of the von Mises-Fisher distribution, connecting some earlier computations
in the literature. We show that these statistics are not robust in the standardized
bias robustness sense.

2. Robustness of estimators. The influence function of a functional T at
the underlying probability distribution F is defined as [Hampel, Ronchetti,
Rousseeuw and Stahel (1986)]

IF(x; T, F) = ﬁix(l)%[:r{(l — 8)F + s8,} — T(F)],

where 8, denotes the point mass at x. The gross error sensitivity of the estimator
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T at Fis
v(T, F) = sup|[IF(x; T, F)|,

where || - || denotes the Euclidean norm and the supremum is taken over all x,
where IF(x; T, F) exists. It measures approximately the largest influence that a
small amount of contamination of fixed size can have on the value of estimator.
Hence ys may be regarded as an approximate upper bound to the asymptotic
bias of the estimator, where s denotes the amount of contamination. It is
desirable that y(T, F) be finite, in- which case we say that T is bias-robust or
B-robust at F' [Rousseeuw (1981)].

Often the gross error sensitivity is bounded if the parameter space is bounded.
It is not surprising because commonly the gross error sensitivity approximates
maximum bias, which is bounded on a bounded parameter space. We therefore
need to modify the concept of B-robustness-when we deal with bounded
parameter spaces. A modification of the influence curve on a bounded parameter
space can be found in Lambert (1981). She defined influence functions for testing
by applying Hampel’s influence function to the logarithm of P-values.

In the case of location, it is natural to consider the maximum bias or the gross
error sensitivity relative to a measure of dispersion of the underlying distribu-
tion. Measures of dispersion of a distribution on the real line are defined in
Bickel and Lehmann (1976) and can easily be extended to spherical distributions.
For linear distributions, it is often the case that Vn[T[F,] — T(F)] converges to
N[0, S%(F)], where T[F,] is a location estimator and S(F) is a measure of
dispersion of the distribution F. In this case, the gross error sensitivity relative
to S(F) measures the maximum bias relative to the asymptotic accuracy of
T[F,]

DEFINITION 1. Let T be a functional. The standardized influence function of
T with respect to a functional S is defined by

1
SIF(x; T, F, S) = g(—ll';-)-IF(x; T, F),

for F with S(F) # 0.

The SIF of T with respect to S measures the influence of x in units of the
functional S. In particular, for a location functional 7' and a measure of
dispersion S, SIF measures relative influence with respect to the dispersion. For
a dispersion functional S, SIF of S with respect to S itself is the influence
function of the log-transformed functional log S at F with S(F) > 0, which is
analogous to Lambert’s (1981) approach.

DEFINITION 2. The standardized gross error sensitivity of 7' with respect to
the functional S at a family & of distributions is defined by

(T, #,8) = supy(T, F)/S(F)
F
= sup supSIF(x; T, F, S).
F x '



ROBUSTNESS OF ESTIMATORS 611

DEFINITION 3. T is called standardized bias robust at &% with respect to S,
or SB-robust at &, if it has a finite standardized gross error sensitivity at %.

¥*(T, #,S) measures the maximum asymptotic bias in the unit of the
functional S of the distribution. If & is a singleton set, SB-robustness at %
coincides with B-robustness of Rousseeuw (1981) provided that the functional S
is nonzero and finite. However, B-robustness at F for every F in % does not
imply SB-robustness at % . If T is SB-robust at # with respect to S, then T is
SB-robust at ¢ for any nonempty sub-family ¢ of %#.

THEOREM 1. Let T be a B-robust scale equivariant estimator at F,. Then T
is SB-robust at {F,|6 > 0} with respect to S such that S(F,) = o, where F(x) =

Fy(x/0).

Proor. Let X have distribution (1 — s)F; + s6,. Then 06X has distribution
(1 — s)F, + s6,, and T{(1 — s)F, + sb,,} = ¢T{(1 — s)F, + sé,,}. Hence

F(z T, F,) = lim ~[T((1 - $)F, + 88,,} ~ T(F,)]

1 ‘
= y—%E[GT{(l —s)F, + 88,,} — oT(F,)]

= oIF(oz; T, F,)

and
v(T, F,)
S(E,) _Y(T9F1)‘ a

The theorem indicates that for the problem of estimating location of linear
data, it is sufficient to consider B-robustness at a single distribution provided
that we only consider scale-equivariant estimators. This seems to be a reason
why Rousseeuw’s definition has been used and that efforts have been con-
centrated on bounding the gross error sensitivity y at a single distribution, such
as the standard normal distribution, instead of the standardized gross error
sensitivity at a family of distributions.

It is a different story if the sample space is not a Euclidean space. Then scale
equivariance may not be a natural thing to require for location estimators. Many
families of distributions are not even closed under scale transformation. Actually
the term ‘“scale” may not mean anything; for example, the family of von
Mises—Fisher distributions on the unit sphere or circle has no natural scale.

3. Robustness of estimators for directional data.
- 3.1. Location. Dispersion for directional data should be interpreted a little

differently from dispersion for linear data. On the unit sphere or unit circle there
is no notion of scale transformation or scale equivariance, because the unit length
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is determined as the unit distance on the sample space. The most frequently used
family of distributions for directional data, the family of von Mises-Fisher
distributions, is not a location-scale family.

We can define a measure of dispersion of a distribution on @, the unit sphere
in the g¢-dimensional Euclidean space R? as a functional S satisfying the
following conditions. Let X and Y be random unit vectors with unimodal
distributions F and G with modal vector T(X) and T(Y), respectively. Then a
real-valued functional S is called a dispersion on Q g if

(1) S(F') < S(G) whenever d(Y,T(Y)) is stochastically larger
than d(X, T(X)), where d(-, -) is a metric on ;

(2) S(F) = S(G), if Y= TX for an orthogonal matrix T';
3) S(8.) =0, if cisa fixed point on .

In particular, directional dispersion S defined by S%(F) =1 — ||C(F)||, where
[IC(F)|| is the Euclidean norm of C(F) = [ [xdF,,..., fxqu]T and F,,..., F,
are marginal distributions on the coordinates, is a dispersion on £, in this sense.
By defining the directional mean T(F') of F as C(F)/||C(F)) for ||C(F)| # 0, we
have ‘

S*F) =1-|IC(F)| = [[1 - X"T(F)] dF = %foﬂ(X, T(F)) dF,

where d(-, -) is the Euclidean metric on RY. The sample directional mean and
dispersion can be obtained by evaluating T at the empirical measure given by
the data. The sample directional mean is the maximum likelihood estimator of
the location parameter of the von Mises-Fisher family; see Wehrly and Shine
(1981) and Watson (1986).

THEOREM 2. The influence function of the directional mean T at F with
C(F)#0is

IF(x; T, F) = [x|C(F)||? — C(F){z"C(F)}| NIC(F)|?,
for x € Q,. The norm of the influence function is
ILF(x; T, F)|| = {1 — 6TT(F)2}*/IC(F).
Proor. Since C{(1 — s)F + s8,} = C(F) + s{x — C(F)},
IF(x;T,F) = 1@5[7‘{(1 - 8)F +88,} — T(F)]/s
= d/dsls-oT{(l —-s)F + S8x}
= d/ds|,o[C(F) + s{x — C(F)}] /IC(F) + s{x — C(F)}|
= [=lIC(F)II? - C(F){xTC(F)}] NIC(F)|°.
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Using the fact that xx = 1 and C(F) = ||C(F)||T(F), we have
IF(x; T, F)|I? = [#IC(F)|I* - 257C(F) {x™C(F)}IC(F)||*
+C(F)"C(F) {z"C(F))| Nic(F))®
= [1- ")) e, .
In particular, when g = 2, T(F) = (cosf, sin8)7, x = (cos 8,sin@)T and p =
IC(F)|, the norm of the influence function is |sin(6 — ;)| /p. Let the directional
dispersion be defined by S(F) = (1 — ||C(F)|)"/2. Then the norm of the stan-

dardized influence function of T at F with respect to the directional dispersion S
is

(1 - (TT(F))2}*IC(F)IIH[1 - IC(F)|] ~¥*
= [~ {@%=, T(F)) - 2)*/4 + 1]1C(F)I7* [1 - IC(FHI] ™2,
since xTT(F) =1 — d*x,T(F))/2 (see Figure 1). We note that the most
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Fic. 1. Norm of standardized influence function of directional mean (a) when ||C(F)| = 2/3;
(b) when ||C(F)|| = 9/10; and (c) when ||C(F)|| = 99,/100.
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influential point on ©, is the point orthogonal to the directional mean; i.e., the
point x with xTT(F) = 0 or, equivalently, d*(x, T(F)) = 2. The point farthest
from the directional mean has little influence. We also note that the norm of the
standardized influence function is bounded from below by |SIF(x; T, F;, S)||
with ||C(F,)|| = 2/3. If Z is a family of distributions such that ||C(F)| # 0 for
all F €% and sup||C(F)|| =1 or inf||C(F)|| = 0, where the supremum and the
infimum are taken over %, then the standardized gross error sensitivity
sup||C(F)||~'A — ||C(F)|)~/2 is infinite and T is not SB-robust at the family
% . In other words, the asymptotic bias of T of a small contamination could be
very large compared to the dispersion.

On £, we can only expect to encounter outliers in samples when the main
mass of the data is sufficiently concentrated about a particular point. In the case
of a sample having a low concentration, that is, a small ||C(F))|, the standardized
gross error sensitivity would be very large. It would be, however, difficult to find
a datum that is sufficiently separated from others to provide evidence of being
an outlier. We, therefore, concentrate on the family # such that inf||C(F)|| > 0
and sup||C(F)|| = 1, where the supremum and the infimum are taken over %.

For the directional mean, the maximum bias of T at F for s-contamination is
defined by b(T, F) = supd[T{(1 — s)F + sH}, T(F)], where the supremum is
taken over the family of distributions on @, such that ||C{(1 — s)F + sH}|| # 0
and d is a metric on Q. For the Riemannian metric d(x, y) on &, (the length of
the shortest arc between x and y), we can calculate the maximum bias as
follows.

THEOREM 3. The maximum bias of T at F of s-contamination is
B(T, F: s) = {arcsin[{s/(l = MNCP, i (1= 8)IC(F)| = s,
K

otherwise.

PROOF.
d[T{(1 - s)F + sH}, T(F)]
=d[{(1 - s)C(F) + SC(H)} /(1 — s)C(F) + sC(H)||, C(F)/IC(F)]|].

Since ||C(F)|| < 1 for s < (1 — s)||C(F)|| the distance given previously is maxi-
mized when sC(H) is orthogonal to (1 — s)C(F) + sC(H). Then the maximized
distance is arcsin[{s/(1 — s)}/||C(F)||]. O

If C(F)is close to 1 and s is small, the maximum bias can be approximated
by s||C(F)||"!. We notice the same result of nonrobustness by observing the
standardized maximum bias defined by sup b(T, F; s)/S(F'), where supremum is
taken over a family % of distributions. Using S(F) = {1 — ||C(F)||}'/?, for
example, for &# with sup||C(F)| = 1, the standardized maximum bias at % is
infinity, so the bias relative to the dispersion {1 — ||C(F)||}*/? can be very large
. even for a small contamination. This result accords with intuition. For highly
concentrated distributions on Q,, we are effectively dealing with a distribution
on the (g — 1)-dimensional hyperplane, so we expect to see properties similar to
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those of sample mean of data in R?~ 1. For example, the von Mises distribution
M(pq, k) on £, with the directional mean vector (cos ., sin ), whose density is
given by g(0; p,, k) = [27I(x)] 'exp[x cos(8 — p,)], where I (k) is the modified
Bessel function of the first kind and order zero, can be approximated by the
normal distribution N(g,, k') on the real line for large x [Mardia (1972)].

Wehrly and Shine (1981) derived the influence function for the circular
median [Mardia (1972), page 28] at a symmetric unimodal circular distribution F
with the modal angle p,. The influence function is given by

IF(0; C-Median, F) = }sgn[0 — po1/{f(1o) — f(mo + )},

for po— 7 <0 < py+ 7, where sgn(x) =1,0or —1las x>0, x=0o0r x <0
and f is the density corresponding to F. Let S(F) = K(F) /2, where K(F) =
A IC(F)|), A5 is the inverse function of Ay(-) = I,(+)/Iy(+) and I,(-) is the
modified Bessel function of the first kind and order p. S is a measure of
dispersion corresponding to the scale parameter of the normal distribution
that approximates a von Mises distribution with large concentration parameter.
The standardized gross error sensitivity with respect to S at the von Mises
distribution M(p, k) is 7x'/2I(k)e (1 — e~ 2*)~1. When « is large Iy(x) =
Ck~2e"(1 + O(x~ 1)), where 0.39 < C <'0.40. Hence the standardized gross er-
ror sensitivity at F= {M(p,, k)|kx > m > 0} is bounded. This is an example of
an SB-robust estimator. Lenth (1981) used the circular median as the starting
point of the M-estimator. In contradistinction to the linear case, it is not known
that the circular median is the most SB-robust statistics. Another robust
estimator is the least median of squares estimator given by Rousseeuw (1984).

3.2. Dispersion.

THEOREM 4. The influence function of the directional dispersion S =
A = ICHNV2 is — {xTT(F) — |C(F)}A = [CF))~V2/2.
Proor.

IF(x; |C(-)I, F) = lim [IC{(1 - $)F + s8.}| = IC(F)Ill /s
= d/ds|,_oIC(F) + s(x — C(F))I
= [z = C(F)]"C(F)/IC(F)|
= x"T(F) = |C(F)||.
The proof is completed by using the chain rule. O

The standardized influence function of the directional dispersion S with
respect to S itself at {F} is —{xTT(F) — |C(F)|}(1 — |C(F)|)~'/2, which
is, 47Y1 - |C(F)|)"*d?%(x, T(F)) — 1/2, a linear function of dZ(x, T(F)),
where d is the Euclidean metric on R? (see Figure 2). We note that the SIF
is bounded from below by d?(x, T(F))/4 — 1/2. The most influential point
is opposite to the directional mean. The gross error sensitivity at F is
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SIF

SQUARED DISTANCE FROM T(F)

Fic. 2. Standardized influence function of directional dispersion (a) when ||C(F)|| = 2/3;
(b) when ||C(F)|| = 9/10; and (c) when ||C(F)|| = 99,/100.

@ + |IC(F)IPQA = |IC(F)I)~%/2, which is bounded if ||C(F)|| # 1. Since the
standardized gross error sensitivity of S with respect to itself at {F} is (1 +

IC(F)IPA = ||IC(F)|))~*/2, the standardized gross error sensitivity at % with
sup||C(F)| = 1 is infinity. Furthermore, the standard gross error sensitivity at %
with respect to the constant functional 1 is infinity. This strongly indicates that
the directional dispersion is not robust when we deal with highly concentrated
data on Q.

3.3. Concentration. The von Mises-Fisher distribution with the mean direc-
tional vector p and the concentration parameter k on £, has a density function
of the form

f(x;p,k) = (2'”)-qﬂ{I(q/z)—1(")"-(q/2)+1} _lexP{"P'Tx},

for x € Q,, where I (-) is the modified Bessel function of the first kind and order
P. The maximum likelihood estimator of the concentration parameter « is given
by & = A;Y(||C(F,)|)), where F, is the empirical measure of the data x,,...,x,
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on @, and A_' is the inverse function of A(+) = L, 5(*)/I(4/2-1(")- See
Watson (1983) for details.

THEOREM 5. The influence function of the functional K defined by K(F) =
A;YICF)I) at Fis

(xTT(F) = IC(F)I){1 = IC(F)|I* - (g - DIC(F)|/K(F)} .

ProoF. By the chain rule,
IF(x; K, F) = d/dx|x_"C(F)"A;l(x)IF(x; IcC)I, F).
Since d/dxA (x)=1— (Aq(x))2 — (g — 1)Ay(x)/x [see Watson (1983), page
193],
d/dea;}(x) = {1 - (4,(4;1(®)) - (¢ - DA,(4;'(x)))/4; ()

-1

- {1 -x2-(q- l)x/A(;l(x)}—l.

Using Theorem 4,

IF(x; K, F) = («TT(F) — |IC(F)I){1 = IC(F)I* - (¢ — 1)IIC(F)I|/K(F)}—1'
a

The influence function of K is bounded at F with 0 < ||C(F)|| < 1. However,
the standardized gross error sensitivity with respect to S (or even with respect to
a nonzero constant functional) at & with sup||C(F)|| = 1 is infinity, indicating
nonrobustness of the estimator especially when the data are highly concentrated.
This supports the claim of Fisher (1982), Kimber (1985) and Watson (1986) that
this estimator is not robust.
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