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EXPONENTIAL FAMILY
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Let X,,..., X,, be iid observations coming from an exponential family.
The problem of mterest is this: Given a finite number of models m; (smoothly
curved manifolds in R”), choose the best model to fit the observatlons, with
some penalty for choosing models with dimensions which are too large. A
result of Schwarz is made more specific and is extended to the case where the
models are curved manifolds. If S(Y, n, j) is—up to a constant C(n) inde-
pendent of the model—the log of the posterior probability of the jth model,
where the sample mean Y, = (1/n)L; X; has been replaced by Y, Schwarz
suggested an asymptotic expansion of S(Y, n, j) whose leading terms are

v(Y, n,j) = nSUPy e ne(YY — b)) — —k log n, in the case where the
models are affine subspaces of R, We estabhsh a similar asymptotic expan-
sion, including the next term, with uniform bounds for Y in a compact
neighborhood of vb(8), where 6 is the true value of the parameter. We
suggest a criterion for the choice of the best model that consists of maximiz-
ing the three leading terms in the expansion S(Y, n, j). We show that the
criterion gives the correct model with probabilities P* — 1 as n — + co.

0. Introduction. This article is concerned with the problem of choosing,

among a finite number of possibly curved models (manifolds in R*), the “best”
model to fit iid observations X;, i = 1,2,..., whose law belongs to an exponen-
tial family.

In Section 1 (Proposition 1.2) we show that maximizing the quantities

Y(n’ j) = log]‘lj(Xl,ﬂ-, Xn) - %kjlogn

leads to a correct choice of a model with probabilities P;* = 1 as n — + o0,
where P, is the true law of the observations in the exponential family; here
M(X,,..., X,) is the maximum of the likelihood function of the n first observa-
tions on the jth model and &, is the dimension of the jth model. It follows in
particular from Proposition 1.2 that this procedure is consistent [see, for exam-
ple, Woodroofe (1982)].

The main conclusions of this paper, which completes and extends a result of
Schwarz (1978), are as follows:

1. For any model m; where the true parameter § is in int(m;N ©), the
quantities S(n, j), where S(n, j) is the log of the posterior probability of the
Jth model plus a constant C(n) independent of the model, have an asymptotic
expansion whose leading three terms I'(n, j) are given by Theorem 2.3.
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2. When choosing between two models m, and m,, if 8 belongs to m, and not to
m,, then the procedure that consists of maximizing the I'(n, j), j = 1,2, will
lead to the correct choice of a model (i.e., m, rather than m,) with P> —» 1 as
n — +oo, even if k, > k, (Proposition 1.2 and Remark 2.3).

3. When choosing between two models m, and m, where the true value 6 is in
m, N\ m, and &, # k,, with P > 1 as n —» + oo, the procedure that consists
of maximizing the I'(n, j), j = 1,2, will lead to the choice of the model with
the smallest dimension and in this case, for any suitably smooth prior, a
Bayes procedure will also lead to the same choice with P* - 1 as n - + o0
(Proposition 1.2, Remark 2.3 and Corollary 2.3).

4. When choosing between two models m, and m, with &, = k, and where the
true value 6 of the parameter belongs to m, N m,, then by assumption (* *)
of Section 1 we really have a choice of three models, m,, m, and m, N m,:
say m; N my, = m; for some index i,; then, the procedure based on the
I(n, j), j = 1,2, i, will pick m; N m, and coincide with the Bayes procedure
with B > 1lasn —> +oco.

Section 2.1 deals with the problem of existence and unicity of MLE’s on a
curved model [note that Amari (1982) gives a geometrical interpretation of
maximum likelihood estimation but is not concerned with the existence problem].
Sections 2.2 and 2.3 are devoted to obtaining an asymptotic expansion for the log
of the posterior probability of the jth model; this posterior probability is a
function P(Y,,) of the sample mean Y, of the n first observations. We first obtain
an asymptotic expansion for P(Y) as a function of Y (Proposition 2.2) which is
uniform in Y, for Y in some compact set. The expansion has a precision of
n~%*D/2 In Section 2.3 we apply Proposition 2.2 to the case where Y is
replaced by Y,—this is where we need the uniformity in Y in Proposition
2.2—and obtain the desired asymptotic expansion for the log of the posterior
probability of the jth model with a precision of n~1/2 in probability.

Section 3 is concerned with the choice of a degree for a polynomial regression.
One major issue is that the observations are not iid. We show that, by assuming
that both variables in the regression are random variables, we can still apply the
results of Sections 1 and 2. We describe the different models, which are curved.

To conclude this section, we note that the quantities y(n, j) introduced by
Schwarz (1978) arise very naturally as the leading terms of the asymptotic
expansion in Section 2.3 and that maximizing the y(n, j) [commonly called the
Bayesian information criterion (BIC)] is a consistent procedure. Another well-
known procedure is the Akaike information criterion (AIC) [Akaike (1974)]. It
has been shown that the AIC is not consistent as n —» + oo [e.g., Woodroofe
(1982) and Hannan (1980)]. The point has been made, though, that inconsistency
may not be of great consequence from the point of view of prediction [Geisser
and Eddy (1979)]. The AIC seems to have optimality properties in cases such as
the selection of the order of the model for estimating parameters of a linear
process, the key assumption being that the dimension of the models is allowed to
increase with sample size [Shibata (1980, 1981)].
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1. Criterion for the correct choice of a model when the models are C*
manifolds in R%,

1.1. The Bayes procedure. Statement of the problem. Let X;,i=1,2,..., be
iid observations from an exponential family in standard form with densities
f(X,9) = exp(X¢ — b(¢)), with respect to a finite measure on R*, with ¢ € ©
the natural parameter space [Lehmann (1959), page 51]. We assume that we have
a finite number of competing models m; N ® where m; is a C* k-dimensional
connected manifold embedded in R* [for terminology and basic facts in differen-
tial geometry we refer to Spivak (1979)]. An important special case is the case
where m; is a k;-dimensional affine space in R* [Schwarz (1978)]. We assume
that

() for each i # j, if a point in the closure of m; isin m; N int O,
then it is in m,.

We will also assume that

if k;=k; for some pair (i, j), i #J, and if m;N"m; # &,
(##+)  then m;N m; is also an available model m, and is of lower
dimension. :

On each of these m; a natural analogue A ; of Lebesgue measure is defined. If

m; is a k;-dimensional affine space in R*, the defined measure will reduce to the
Lebesgue measure. If m; is a one-dimensional curve (or a two-dimensional
surface) in R*, this measure will be the usual arc length (or the usual surface
element). Note that the standard inner product of R* induces a natural C*
Riemannian structure on m;. Let g;; be the coefficients of this Riemannian
metric on a coordinate neighborhood U of a point p of m;.

We define the standard volume element dV on the Riemannian manifold

m; by
dv = (det g;,)"*|dX(p) A -+ AdX"(p)|

in a coordinate system (X,U) about the point p [see Spivak (1979), pages
417-418 for details]. This definition does not depend on the coordinate system
[Spivak (1979), page 281]. The set function A (A) = [, dV is then defined for
any Borel subset A of m; and is countably additive.

We will assume that the conditional prior distribution p; of the parameter ¢
given the jth model has a density f; with respect to A; which is a nowhere zero
C* function on m; N © (this assumption will also hold for measures obtained
from volume elements of Riemannian metrics smoothly related to the original
one). Let a; be the prior probability of the jth model. The prior distribution of ¢
is then p = Xa;u; Note that p is concentrated on Um; and that the p; are
mutually orthogonal, clearly if two m; are of different dimensions, and by
assumption (* *) if they have the same dimension.
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Let P(n, j) be the posterior probability of the jth model given the prior and

the n first observations X,..., X,. We have
P(n, j)
—af eolo X~ nb(s) du (o) / oo o £ %= nb(s) | (o).
m; i=1

Then a Bayes choice of a model is a choice that maximizes P(n, j).
Let Y, = 1/n)X? X, and

S(n, j) =loga;+log [  expn(¢Y, — b(9)) du;()
m;NO

= log P(n, j) + C(n)
for some C(n). Let 8 be the true value of the pa.rameter We assume throughout
that § € m; for some j (this is no loss of generality since we can always adjoin
R” as a model)

DEFINITION. The correct choice between models is the model of lowest
dimension which contains 6.

1.2. Criterion for the correct choice of a model. Using the notation of
Section 1.1, let
v(n,j)=n sup (Y6 —b(¢)) — tklogn
¢EmM;NO

[Schwarz (1978)]. The following proposition proves the consistency of Schwarz’s
criterion.

PROPOSITION 1.2. Assume 6 € int ® and let m; and m, be two different
models. If § € m,\ m,, or if 6 € m; N m, with k, < k,, then

lim Pon(Y(n’l) < Y(n:2)) =1
n— +oo

Proor. Let f(¢)=vd(0)p — b(¢) for ¢ € ©. The function [ attains its
unique maximum at 6 [Barndorff-Nielsen (1978), Theorems 9.13 and 9.1 and (1),
page 141]. Let 8§ € m,\ m,. Since § & m, by assumption, let us pick ¢ > 0 and a
neighborhood N of @ such that

Nnm, =g
and, for ¢ & N,
vb(0)o — b(¢) + e <vb(6)d — b(8).
We have
(*) sup Vvb(0)o — b(¢) +e<vb(6)8— b(9).
bEM NO

Since, by the strong law of large numbers, Y, - vb(8) with P° = lasn —» + o0
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(note that EyX, = vb(0) [Barndorff-Nielsen (1978), page 114]),
sup (Y9 —b(¢)) > sup vb()¢—b(¢) with PP =1

peEmM;NO beEM;NO
as n — +oo, by continuity of the function Y — sup,c,, neY¢ — b(¢) which
follows from its convexity, i = 1,2. (Note that

vb(6) e int{YE R*| sup Yo — b(¢) < +oo}
$€0

[Barndorff-Nielsen (1978), page 151].) So with probabilities P - 1 as n — + oo,
we have

(x*) sup (Y9~ 5(¢)) = sup (Vb(0)9 — b(4))| <e/4,
pEM;NO bEM;NO N
i=1,2,
Using (*) and (* *), with P* - 1 as n — + oo, we have g
sup (Y9 - b(9)) +e/2< sup (Y- b(s)),
$EM;NO pEmM,NO
which completes the proof of the first part of the proposition.

Let 6 € my N m, and k, < k;. Weput S, ; = Sup, c m,ne Y9 — 0(¢), i = 1,2.
To prove the proposition, it is enough to show that |S,; — S, 5| = O,(1/n).
Since v b(int ®) is open, with probabilities P = 1 as n — + o, there exists a
unique MLE 4, that satisfies

sup Y'nd’ - b(¢) = Y;zén - b(é\n)

Y=L)
and Y, = vb(4,) [Barndorff-Nielsen (1978), Theorem 9.13, page 151]. Let U, =
Y,0 — b(8) and U, = Y6, — b(d,). Since 6 €m, N m,, 0<8S,,- U, < U, -
U, i=1,2 Now U,— U, =Y,f,—0)+ b@8) - b, and b(f,) — b(0) =
( én — 0)vb(0) + O,(1/n) as obtained by writing a Taylor formula for b about §
and from the efficiency of the MLE én [Huber (1967)]. So U, - U, = (Y, —
vb(9))b, - ) + O,(1/n). By the CLT, Y, —vb(6) = 0,1/ Vn), and by
efficiency of 4, ||6, - 8]l = 0,(1/Vn), so U, — U, = O,(1/n).0

REMARK 1.2. Proposition 1.2 still holds for any sequence a, of positive real
numbers in place of log n such that a,/n > 0as n - +o and a, > + o as
n — +oo.

The aim of the following section is to establish an asymptotic expansion for
the S(n, j) and show the role of log n.

2. Asymptotic expansion of the S(n, j).
2.1. Study of the map ¢ - Yé — b(¢) on m; N © when Y is in a neighbor-

hood of vb(0) and 0 € m;Nint®. We note that, by a translation of the
parameter, we can assume in this section that 8 = 0.
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PROPOSITION 2.1. There exists a neighborhood W of vb(0) in R* such that,
if Y& W, the map ¢ — Yo — b(¢) attains its maximum on m; N © at a unique
point 0y.

The idea of the proof is to write the function ¢ — Y¢ — b(¢) in local
coordinates near 0 and apply the implicit function theorem.

ProOF. We consider for ¢ > 0 the following neighborhoods of 0 in ©:
Ne,Y = {¢ (S5 @/Y(p - b(¢) > _b(O) - E}, Me = Ns,Vb(O)‘
Then
sup (Yo—0b(¢)) = sup (Yo - b(9)).
$EN, ynm;NO ) PEM;NO

The function ¢ — vb(0)¢ — b(¢) attains its unique maximum on int © at 0, and
if Y e vb(int ©), ¢ - Yo — b(¢) attains its unique maximum at some 6 in
int ® [Barndorff-Nielsen (1978), Theorem 9.13].

Lemma 2.1.1 follows easily from remarks on level sets [Barndorff-Nielsen
(1978), page 150].

LEMMA 2.1.1. There exist a compaci set K ¢ R* and a constant C such that,
if |Y-vb0)|<C, M,cKandN,yC K for0<e<1.

We put M = m; and m = k; = dim m;, and we choose coordinates in R* and
a coordinate neighborhood M NV of 0 on M such that M NV =
{X, Yps k(X)) ooo, (X); X =(xq,...,x,,) € U} for some neighborhood U of 0
in R™ with |y, (X)) <D|X|% V X€eU, l=1,...,k— m for some D [cf.
Guillemin and Pollack (1974), page 19]. It is easy to prove that we can pick ¢ < 1
small enough so that M N M,, € M N V and &, > 0 such that if |Y — vb(0)|| <
8., N,y C M,, (the existence of such a §, follows easily from Lemma 2.1.1). In
our choice of coordinates near 0, 0 has coordinates 0 in R™ and any ¢ € M,, N M,
thus any ¢ € N, y N M with ||Y — vb(0)|| <8, can be written ¢(X) =X +
O(||X||?), as X — 0, where X = (x,,..., X,,,0,...,0).

We would like to evaluate the function F(X) = Y¢(X) — b(¢(X)) in a
neighborhood of 0. We will need the following lemma, which follows from a
Taylor formula with integral remainder.

LEMMA 2.1.2. Let k be a positive integer and f(X) = O(|| X ||*) denote a C*
function of X in a neighborhood U of 0 in R® such that f(X)/|| X ||* is bounded
in U\ {0}. Then

d
ExL(X) =0(|X|*"), 1I=1,...,d,asX 0.
l
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and
k
Ql¢)= X Q; ;0,9
i,j=1 .
Then
F(X) = YX + YO(| X|I*) - 5(0) — vb(0)(X + O(IIX|*))
-Q(X + 0(1X[?)) + o(IIX + o(IX11*)I1°)
near X = 0.
Using Lemma 2.1.2 we get, for i = 1,..., m,

+ 0(]1XI%),

T (x)= —2 £ @ua+ (Y- bOIO)* [¥- 20)

Jj=1

where OY(|| X)) = 3/3x;(O(]| X||?)) and is an O(|| X||) by Lemma 2.1.2. Therefore,
J°F

" 9x, 0x;

(0) = —2Q; + (Y - vb(0))0/(1) + Ol X))

An application of the implicit function theorem [e.g., Dieudonné (1972), page
277] then shows that, for Y in a neighborhood of v b(0), the equation VF(X) = 0
has a unique C*® solution ¢y in a neighborhood of 0 (note that @ is positive
definite). Note also that sup,c 5,y neY$ — b(9) is attained at a point #y in
N,yN M n ©. So for ¢ small enough 0y must satisfy VF(¢~ 1(6’1,)) =0, so by
the preceding, for ¢ small enough and ||Y — vb(0)| < §,, it is unique. This
completes the proof of Proposition 2.1. O

2.2. Asymptotic behavior of the integrals J, fm neexp(n(Yo —
b($))) dpj(¢), asn - + oo uniformly in Y for ||Y — vb(0)|| < o, for some ¢ > 0.
This calculation will be an example of “Laplace’s method” for multidimensional
integrals [see Hsu (1948, 1951) and Skinner (1980)]. We will use the notations of
Section 2.1. As in Section 2.1 we assume that & = 0. We have the following
proposition:

PROPOSITION 2.2. Assume that 0 € m; N int © and that the density f; of p;
onm;N O is C* and nowhere vanishing on m; N ©. Then there exists a positive
number 6 such that on the compact set {||Y — Vb(0)|| < o}, uniformly in Y,

2,7) k2 f(8y)(det gij(ﬁy))1
{

+ O(n~ it 1/2) 3,
n det(— d%F/dx; axj(ﬁy))}

1/2

Jn = en(Yyy- b(oy)){(

The idea of the proof is to write the integral J,, in terms of the p ;-measure of
a neighborhood N,y of fy, and then to estimate p AN,]y) by notlcmg that Ny
lies between two e111ps01ds and estimating the volume of these ellipsoids.
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Proor. By using Proposition 2.1 and its proof we choose ¢’ > 0 small
enough so that 0y exists and equals ¢(£y) (see Section 2.1) for ||Y — vd(0)|| < o’
We put f(¢) = exp(Y¢ — b(¢) — (Yby — b(8y))) and I, = [, nef"dpi(9) =
E, f" Notethat 0 <f<1l.let g=1—-f;then0<g<1. IfG(t)—uJ(g<t)
is the distribution function of g, then, integrating by parts,

Ef"= /0(1 — )" dG(¢) =n/ (1 - £)""'G(¢) dt

and G() =p(f21-18= M,(N'y) where ¢ = -—log(l —t) and N/y=
{6|Yd — b(9) > Y8y — b(8y) — €). It is easy to check that for & small enough
say € < g, there exists 6, > 0 such that if |Y — vb(0)|| <6, N/yc M,, and
M, is included in a coordinate neighborhood on m; near 0 as in Section 2.1.

We wish to estimate the p (N, y) for a small enough and ||Y — vb(0)| <
min(4,, ¢’). By the precedmg and Sectlon 2.1, ¢ € N, y can be written ¢(X) =
X + 0(||X|| ). As in Section 2.1, we define F(X)—F(X Y)=Yop(X) —
b(¢(X)). Then

BV = [ ey DX (et £ (X)) aX,

where f; is the density of p; on m; N © and g;; are the coefficients of the
Rlemanman structure induced on m by the Euchdean structure of R*, e
pressed in the chosen coordinate system on m; If A is the quadratic form
defined by

2

A(V) = — i

L

2y 9, 9,

where m = dim m;, we have F(X) — F(§y) = —A(X — £y) + R(Y, X), where
R(Y, X) denotes the integral remainder in a Taylor expansion for F' about £,.
Note that A is positive definite for ||Y — v b(0)|| < n* for some n*. Let a; be the

positive eigenvalues of A, i = 1,..., m. Then min «; and max a; are continuous
functions of Y since maxa;=||A|| and mina; = |A"Y|~! where |A] =
Sup; x) < HAX].
We define
1 p= inf (mina;).
@ Y- vbO)|<n* '

Note that p > 0. We will use the following lemma, which is easily proved.

LEMMA 2.2.1. There exists a constant K independent of Y such that
IR(Y, X)| < K||X — & for X € $~(M,, ) and ||Y — Vb(O)|| < n*.

Note that if A, is the diameter of ¢ (M,,), A, - 0 as ¢ = 0. Therefore, we
can pick 0 < & < €, small enough so that KA, < p/2, hence p — KA > p/2,
where K is as in Lemma 2.2.1. We take a < ¢ and IY — vb(0)|| < min(f,, n a’);
then it is straightforward to show that X € ¢ (N, y) = || X — &y]| < ‘/2¢x/p.
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Clearly

b(Ny) = H(X) X,
’ A(X-¢y)-R(Y,X)<a

where
1/2
H,(X) = f{#(X))(det g,,(X)) "
With a few elementary arguments it can be shown that

/ Hy(X)dX < [ H(X)dX
@) AX—¢y)+ XX~ ¢y’ <a A(X—¢y)-R(Y, X)<a

<

/ ‘ Hy(X)dx,
A(X—ty)-0xIIX~¢ylP<a

where 3.} = Ky/2a/p.

Let E = {X|A(X — &y) + 02X — &) < o). We wish to estimate
JeH(X) dX. For this we will need to estimate the volume of the ellipsoid E. To
do this we will make the change of variable X — ¢, = P(Z — £y) in R™, where P
is an orthogonal matrix such that PAP is diagonal and A also denotes the
matrix of the positive definite form A. The Jacobian of the transformation
is |dX/dZ| = det P= +1. We have A(X — ¢y) = X7 0(Z — &y)? and ||Z —
£411%2 = || X — &y]|? since P is orthogonal. Then

/ dX = f dz.
E 7 (00X Z—Ey)i<a

i=1(e;

Therefore,

We note here that
—1/2

m m
/ dX = (am)™? [ T1(a; + a;)wr(— + 1).
E i=1 2
m 1
I Ioti_l/2 = {det(—-i

-1/2
d%F % F
. axj(sy)))} —2 /2{det( - axj(s»)}

We expand the function H(X) about §y: H(X) = H(éy) + h(X — ¢y) with
lh(X — £y)| < M||X — £y]|, for some M independent of Y, X € ¢~(M,, ) and
1Y — vb(0)|| < min(4,, n*, ¢"). We have

JHAX) dX = H()ME) + [ h(X — &) dX;

where A is the Lebesgue measure on R™, and |[ph(X — &y) dX| < M[g|| X —
£yl dX. It is easy to show that if A(X — £y) + 3*|| X — &y||% < a, then

Va
X - < ==
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it follows that

[H(X)ax - f@(sy)(aw)'"”/ (o(5 + 1) T e+ 0207 + iCa),

with [H(a)| < Ma™2a™*V/2 /(T(m/2 + 1)(p + d¥)™*V/2), By the same rea-
soning we get

f H(X)dX
A(X—$y)=- XX ~tylP<a

m m
- I@(sy)(aw)"'/“’/r(; +1)TT(a = 32) + HY(a),
i=1
where
m
1 m/2, (m+1)/2 — 9% (m+1)/2)
|H'(a)] < Ma™"?a /(l"( 3 1)(p ax)
for a small enough so that d* < p, say for a < a,, with a; < ¢. Now
m m
TT(a;+82) %= TTea;2(1 + O(Ya)) asa— 0,
i=1 i=1

uniformly in Y. Also H(a) = O(a(™*Y/2) and H'(a) = O(a'™*V/2) uniformly in
Y for ||Y — vb(0)|| < min(f,, n*, o’). Using these estimates, and inequality (2),
we have

f H(X)dX
A(X—¢y)-R(Y, X)<a

= Hj(ﬁy)(aﬂ)mﬂ/(r(% + 1) flla%ﬂ) + O(atm*1/2)

uniformly in Y for ||Y — v&(0))|| < min(d,, n*, ¢’). We have now shown the
following lemma.

LEMMA 2.22. There exist positive numbers o and o, such that if ||Y —
vb(0)|| < 0 and a < ay, then pi(N;y) = C,(Y)a™? + B(a) with

C.(Y)
s 92F ~1/2 m
e o oo -2 ) 3

and |B(a)] < a™*V/2BYa) where BY(a) is bounded and independent of Y.

Proposition 2.2 now follows easily from Lemma 2.2.2 applied to G(¢) =
p;(N.y) with e = —log(1 — ¢), and known facts about Euler’s beta and gamma
functions [see Haughton (1983) for details]. O
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2.3. Asymptotic expansion of the S(n, j). The following theorem will show
the special role of ¢, = log n in Schwarz’s criterion. We will use the notation and
assumptions of the previous sections.

THEOREM 2.3. Let the true 0 € m; N int O. If
S(n, j) =loga; + logf exp( o — b(9)) dp ()

with Y, = n L2, X,, if 0/ is the unique point on m; N © where the function
Yo — b(¢) attains its maximum, defined with probabilities converging to 1 as
n — oo, then

S(n,j)=n sup (Y9 — b(¢))——klog( )+loga +logf( 7)

$EM;NO

2

34, 34,

1 .
-Elogdet( (0,{)) + 0,(n"17?).

Proor. We will need a few lemmas. Let M = m ;- We can assume that 8 = 0.

LemMA 2.3.1. If g;; are the coefficients of the Riemannian structure induced
on M by the Euchdean structure of R*, correspondmg to the coordinate neigh-
borhood M N V of Section 2.1, then g, ;(0) =

PROOF. An easy calculation shows that

kom aym ) aym l
g,;(X)=28;+ > P +(X) 3x+ (X). 0
=1 J

i

LEMMA 2.3.2. Let f be a C® function on a convex neighborhood U of 0
in R*. Then there exists o > 0 such that, if |Y — vb(0)|| < o, we have f(¢y) =
f(0) + R(Y), where |R(Y)| < C||§y|| for some constant C independent of Y
(where &y is as defined in Section 2.1).

Proor. The proof is similar to the proof of Lemma 2.2.1 and is omitted.

LEmma 233, If Y, =n"'L} X, then ||y | = O, ) (n"1/2).

Proor. The lemma follows from the central limit theorem.

Theorem 2.3 now follows easily from Proposition 2.2 and Lemmas 2.3.1 and
232. 0

We now give a proposition which will show that when choosing between
models m; and m; such that k; # k; and § € m; N m; N int O, with probabili-
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ties P* > 1 as n — + oo, the Bayes choice and the choice based on the quanti-
ties

1 n
D(n,j)=n sup Y$-b(6) — Fhlog 5

oEm;NO 2m

_. 1 2%
+loga; + log fj( ,{) - Elog det 36,04

coincide.

CorOLLARY 23. If 0em;Nm;Nint® and k; # k;, then P(S(n, j,) >
S(n, jp) and I(n, j;) <T(n, j;)) > 0 asn > +oo.

The proof is straightforward and is left to the reader.

REMARK 2.3. Note that I'(n, j) = v(n, j) + O,(1) + O(n""/?)s0 I'(n, j) =
¥(n, j) + oy(log n), where y(n, j) was defined in Section 1.2. Proposition 1.2
therefore holds with y(n, j) replaced by I'(n, j).

3. Choice of degree in a polynomial regression. Let (x;, y;) be a set of
data in R? where y;, = £9_,a,x/ + ¢; and the ¢; are iid N(0, €?). If we consider x;
not as a random variable but as an “incidental parameter,” given the “structural
parameters” (a,, @y,..., @4, d, €), the law of the y, is N(m,, ¢%) with m; =
):f=0a x]. Schwarz’s criterion does not apply to the observations y, since they
are not iid. We will show that we can still apply a Schwarz criterion to this
problem by considering x; as a random variable. This will also show the necessity
of considering “curved models.” We will assume therefore that the ¢; are iid
N(0,€?), the x; are iid N(m, 72) and that all the ¢, are independent of all the x,.
Let n = (d, ay,..., ay €, m, 72). We assume that 1 has a prior law of the form
Ya,u, where a, is the prior probability that d = k.

Now let z; = (x;, ¥;). The z; are iid given 5 and their density is

-\ 2
1 (x — m)? (y - Zﬁoajxf\)
(3) f(x’ y) - Qe exp| — 21_2 - 282 ’

so f(x, ¥) = exp[Z3%1%0,T)(x, y) — b(0)), where the T (x, y) are defined by
T(x,y) = —x%  Ty(x,5)=-y>, Tx,9) =y,
(4) Ty (x,y)=xly, Jj=0,1,....,d, T, 4x,5)=—x,

T5+d(x7 y) = _x37 T6+d(x’ y) = —x4""’T3d+2(x? y) = _de’
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the 6, are defined by
0, = 1/272 + (2a9a, + a?)/2¢%, 6, =1/2¢%,

= 2 = 2 = 2 | =
3—(10/8, 04—(11/8 ,.oo,03+j_ j/e, J_O,...,d,

3
Oirq= aoa,/e® — m/7%, 0. q = Z ajas—j/2€2’
Jj=0

(5) 4 d
- 2 _ 2
Osqa= Z aa,_;/2¢,..., Opq42 = Z a;a,_;/2¢e,
Jj=0 j=0
d d
- 2 _ 2
Orars= 2 Qg /26, 03401 = Z @@ 1-;/2¢%,
Jj=1 Jj=d—-1

— 2 /9.2
Magip = ag/2¢%,

and where b(0) is defined by normalization. The family of distributions with
densities f(x, y) with respect to the Lebesgue measure on R? is an exponential
family with natural parameter space

3d+2
0= {0 € R3d+2|f2exp[ Y 0T(x, y)] dxdy < oo}.
R j=1

Let us describe the different models: We define the maximum model m ; to be
the set of § € R3?*? defined parametrically by (5) with (a,,..., a;) € R4*},
¢2>0, 72> 0. Then m, is a closed manifold in R3?*2 of dimension 3d + 2 —
(2d — 2) = d + 4 [Spivak (1979), page 65, Proposition 12]. The other models,
corresponding to a;,=0,a,=a,_;=0,...,a;,=a,_;= - =a;, =0 will be
denoted by m,_;,my_,,...,m,. Note that m;= {0 €m0y, ;.= --- =
03,4 =0}, so m; is a closed submanifold of m, of dimension j+ 4 in m,. In
particular, dim m; = 5 and dim m, = 4, as submanifolds of m ;. Note that all the
m; are curved, and that, assuming the appropriate regularity for the density of
p,, with respect to the volume element on m,, the results of Section 2.3 apply.
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