ON THE CHOICE OF A MODEL TO FIT DATA FROM AN EXPONENTIAL FAMILY

By Dominique M. A. Haughton

Temple University and University of Lowell

Let X_1, \ldots, X_n be iid observations coming from an exponential family. The problem of interest is this: Given a finite number of models m_i (smoothly curved manifolds in \mathbb{R}^k), choose the best model to fit the observations, with some penalty for choosing models with dimensions which are too large. A result of Schwarz is made more specific and is extended to the case where the models are curved manifolds. If S(Y, n, j) is—up to a constant C(n) independent of the model—the log of the posterior probability of the *i*th model, where the sample mean $Y_n = (1/n)\sum_{i=1}^n X_i$ has been replaced by Y, Schwarz suggested an asymptotic expansion of S(Y, n, j) whose leading terms are $\gamma(Y, n, j) = n \sup_{\psi \in m_i \cap \Theta} (Y\psi - b(\psi)) - \frac{1}{2}k_i \log n$, in the case where the models are affine subspaces of \mathbb{R}^k . We establish a similar asymptotic expansion, including the next term, with uniform bounds for Y in a compact neighborhood of $\nabla b(\theta)$, where θ is the true value of the parameter. We suggest a criterion for the choice of the best model that consists of maximizing the three leading terms in the expansion S(Y, n, j). We show that the criterion gives the correct model with probabilities $P_{\theta}^{n} \to 1$ as $n \to +\infty$.

0. Introduction. This article is concerned with the problem of choosing, among a finite number of possibly curved models (manifolds in \mathbb{R}^k), the "best" model to fit iid observations X_i , $i = 1, 2, \ldots$, whose law belongs to an exponential family.

In Section 1 (Proposition 1.2) we show that maximizing the quantities

$$\gamma(n, j) := \log M_i(X_1, \ldots, X_n) - \frac{1}{2}k_i \log n$$

leads to a correct choice of a model with probabilities $P_{\theta}^{n} \to 1$ as $n \to +\infty$, where P_{θ} is the true law of the observations in the exponential family; here $M_{j}(X_{1},...,X_{n})$ is the maximum of the likelihood function of the n first observations on the jth model and k_{j} is the dimension of the jth model. It follows in particular from Proposition 1.2 that this procedure is consistent [see, for example, Woodroofe (1982)].

The main conclusions of this paper, which completes and extends a result of Schwarz (1978), are as follows:

1. For any model m_j where the true parameter θ is in $\operatorname{int}(m_j \cap \Theta)$, the quantities S(n, j), where S(n, j) is the log of the posterior probability of the jth model plus a constant C(n) independent of the model, have an asymptotic expansion whose leading three terms $\Gamma(n, j)$ are given by Theorem 2.3.

Received March 1984; revised May 1986.

AMS 1980 subject classifications. Primary 62F12; secondary 62H99.

Key words and phrases. Curved models, Schwarz's criterion, exponential families.

- 2. When choosing between two models m_1 and m_2 , if θ belongs to m_1 and not to m_2 , then the procedure that consists of maximizing the $\Gamma(n, j)$, j = 1, 2, will lead to the correct choice of a model (i.e., m_1 rather than m_2) with $P_{\theta}^n \to 1$ as $n \to +\infty$, even if $k_1 \ge k_2$ (Proposition 1.2 and Remark 2.3).
- 3. When choosing between two models m_1 and m_2 where the true value θ is in $m_1 \cap m_2$ and $k_1 \neq k_2$, with $P_{\theta}^n \to 1$ as $n \to +\infty$, the procedure that consists of maximizing the $\Gamma(n, j)$, j = 1, 2, will lead to the choice of the model with the smallest dimension and in this case, for any suitably smooth prior, a Bayes procedure will also lead to the same choice with $P_{\theta}^n \to 1$ as $n \to +\infty$ (Proposition 1.2, Remark 2.3 and Corollary 2.3).
- 4. When choosing between two models m_1 and m_2 with $k_1 = k_2$ and where the true value θ of the parameter belongs to $m_1 \cap m_2$, then by assumption (**) of Section 1 we really have a choice of three models, m_1 , m_2 and $m_1 \cap m_2$: say $m_1 \cap m_2 = m_{i_0}$ for some index i_0 ; then, the procedure based on the $\Gamma(n, j)$, j = 1, 2, i_0 will pick $m_1 \cap m_2$ and coincide with the Bayes procedure with $P_{\theta}^n \to 1$ as $n \to +\infty$.

Section 2.1 deals with the problem of existence and unicity of MLE's on a curved model [note that Amari (1982) gives a geometrical interpretation of maximum likelihood estimation but is not concerned with the existence problem]. Sections 2.2 and 2.3 are devoted to obtaining an asymptotic expansion for the log of the posterior probability of the *j*th model; this posterior probability is a function $P(Y_n)$ of the sample mean Y_n of the *n* first observations. We first obtain an asymptotic expansion for P(Y) as a function of Y (Proposition 2.2) which is uniform in Y, for Y in some compact set. The expansion has a precision of $n^{-(k_j+1)/2}$. In Section 2.3 we apply Proposition 2.2 to the case where Y is replaced by Y_n —this is where we need the uniformity in Y in Proposition 2.2—and obtain the desired asymptotic expansion for the log of the posterior probability of the *j*th model with a precision of $n^{-1/2}$ in probability.

Section 3 is concerned with the choice of a degree for a polynomial regression. One major issue is that the observations are not iid. We show that, by assuming that *both variables* in the regression are random variables, we can still apply the results of Sections 1 and 2. We describe the different models, which are curved.

To conclude this section, we note that the quantities $\gamma(n,j)$ introduced by Schwarz (1978) arise very naturally as the leading terms of the asymptotic expansion in Section 2.3 and that maximizing the $\gamma(n,j)$ [commonly called the Bayesian information criterion (BIC)] is a consistent procedure. Another well-known procedure is the Akaike information criterion (AIC) [Akaike (1974)]. It has been shown that the AIC is not consistent as $n \to +\infty$ [e.g., Woodroofe (1982) and Hannan (1980)]. The point has been made, though, that inconsistency may not be of great consequence from the point of view of prediction [Geisser and Eddy (1979)]. The AIC seems to have optimality properties in cases such as the selection of the order of the model for estimating parameters of a linear process, the key assumption being that the dimension of the models is allowed to increase with sample size [Shibata (1980, 1981)].

- 1. Criterion for the correct choice of a model when the models are C^{∞} manifolds in \mathbb{R}^k .
- 1.1. The Bayes procedure. Statement of the problem. Let X_i , $i=1,2,\ldots$, be iid observations from an exponential family in standard form with densities $f(X,\phi)=\exp(X\phi-b(\phi))$, with respect to a finite measure on \mathbb{R}^k , with $\phi\in\Theta$ the natural parameter space [Lehmann (1959), page 51]. We assume that we have a finite number of competing models $m_j\cap\Theta$ where m_j is a C^∞ k_j -dimensional connected manifold embedded in \mathbb{R}^k [for terminology and basic facts in differential geometry we refer to Spivak (1979)]. An important special case is the case where m_j is a k_j -dimensional affine space in \mathbb{R}^k [Schwarz (1978)]. We assume that
- (*) for each $i \neq j$, if a point in the closure of m_i is in $m_j \cap \text{int } \Theta$, then it is in m_i .

We will also assume that

if $k_i = k_j$ for some pair (i, j), $i \neq j$, and if $m_i \cap m_j \neq \emptyset$, then $m_i \cap m_j$ is also an available model m_r and is of lower dimension.

On each of these m_j a natural analogue λ_j of Lebesgue measure is defined. If m_j is a k_j -dimensional affine space in \mathbb{R}^k , the defined measure will reduce to the Lebesgue measure. If m_j is a one-dimensional curve (or a two-dimensional surface) in \mathbb{R}^k , this measure will be the usual arc length (or the usual surface element). Note that the standard inner product of \mathbb{R}^k induces a natural C^∞ Riemannian structure on m_j . Let g_{ij} be the coefficients of this Riemannian metric on a coordinate neighborhood U of a point p of m_j .

We define the standard volume element dV on the Riemannian manifold m_i by

$$dV = \left(\det g_{i,i}\right)^{1/2} |dX^{1}(p) \wedge \cdots \wedge dX^{k_{j}}(p)|$$

in a coordinate system (X, U) about the point p [see Spivak (1979), pages 417–418 for details]. This definition does not depend on the coordinate system [Spivak (1979), page 281]. The set function $\lambda_j(A) = \int_A dV$ is then defined for any Borel subset A of m_j and is countably additive.

We will assume that the conditional prior distribution μ_j of the parameter ϕ given the jth model has a density f_j with respect to λ_j which is a nowhere zero C^{∞} function on $m_j \cap \Theta$ (this assumption will also hold for measures obtained from volume elements of Riemannian metrics smoothly related to the original one). Let α_j be the prior probability of the jth model. The prior distribution of ϕ is then $\mu = \sum \alpha_j \mu_j$. Note that μ is concentrated on $\bigcup m_j$ and that the μ_j are mutually orthogonal, clearly if two m_j are of different dimensions, and by assumption (**) if they have the same dimension.

Let P(n, j) be the posterior probability of the jth model given the prior and the n first observations X_1, \ldots, X_n . We have

P(n, j)

$$=\alpha_{j}\int_{m_{j}\cap\Theta}\exp\left(\phi\sum_{i=1}^{n}X_{i}-nb(\phi)\right)d\mu_{j}(\phi)\right)\bigg/\int_{\Theta}\exp\left(\phi\sum_{i=1}^{n}X_{i}-nb(\phi)\right)d\mu(\phi).$$

Then a Bayes choice of a model is a choice that maximizes P(n, j).

Let $Y_n = (1/n)\sum_{i=1}^n X_i$ and

$$S(n, j) = \log \alpha_j + \log \int_{m_j \cap \Theta} \exp n(\phi Y_n - b(\phi)) d\mu_j(\phi)$$
$$= \log P(n, j) + C(n)$$

for some C(n). Let θ be the true value of the parameter. We assume throughout that $\theta \in m_j$ for some j (this is no loss of generality since we can always adjoin \mathbb{R}^k as a model).

DEFINITION. The correct choice between models is the model of lowest dimension which contains θ .

1.2. Criterion for the correct choice of a model. Using the notation of Section 1.1, let

$$\gamma(n, j) = n \sup_{\phi \in m_j \cap \Theta} (Y_n \phi - b(\phi)) - \frac{1}{2} k_j \log n$$

[Schwarz (1978)]. The following proposition proves the consistency of Schwarz's criterion.

Proposition 1.2. Assume $\theta \in \operatorname{int} \Theta$ and let m_1 and m_2 be two different models. If $\theta \in m_2 \setminus m_1$, or if $\theta \in m_1 \cap m_2$ with $k_2 < k_1$, then

$$\lim_{n \to +\infty} P_{\theta}^{n}(\gamma(n,1) < \gamma(n,2)) = 1.$$

PROOF. Let $f(\phi) = \nabla b(\theta)\phi - b(\phi)$ for $\phi \in \Theta$. The function f attains its unique maximum at θ [Barndorff-Nielsen (1978), Theorems 9.13 and 9.1 and (1), page 141]. Let $\theta \in m_2 \setminus m_1$. Since $\theta \notin \overline{m}_1$ by assumption, let us pick $\varepsilon > 0$ and a neighborhood N of θ such that

$$N \cap m_1 = \emptyset$$

and, for $\phi \notin N$,

$$\nabla b(\theta)\phi - b(\phi) + \varepsilon \leq \nabla b(\theta)\theta - b(\theta)$$
.

We have

$$\sup_{\phi \in m_1 \cap \Theta} \nabla b(\theta) \phi - b(\phi) + \varepsilon \leq \nabla b(\theta) \theta - b(\theta).$$

Since, by the strong law of large numbers, $Y_n \to \nabla b(\theta)$ with $P_{\theta}^{\infty} = 1$ as $n \to +\infty$

(note that $E_{\theta}X_1 = \nabla b(\theta)$ [Barndorff-Nielsen (1978), page 114]),

$$\sup_{\phi \in m_i \cap \Theta} (Y_n \phi - b(\phi)) \to \sup_{\phi \in m_i \cap \Theta} \nabla b(\theta) \phi - b(\phi) \quad \text{with } P_{\theta}^{\infty} = 1$$

as $n \to +\infty$, by continuity of the function $Y \to \sup_{\phi \in m_i \cap \Theta} Y \phi - b(\phi)$ which follows from its convexity, i = 1, 2. (Note that

$$\nabla b(\theta) \in \operatorname{int}\left\{Y \in \mathbb{R}^{|k|} \sup_{\phi \in \Theta} Y_{\phi} - b(\phi) < +\infty\right\}$$

[Barndorff-Nielsen (1978), page 151].) So with probabilities $P_{\theta}^{n} \to 1$ as $n \to +\infty$, we have

$$\left|\sup_{\phi \in m_i \cap \Theta} (Y_n \phi - b(\phi)) - \sup_{\phi \in m_i \cap \Theta} (\nabla b(\theta) \phi - b(\phi))\right| < \varepsilon/4,$$

$$i = 1, 2.$$

Using (*) and (**), with $P_{\theta}^n \to 1$ as $n \to +\infty$, we have

$$\sup_{\phi \in m_1 \cap \Theta} (Y_n \phi - b(\phi)) + \varepsilon/2 < \sup_{\phi \in m_2 \cap \Theta} (Y_n \phi - b(\phi)),$$

which completes the proof of the first part of the proposition.

Let $\theta \in m_1 \cap m_2$ and $k_2 < k_1$. We put $S_{n,i} = \sup_{\phi \in m_i \cap \Theta} Y_n \phi - b(\phi)$, i = 1, 2. To prove the proposition, it is enough to show that $|S_{n,1} - S_{n,2}| = O_p(1/n)$. Since $\nabla b(\operatorname{int} \Theta)$ is open, with probabilities $P_{\theta}^n \to 1$ as $n \to +\infty$, there exists a unique MLE $\hat{\theta}_n$ that satisfies

$$\sup_{\phi \in \Theta} Y_n \phi - b(\phi) = Y_n \hat{\theta}_n - b(\hat{\theta}_n)$$

and $Y_n = \nabla b(\hat{\theta}_n)$ [Barndorff-Nielsen (1978), Theorem 9.13, page 151]. Let $U_n = Y_n\theta - b(\theta)$ and $\hat{U}_n = Y_n\hat{\theta}_n - b(\hat{\theta}_n)$. Since $\theta \in m_1 \cap m_2$, $0 \leq S_{n,\,i} - U_n \leq \hat{U}_n - U_n$, i=1,2. Now $\hat{U}_n - U_n = Y_n(\hat{\theta}_n - \theta) + b(\theta) - b(\hat{\theta}_n)$ and $b(\hat{\theta}_n) - b(\theta) = (\hat{\theta}_n - \theta)\nabla b(\theta) + O_p(1/n)$ as obtained by writing a Taylor formula for b about θ and from the efficiency of the MLE $\hat{\theta}_n$ [Huber (1967)]. So $\hat{U}_n - U_n = (Y_n - \nabla b(\theta))(\hat{\theta}_n - \theta) + O_p(1/n)$. By the CLT, $Y_n - \nabla b(\theta) = O_p(1/\sqrt{n})$, and by efficiency of $\hat{\theta}_n$, $\|\hat{\theta}_n - \theta\| = O_p(1/\sqrt{n})$, so $\hat{U}_n - U_n = O_p(1/n)$. \square

REMARK 1.2. Proposition 1.2 still holds for any sequence a_n of positive real numbers in place of $\log n$ such that $a_n/n \to 0$ as $n \to +\infty$ and $a_n \to +\infty$ as $n \to +\infty$.

The aim of the following section is to establish an asymptotic expansion for the S(n, j) and show the role of $\log n$.

2. Asymptotic expansion of the S(n, j).

2.1. Study of the map $\phi \to Y\phi - b(\phi)$ on $m_j \cap \Theta$ when Y is in a neighborhood of $\nabla b(0)$ and $0 \in m_j \cap \text{int } \Theta$. We note that, by a translation of the parameter, we can assume in this section that $\theta = 0$.

PROPOSITION 2.1. There exists a neighborhood W of $\nabla b(0)$ in \mathbb{R}^k such that, if $Y \in W$, the map $\phi \to Y\phi - b(\phi)$ attains its maximum on $m_j \cap \Theta$ at a unique point $\bar{\theta}_Y$.

The idea of the proof is to write the function $\phi \to Y\phi - b(\phi)$ in local coordinates near 0 and apply the implicit function theorem.

PROOF. We consider for $\varepsilon > 0$ the following neighborhoods of 0 in Θ :

$$N_{\epsilon, Y} = \{ \phi \in \Theta / Y \phi - b(\phi) > -b(0) - \epsilon \}, \qquad M_{\epsilon} = N_{\epsilon, \nabla b(0)}.$$

Then

$$\sup_{\phi \in \overline{N}_{\epsilon,Y} \cap m_j \cap \Theta} (Y\phi - b(\phi)) = \sup_{\phi \in m_j \cap \Theta} (Y\phi - b(\phi)).$$

The function $\phi \to \nabla b(0)\phi - b(\phi)$ attains its unique maximum on int Θ at 0, and if $Y \in \nabla b(\text{int }\Theta)$, $\phi \to Y\phi - b(\phi)$ attains its unique maximum at some $\hat{\theta}$ in int Θ [Barndorff-Nielsen (1978), Theorem 9.13].

Lemma 2.1.1 follows easily from remarks on level sets [Barndorff-Nielsen (1978), page 150].

LEMMA 2.1.1. There exist a compact set $K \subset \mathbb{R}^k$ and a constant C such that, if $||Y - \nabla b(0)|| \leq C$, $M_{\varepsilon} \subset K$ and $N_{\varepsilon,Y} \subset K$ for $0 < \varepsilon \leq 1$.

We put $M=m_j$ and $m=k_j=\dim m_j$, and we choose coordinates in \mathbb{R}^k and a coordinate neighborhood $M\cap V$ of 0 on M such that $M\cap V=\{X,\,y_{m+1}(X),\ldots,\,y_k(X);\,\,X=(x_1,\ldots,x_m)\in U\}$ for some neighborhood U of 0 in R^m with $|y_{m+l}(X)|\leq D\|X\|^2,\,\,\forall\,\,X\in U,\,\,l=1,\ldots,k-m$ for some D [cf. Guillemin and Pollack (1974), page 19]. It is easy to prove that we can pick $\varepsilon\leq 1$ small enough so that $M\cap M_{2\varepsilon}\subset M\cap V$ and $\delta_\varepsilon>0$ such that if $\|Y-\nabla b(0)\|<\delta_\varepsilon,\,\,N_{\varepsilon,\,Y}\subset M_{2\varepsilon}$ (the existence of such a δ_ε follows easily from Lemma 2.1.1). In our choice of coordinates near 0, 0 has coordinates 0 in R^m and any $\phi\in M_{2\varepsilon}\cap M$, thus any $\phi\in N_{\varepsilon,\,Y}\cap M$ with $\|Y-\nabla b(0)\|<\delta_\varepsilon$ can be written $\phi(X)=X+O(\|X\|^2)$, as $X\to 0$, where $X=(x_1,\ldots,x_m,0,\ldots,0)$.

We would like to evaluate the function $F(X) = Y\phi(X) - b(\phi(X))$ in a neighborhood of 0. We will need the following lemma, which follows from a Taylor formula with integral remainder.

LEMMA 2.1.2. Let k be a positive integer and $f(X) = O(\|X\|^k)$ denote a C^{∞} function of X in a neighborhood U of 0 in \mathbb{R}^d such that $f(X)/\|X\|^k$ is bounded in $U \setminus \{0\}$. Then

$$\frac{\partial f}{\partial x_l}(X) = O(\|X\|^{k-1}), \qquad l = 1, \dots, d, \text{ as } X \to 0.$$

Put

$$Q_{ij} = \frac{1}{2} \frac{\partial^2 b}{\partial \theta_i \partial \theta_i} (0)$$

and

$$Q(\phi) = \sum_{i, j=1}^k Q_{ij}\phi_i\phi_j.$$

Then

$$F(X) = YX + YO(\|X\|^2) - b(0) - \nabla b(0)(X + O(\|X\|^2))$$
$$-Q(X + O(\|X\|^2)) + O(\|X + O(\|X\|^2)\|^3)$$

near X = 0.

Using Lemma 2.1.2 we get, for i = 1, ..., m,

$$\frac{\partial F}{\partial x_{i}}(X) = -2 \sum_{j=1}^{m} Q_{ij} x_{j} + (Y - \nabla b(0)) O^{i}(\|X\|) + \left(Y_{i} - \frac{\partial b}{\partial \theta_{i}}(0) \right) + O(\|X\|^{2}),$$

where $O^i(||X||) = \partial/\partial x_i(O(||X||^2))$ and is an O(||X||) by Lemma 2.1.2. Therefore,

$$\frac{\partial^2 F}{\partial x_i \partial x_j}(0) = -2Q_{ij} + (Y - \nabla b(0))O^j(1) + O(\|X\|).$$

An application of the implicit function theorem [e.g., Dieudonné (1972), page 277] then shows that, for Y in a neighborhood of $\nabla b(0)$, the equation $\nabla F(X) = 0$ has a unique C^{∞} solution ξ_{Y} in a neighborhood of 0 (note that Q is positive definite). Note also that $\sup_{\phi \in \overline{N}_{e,Y} \cap M \cap \Theta} Y_{\phi} - b(\phi)$ is attained at a point θ_Y in $N_{\varepsilon,Y} \cap M \cap \Theta$. So for ε small enough, $\bar{\theta}_Y$ must satisfy $\nabla F(\phi^{-1}(\bar{\theta}_Y)) = 0$, so by the preceding, for ε small enough and $\|Y - \nabla b(0)\| < \delta_{\varepsilon}$, it is unique. This completes the proof of Proposition 2.1. \square

2.2. Asymptotic behavior of the integrals $J_n = \int_{m_i \cap \Theta} \exp(n(Y\phi - I))$ $b(\phi)$)) $d\mu_i(\phi)$, as $n \to +\infty$ uniformly in Y for $||Y - \nabla b(0)|| \le \sigma$, for some $\sigma > 0$. This calculation will be an example of "Laplace's method" for multidimensional integrals [see Hsu (1948, 1951) and Skinner (1980)]. We will use the notations of Section 2.1. As in Section 2.1 we assume that $\theta = 0$. We have the following proposition:

PROPOSITION 2.2. Assume that $0 \in m_i \cap \text{int } \Theta$ and that the density f_i of μ_i on $m_i \cap \Theta$ is C^{∞} and nowhere vanishing on $m_i \cap \Theta$. Then there exists a positive number σ such that on the compact set $\{||Y - \nabla b(0)|| \leq \sigma\}$, uniformly in Y,

$$J_n = e^{n(Y\bar{\theta}_Y - b(\bar{\theta}_Y))} \left\{ \left(\frac{2\pi}{n}\right)^{k_j/2} \frac{f_j(\bar{\theta}_Y) \left(\det g_{ij}(\xi_Y)\right)^{1/2}}{\left\{\det \left(-\partial^2 F/\partial x_i \, \partial x_j(\xi_Y)\right)\right\}^{1/2}} + O(n^{-(k_j+1)/2}) \right\}.$$

The idea of the proof is to write the integral J_n in terms of the μ_j -measure of a neighborhood $N'_{\epsilon,Y}$ of $\bar{\theta}_Y$, and then to estimate $\mu_j(N'_{\epsilon,Y})$ by noticing that $N'_{\epsilon,Y}$ lies between two ellipsoids, and estimating the volume of these ellipsoids.

PROOF. By using Proposition 2.1 and its proof we choose $\sigma'>0$ small enough so that $\bar{\theta}_Y$ exists and equals $\phi(\xi_Y)$ (see Section 2.1) for $||Y-\nabla b(0)|| \leq \sigma'$. We put $f(\phi)=\exp(Y\phi-b(\phi)-(Y\bar{\theta}_Y-b(\bar{\theta}_Y)))$ and $I_n=\int_{m_j\cap\Theta} f^n \, d\mu_j(\phi)=E_{\mu_j}f^n$. Note that $0< f\leq 1$. Let g=1-f; then $0\leq g<1$. If $G(t)=\mu_j(g\leq t)$ is the distribution function of g, then, integrating by parts,

$$Ef^{n} = \int_{0}^{1} (1-t)^{n} dG(t) = n \int_{0}^{1} (1-t)^{n-1} G(t) dt$$

and $G(t) = \mu_j (f \ge 1 - t) = \mu_j (N'_{\epsilon,Y})$ where $\varepsilon = -\log(1 - t)$ and $N'_{\epsilon,Y} = \{\phi | Y\phi - b(\phi) > Y\overline{\theta}_Y - b(\overline{\theta}_Y) - \varepsilon\}$. It is easy to check that for ε small enough, say $\varepsilon \le \varepsilon_0$, there exists $\theta_{\varepsilon} > 0$ such that if $||Y - \nabla b(0)|| \le \theta_{\varepsilon}$, $N'_{\epsilon,Y} \subset M_{4\varepsilon}$ and $M_{4\varepsilon}$ is included in a coordinate neighborhood on m_j near 0 as in Section 2.1.

We wish to estimate the $\mu_j(N_{\alpha,Y})$ for α small enough and $\|Y - \nabla b(0)\| \le \min(\theta_\alpha, \sigma')$. By the preceding and Section 2.1, $\phi \in N_{\alpha,Y}$ can be written $\phi(X) = X + O(\|X\|^2)$. As in Section 2.1, we define $F(X) = F(X,Y) = Y\phi(X) - b(\phi(X))$. Then

$$\mu_j(N'_{\alpha,Y}) = \int_{F(X)-F(\xi_Y) \geq -\alpha} f_j(\phi(X)) (\det g_{ij}(X))^{1/2} dX,$$

where f_j is the density of μ_j on $m_j \cap \Theta$ and g_{ij} are the coefficients of the Riemannian structure induced on m_j by the Euclidean structure of R^k , expressed in the chosen coordinate system on m_j . If A is the quadratic form defined by

$$A(V) = -\frac{1}{2} \sum_{i, j=1}^{m} \frac{\partial^{2} F}{\partial x_{i} \partial x_{j}} (\xi_{Y}) V_{i} V_{j},$$

where $m=\dim m_j$, we have $F(X)-F(\xi_Y)=-A(X-\xi_Y)+R(Y,X)$, where R(Y,X) denotes the integral remainder in a Taylor expansion for F about ξ_Y . Note that A is positive definite for $\|Y-\nabla b(0)\|\leq \eta^*$ for some η^* . Let α_i be the positive eigenvalues of $A,\ i=1,\ldots,m$. Then $\min\alpha_i$ and $\max\alpha_i$ are continuous functions of Y since $\max\alpha_i=\|A\|$ and $\min\alpha_i=\|A^{-1}\|^{-1}$ where $\|A\|=\sup_{\|X\|\leq 1}\|AX\|$.

We define

(1)
$$\rho = \inf_{\|Y - \nabla h(0)\| < r^*} (\min \alpha_i).$$

Note that $\rho > 0$. We will use the following lemma, which is easily proved.

LEMMA 2.2.1. There exists a constant K independent of Y such that $|R(Y,X)| \leq K ||X - \xi_Y||^3$ for $X \in \phi^{-1}(M_{4\varepsilon_0})$ and $||Y - \nabla b(0)|| \leq \eta^*$.

Note that if Δ_{ε} is the diameter of $\phi^{-1}(M_{4\varepsilon})$, $\Delta_{\varepsilon} \to 0$ as $\varepsilon \to 0$. Therefore, we can pick $0 < \varepsilon_1 < \varepsilon_0$ small enough so that $K \Delta_{\varepsilon_1} < \rho/2$, hence $\rho - K \Delta_{\varepsilon_1} > \rho/2$, where K is as in Lemma 2.2.1. We take $\alpha \le \varepsilon_1$ and $\|Y - \nabla b(0)\| < \min(\theta_{\varepsilon_1}, \eta^*, \sigma')$; then it is straightforward to show that $X \in \phi^{-1}(N_{\alpha,Y}) \Rightarrow \|X - \xi_Y\| \le \sqrt{2\alpha/\rho}$.

Clearly

$$\mu_j(N'_{\alpha,Y}) = \int_{A(X-\xi_Y)-R(Y,X)\leq \alpha} H_j(X) dX,$$

where

$$H_i(X) = f_i(\phi(X)) (\det g_{ij}(X))^{1/2}.$$

With a few elementary arguments it can be shown that

$$\int_{A(X-\xi_{Y})+\partial_{\alpha}^{*}||X-\xi_{Y}||^{2} \leq \alpha} H_{j}(X) dX \leq \int_{A(X-\xi_{Y})-R(Y,X) \leq \alpha} H_{j}(X) dX$$

$$\leq \int_{A(X-\xi_{Y})-\partial_{\alpha}^{*}||X-\xi_{Y}||^{2} \leq \alpha} H_{j}(X) dX,$$

where $\partial_{\alpha}^* = K\sqrt{2\alpha/\rho}$.

Let $E = \{X|A(X-\xi_Y) + \partial_\alpha^* \|X-\xi_Y\|^2 \le \alpha\}$. We wish to estimate $\int_E H_j(X) \, dX$. For this we will need to estimate the volume of the ellipsoid E. To do this we will make the change of variable $X - \xi_Y = P(Z - \xi_Y)$ in R^m , where P is an orthogonal matrix such that P^tAP is diagonal and A also denotes the matrix of the positive definite form A. The Jacobian of the transformation is $|dX/dZ| = \det P = \pm 1$. We have $A(X - \xi_Y) = \sum_{i=1}^m \alpha_i (Z - \xi_Y)_i^2$ and $\|Z - \xi_Y\|^2 = \|X - \xi_Y\|^2$ since P is orthogonal. Then

$$\int_E dX = \int_{\sum_{i=1}^m (\alpha_i + \partial_x^*)(Z - \xi_v)_i^2 \le \alpha} dZ.$$

Therefore,

$$\int_{E} dX = (\alpha \pi)^{m/2} / \prod_{i=1}^{m} (\alpha_{i} + \partial_{\alpha}^{*})^{1/2} \Gamma(\frac{m}{2} + 1).$$

We note here that

$$\prod_{i=1}^{m} \alpha_i^{-1/2} = \left\langle \det \left(-\frac{1}{2} \left(\frac{\partial^2 F}{\partial x_i \, \partial x_j} (\xi_Y) \right) \right) \right\rangle^{-1/2} = 2^{m/2} \left\langle \det \left(-\frac{\partial^2 F}{\partial x_i \, \partial x_j} (\xi_Y) \right) \right\rangle^{-1/2}.$$

We expand the function $H_j(X)$ about ξ_Y : $H_j(X) = H_j(\xi_Y) + h_j(X - \xi_Y)$ with $|h_j(X - \xi_Y)| \le M ||X - \xi_Y||$, for some M independent of Y, $X \in \phi^{-1}(M_{4\epsilon_0})$ and $||Y - \nabla b(0)|| \le \min(\theta_{\epsilon_1}, \eta^*, \sigma')$. We have

$$\int_E H_j(X) dX = H_j(\xi_Y)\lambda(E) + \int_E h_j(X - \xi_Y) dX,$$

where λ is the Lebesgue measure on R^m , and $|\int_E h_j(X-\xi_Y)\,dX| \leq M\int_E ||X-\xi_Y||\,dX$. It is easy to show that if $A(X-\xi_Y)+\partial_\alpha^*||X-\xi_Y||^2\leq \alpha$, then

$$||X - \xi_Y|| \le \frac{\sqrt{\alpha}}{\sqrt{\rho + \partial_\alpha^*}};$$

it follows that

$$\int_{E} H_{j}(X) dX = H_{j}(\xi_{Y})(\alpha \pi)^{m/2} \left/ \left(\Gamma\left(\frac{m}{2} + 1\right) \prod_{i=1}^{m} (\alpha_{i} + \partial_{\alpha}^{*})^{1/2} \right) + H(\alpha),$$

with $|H(\alpha)| \le M\pi^{m/2}\alpha^{(m+1)/2}/(\Gamma(m/2+1)(\rho+\partial_{\alpha}^*)^{(m+1)/2})$. By the same reasoning we get

$$\begin{split} &\int_{A(X-\xi_Y)-\partial_\alpha^* ||X-\xi_Y||^2 \le \alpha} H_j(X) dX \\ &= H_j(\xi_Y) (\alpha \pi)^{m/2} \bigg/ \Gamma \bigg(\frac{m}{2} + 1 \bigg) \prod_{i=1}^m (\alpha_i - \partial_\alpha^*)^{1/2} + H^1(\alpha), \end{split}$$

where

$$|H^{1}(\alpha)| \leq M\pi^{m/2}\alpha^{(m+1)/2} \bigg/ \bigg(\Gamma\bigg(\frac{m}{2} + 1\bigg)(\rho - \partial_{\alpha}^{*})^{(m+1)/2}\bigg)$$

for α small enough so that $\partial_{\alpha}^* < \rho$, say for $\alpha \le \alpha_0$, with $\alpha_0 < \epsilon_1$. Now

$$\prod_{i=1}^{m} (\alpha_i + \partial_{\alpha}^*)^{-1/2} = \prod_{i=1}^{m} \alpha_i^{-1/2} (1 + O(\sqrt{\alpha})) \text{ as } \alpha \to 0,$$

uniformly in Y. Also $H(\alpha) = O(\alpha^{(m+1)/2})$ and $H^1(\alpha) = O(\alpha^{(m+1)/2})$ uniformly in Y for $||Y - \nabla b(0)|| \le \min(\theta_{\alpha_0}, \eta^*, \sigma')$. Using these estimates, and inequality (2), we have

$$\int_{A(X-\xi_Y)-R(Y,X)\leq\alpha} H_j(X) dX$$

$$= H_j(\xi_Y) (\alpha\pi)^{m/2} / \left(\Gamma\left(\frac{m}{2} + 1\right) \prod_{i=1}^m \alpha_i^{1/2} \right) + O(\alpha^{(m+1)/2})$$

uniformly in Y for $||Y - \nabla b(0)|| \le \min(\theta_{\alpha_0}, \eta^*, \sigma')$. We have now shown the following lemma.

LEMMA 2.2.2. There exist positive numbers σ and α_0 such that if $\|Y - \nabla b(0)\| \leq \sigma$ and $\alpha \leq \alpha_0$, then $\mu_j(N'_{\alpha,Y}) = C_m(Y)\alpha^{m/2} + \beta(\alpha)$ with $C_m(Y)$

$$=f_{j}(\phi(\xi_{Y}))\left(\det g_{ij}(\xi_{Y})\right)^{1/2}\left(\det \left(-\frac{\partial^{2}F}{\partial x_{i}\,\partial x_{j}}(\xi_{Y})\right)\right)^{-1/2}\left(2\pi\right)^{m/2}\left/\Gamma\left(\frac{m}{2}+1\right)\right)$$

and $|\beta(\alpha)| \leq \alpha^{(m+1)/2}\beta^1(\alpha)$ where $\beta^1(\alpha)$ is bounded and independent of Y.

Proposition 2.2 now follows easily from Lemma 2.2.2 applied to $G(t) = \mu_j(N_{\epsilon,Y})$ with $\epsilon = -\log(1-t)$, and known facts about Euler's beta and gamma functions [see Haughton (1983) for details]. \square

2.3. Asymptotic expansion of the S(n, j). The following theorem will show the special role of $a_n = \log n$ in Schwarz's criterion. We will use the notation and assumptions of the previous sections.

THEOREM 2.3. Let the true $\theta \in m_i \cap \text{int } \Theta$. If

$$S(n, j) = \log \alpha_j + \log \int_{m: \Theta} \exp(Y_n \phi - b(\phi)) d\mu_j(\phi)$$

with $Y_n = n^{-1}\sum_{i=1}^n X_i$, if $\bar{\theta}_n^j$ is the unique point on $m_j \cap \Theta$ where the function $Y_n \phi - b(\phi)$ attains its maximum, defined with probabilities converging to 1 as $n \to \infty$, then

$$S(n, j) = n \sup_{\phi \in m_j \cap \Theta} (Y_n \phi - b(\phi)) - \frac{1}{2} k_j \log \left(\frac{n}{2\pi} \right) + \log \alpha_j + \log f_j(\bar{\theta}_n^j)$$
$$- \frac{1}{2} \log \det \left(\frac{\partial^2 b}{\partial \phi_r \partial \phi_s} (\bar{\theta}_n^j) \right) + O_p(n^{-1/2}).$$

PROOF. We will need a few lemmas. Let $M = m_i$. We can assume that $\theta = 0$.

LEMMA 2.3.1. If g_{ij} are the coefficients of the Riemannian structure induced on M by the Euclidean structure of R^k , corresponding to the coordinate neighborhood $M \cap V$ of Section 2.1, then $g_{ij}(0) = \delta_{ij}$.

Proof. An easy calculation shows that

$$g_{ij}(X) = \delta_{ij} + \sum_{l=1}^{k-m} \frac{\partial y_{m+l}}{\partial x_i}(X) \frac{\partial y_{m+l}}{\partial x_i}(X). \qquad \Box$$

LEMMA 2.3.2. Let f be a C^{∞} function on a convex neighborhood U of 0 in \mathbb{R}^k . Then there exists $\sigma > 0$ such that, if $\|Y - \nabla b(0)\| \leq \sigma$, we have $f(\xi_Y) = f(0) + R(Y)$, where $|R(Y)| \leq C\|\xi_Y\|$ for some constant C independent of Y (where ξ_Y is as defined in Section 2.1).

PROOF. The proof is similar to the proof of Lemma 2.2.1 and is omitted.

LEMMA 2.3.3. If
$$Y_n = n^{-1} \sum_{i=1}^n X_i$$
, then $\|\xi_{Y_n}\| = O_p(n^{-1/2})$.

PROOF. The lemma follows from the central limit theorem.

Theorem 2.3 now follows easily from Proposition 2.2 and Lemmas 2.3.1 and 2.3.2. \square

We now give a proposition which will show that when choosing between models m_i and m_j such that $k_i \neq k_j$ and $\theta \in m_i \cap m_j \cap \text{int } \Theta$, with probabili-

ties $P_{\theta}^{n} \to 1$ as $n \to +\infty$, the Bayes choice and the choice based on the quantities

$$\Gamma(n, j) = n \sup_{\phi \in m_j \cap \Theta} Y_n \phi - b(\phi) - \frac{1}{2} k_j \log \left(\frac{n}{2\pi} \right)$$

$$+ \log \alpha_j + \log f_j(\bar{\theta}_n^j) - \frac{1}{2} \log \left(\det \left(\frac{\partial^2 b}{\partial \phi_r \partial \phi_s} \right) \right)$$

coincide.

COROLLARY 2.3. If $\theta \in m_{j_1} \cap m_{j_2} \cap \text{int } \Theta$ and $k_{j_1} \neq k_{j_2}$, then $P_{\theta}^n(S(n, j_1) > S(n, j_2)$ and $\Gamma(n, j_1) \leq \Gamma(n, j_2) \to 0$ as $n \to +\infty$.

The proof is straightforward and is left to the reader.

REMARK 2.3. Note that $\Gamma(n, j) = \gamma(n, j) + O_p(1) + O_p(n^{-1/2})$ so $\Gamma(n, j) = \gamma(n, j) + o_p(\log n)$, where $\gamma(n, j)$ was defined in Section 1.2. Proposition 1.2 therefore holds with $\gamma(n, j)$ replaced by $\Gamma(n, j)$.

3. Choice of degree in a polynomial regression. Let (x_i, y_i) be a set of data in \mathbb{R}^2 where $y_i = \sum_{j=0}^d a_j x_i^j + \varepsilon_i$ and the ε_i are iid $N(0, \varepsilon^2)$. If we consider x_i not as a random variable but as an "incidental parameter," given the "structural parameters" $(a_0, a_1, \ldots, a_d, d, \varepsilon)$, the law of the y_i is $N(m_i, \varepsilon^2)$ with $m_i = \sum_{j=0}^d a_j x_i^j$. Schwarz's criterion does not apply to the observations y_i since they are not iid. We will show that we can still apply a Schwarz criterion to this problem by considering x_i as a random variable. This will also show the necessity of considering "curved models." We will assume therefore that the ε_i are iid $N(0, \varepsilon^2)$, the x_i are iid $N(m, \tau^2)$ and that all the ε_i are independent of all the x_i . Let $\eta = (d, a_0, \ldots, a_d, \varepsilon^2, m, \tau^2)$. We assume that η has a prior law of the form $\Sigma \alpha_k \mu_k$ where α_k is the prior probability that d = k.

Now let $z_i = (x_i, y_i)$. The z_i are iid given η and their density is

(3)
$$f(x, y) = \frac{1}{2\pi\tau\varepsilon} \exp\left[-\frac{(x-m)^2}{2\tau^2} - \frac{\left(y - \sum_{j=0}^d a_j x^j\right)^2}{2\varepsilon^2}\right],$$

so $f(x, y) = \exp[\sum_{j=1}^{3d+2} \theta_j T_j(x, y) - b(\theta)]$, where the $T_i(x, y)$ are defined by

$$T_1(x, y) = -x^2, T_2(x, y) = -y^2, T_3(x, y) = y, ...,$$

(4)
$$T_{3+j}(x, y) = x^j y$$
, $j = 0, 1, ..., d$, $T_{4+d}(x, y) = -x$,
$$T_{5+d}(x, y) = -x^3$$
, $T_{6+d}(x, y) = -x^4$, ..., $T_{2d+2}(x, y) = -x^{2d}$,

the θ_i are defined by

$$\theta_{1} = 1/2\tau^{2} + \left(2a_{0}a_{2} + a_{1}^{2}\right)/2\varepsilon^{2}, \qquad \theta_{2} = 1/2\varepsilon^{2},$$

$$\theta_{3} = a_{0}/\varepsilon^{2}, \qquad \theta_{4} = a_{1}/\varepsilon^{2}, \dots, \theta_{3+j} = a_{j}/\varepsilon^{2}, \qquad j = 0, \dots, d,$$

$$\theta_{4+d} = a_{0}a_{1}/\varepsilon^{2} - m/\tau^{2}, \qquad \theta_{5+d} = \sum_{j=0}^{3} a_{j}a_{3-j}/2\varepsilon^{2},$$

$$\theta_{6+d} = \sum_{j=0}^{4} a_{j}a_{4-j}/2\varepsilon^{2}, \dots, \theta_{2d+2} = \sum_{j=0}^{d} a_{j}a_{d-j}/2\varepsilon^{2},$$

$$\theta_{2d+3} = \sum_{j=1}^{d} a_{j}a_{d+1-j}/2\varepsilon^{2}, \dots, \theta_{3d+1} = \sum_{j=d-1}^{d} a_{j}a_{2d-1-j}/2\varepsilon^{2},$$

$$\theta_{2d+3} = a_{d}^{2}/2\varepsilon^{2},$$

and where $b(\theta)$ is defined by normalization. The family of distributions with densities f(x, y) with respect to the Lebesgue measure on \mathbb{R}^2 is an exponential family with natural parameter space

$$\Theta = \left\{ \theta \in \mathbb{R}^{3d+2} | \int_{\mathbb{R}^2} \exp \left[\sum_{j=1}^{3d+2} \theta_j T_j(x, y) \right] dx dy < \infty \right\}.$$

Let us describe the different models: We define the maximum model m_d to be the set of $\theta \in \mathbb{R}^{3d+2}$ defined parametrically by (5) with $(a_0,\ldots,a_d) \in \mathbb{R}^{d+1}$, $\varepsilon^2 > 0$, $\tau^2 > 0$. Then m_d is a closed manifold in \mathbb{R}^{3d+2} of dimension 3d+2-(2d-2)=d+4 [Spivak (1979), page 65, Proposition 12]. The other models, corresponding to $a_d=0$, $a_d=a_{d-1}=0,\ldots,a_d=a_{d-1}=\cdots=a_1=0$ will be denoted by $m_{d-1},m_{d-2},\ldots,m_0$. Note that $m_j=\{\theta\in m_d/\theta_{3+j+1}=\cdots=\theta_{3+d}=0\}$, so m_j is a closed submanifold of m_d of dimension j+4 in m_d . In particular, dim $m_1=5$ and dim $m_0=4$, as submanifolds of m_d . Note that all the m_j are curved, and that, assuming the appropriate regularity for the density of μ_k with respect to the volume element on m_k , the results of Section 2.3 apply.

Acknowledgment. I would like to thank Richard M. Dudley for help and guidance in preparing this paper.

REFERENCES

AKAIKE, H. (1974). A new look at the statistical identification model. *IEEE Trans. Automat. Control* 19 716-723.

AMARI, S. I. (1982). Differential geometry of curved exponential families—curvatures and information loss. *Ann. Statist.* **10** 357-385.

BARNDORFF-NIELSEN, O. (1978). Information and Exponential Families in Statistical Theory. Wiley, New York.

DIEUDONNÉ, J. (1972). Eléments d'Analyse 1. Gauthier-Villars, Paris.

DOOB, J. L. (1953). Stochastic Processes. Wiley, New York.

FORTUS, R. (1979). Approximations to Bayesian sequential tests of composite hypotheses. Ann. Statist. 7 579-591.

GEISSER, S. and EDDY, W. F. (1979). A predictive approach to model selection. J. Amer. Statist. Assoc. 74 153-160.

GUILLEMIN, V. and POLLACK, A. (1974). Differential Topology. Prentice-Hall, Englewood Cliffs, N.J.

HANNAN, E. J. (1980). The estimation of the order of an ARMA process. Ann. Statist. 8 1071-1081.

HAUGHTON, D. (1983). On the choice of a model to fit data from an exponential family. Ph.D. thesis, Massachusetts Institute of Technology.

Hsu, L. C. (1948). A theorem on the asymptotic behavior of a multiple integral *Duke Math. J.* 15 623-632.

Hsu, L. C. (1951). On the asymptotic evaluation of a class of multiple integrals involving a parameter. Amer. J. Math. 73 625-635.

Huber, P. (1967). The behavior of maximum likelihood estimators under nonstandard conditions.

Proc. Fifth Berkeley Symp. Math. Statist. Probab. 1 221-233. Univ. California Press.

LEHMANN, E. L. (1959). Testing Statistical Hypotheses. Wiley, New York.

ROBERTS, A. and VARBERG, D. (1973). Convex Functions. Academic, New York.

SCHWARZ, G. (1978). Estimating the dimension of a model. Ann. Statist. 6 461-464.

SCHWARZ, G. (1981). Applying asymptotic shapes to nonexponential families. Ann. Statist. 9 461-464.

SHIBATA, R. (1980). Asymptotically efficient selection of the order of the model for estimating parameters of a linear process. *Ann. Statist.* 8 147-164.

SHIBATA, R. (1981). An optimal selection of regression variables. Biometrika 68 45-54.

SKINNER, L. A. (1980). Note on the asymptotic behavior of multidimensional Laplace integrals. SIAM J. Math. Anal. 11 911-917.

SPIVAK, M. (1979). A Comprehensive Introduction to Differential Geometry 1, 2nd ed. Publish or Perish, Berkeley, Calif.

WOODROOFE, M. (1982). On model selection and the arc-sine laws. Ann. Statist. 10 1182-1194.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF LOWELL LOWELL, MASSACHUSETTS 01854