The Annals of Statistics
1988, Vol. 16, No. 1, 147-160

ESTIMATION FOR THE NONLINEAR
FUNCTIONAL RELATIONSHIP

By Yasuo AMEMIYA AND WAYNE A. FULLER
ITowa State University

Estimation of the parameters of the nonlinear functional model with
known error covariance matrix is discussed. Asymptotic properties of the
maximum likelihood estimator for the implicit functional model are pre-
sented. The approximate bias in the maximum likelihood estimator due to
the nonlinearity of the relationship is given and a bias-adjusted estimator is
suggested. Numerical and theoretical results support the superiority of the
bias-adjusted estimator relative to the maximum likelihood estimator.

1. Introduction. In the functional relationship model, the true values are
assumed to satisfy a given mathematical relationship. The observations are the
sums of true values and measurement errors. The model is also called the
functional errors-in-variables model. An extensive literature exists for estimation
of parameters in linear functional relationship models. Reviews of the literature
are contained in Madansky (1959), Moran (1971), Kendall and Stuart (1979),
Fuller (1980), Gleser (1981) and Anderson (1984).

To define the nonlinear functional relationship, let {b,}7_, and {a,}5-; be
sequences of positive real numbers such that n» = b,a, for all n and assume that
a sequence of experiments indexed by n exists. The explicit functional relation-
ship is ’

(1'1) yt0=g(x(t); BO)’ t= 1:2y-"’ bn:

where x9 are 1 X (p — 1) unobservable fixed vectors belonging to a subset of
(p — 1)-dimensional Euclidean space and B° is a 1 X & vector of unknown
parameters belonging to a subset of k-dimensional Euclidean space. Throughout
the paper all vectors are row vectors. If g(x?; B°) is nonlinear in x? for fixed B°
or nonlinear in B° for fixed x?, we say the model is nonlinear. A more general
model is the implicit functional relationship

(1.2) f(zB°) =0, ¢=1,2,...,0,

where z? are unobservable fixed vectors belonging to a parameter space T, B° is
al X k vector of unknown parameters belonging to a parameter space 2, f(z; B)
is a function defined on I' X @ and T and Q are subsets of p-dimensional and
k-dimensional Euclidean spaces, respectively. The model is nonlinear if f(z%; B°)
is nonlinear in the sense defined for g(x%; B°). Clearly, (1.1) is a special case of
(1.2) with f(z% B%) =2 — g(x% B°), where z = (y2;x?). Hence, we con-
centrate our discussion on the implicit functional relationship (1.2).
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For each B in {, let Iy denote the set of z in T satisfying f(z; B) = 0. We
assume that for each B in @, the set Iy is nonempty. The observations are the
p-dimensional row vectors

(1.3) Z,=z+e,, t=12..0,

where ¢,, are the vectors of measurement errors. It is assumed that the ¢,, are
independently distributed with mean zero and covariance matrix 2, = a,'®,
where @ is a fixed positive definite matrix. The covariance matrix 2, and the b,
observations are assumed to be known. Often =, will have been estimated from
replicate observations. An extension to the case where X, = 02® with known ®
and unknown ¢,2 is discussed briefly at the end of Section 3.

We will derive the limiting properties of the estimators under the assumption
that n —» oo. If b, » 00 as n — oo, then the number of data points tends to
infinity. If @, & o as n — oo, then the measurement error variances approach
zero as n — oo. To avoid uninteresting cases, we assume that @, and b, are
nondecreasing in n. For example, if a, replicate observations are made at each of
b, points, then the total number of observations is n = b,a, and the vector Z ,,
used in the analysis is the mean of the a, replicates. In practice, the limiting
result obtained as n — oo with both a, and b, increasing can be used as an
approximation when the error variances are small and the number of data points
is large.

Most research on estimation for the nonlinear functional relationship model
has concentrated on the explicit model (1.1). Estimation procedures for B° in
(1.1) based on the least squares principle or on the maximum likelihood principle
have been suggested by Deming (1931, 1943), Cook (1931), Clutton-Brock (1967),
Dolby (1972), Dolby and Lipton (1972) and Egerton and Laycock (1979). Estima-
tion of specific nonlinear models has been discussed by Hey and Hey (1960),
McDonald (1962), O’Neill, Sinclair and Smith (1969), Griliches and Ringstad
(1970), Wolter and Fuller (1982a) and Amemiya (1985). A Bayesian treatment
has been given by Reilly and Patino-Leal (1981). For the logistic regression where
the covariate is measured with error, Stefanski and Carroll (1985) derived
properties of the ordinary logistic regression estimator, the maximum likelihood
estimator and two types of bias-adjusted estimators.

For the explicit model (1.1), Villegas (1969) and Wolter and Fuller (1982b)
considered a one-step iterative estimator of B° based on a preliminary estimator.
Villegas derived the limiting distribution of the estimator for b, = O(1) and ¢,,
normally distributed. Wolter and Fuller showed that the one-step estimator has
a limiting normal distribution under the assumption that a;! = o(n~/2). They
also proposed a modified one-step estimator which has a limiting normal distri-
bution when a;! = o(n~13).

For the implicit nonlinear functional relationship model (1.2), Britt and
Luecke (1973) proposed an algorithm for estimating B° and z?. The algorithm
has been implemented and expanded by Schnell (1984). Chan (1965) and
Anderson (1981) considered the circular errors-in-variables model.

We consider the estimation of B° and z? for the implicit model (1.2) and give
asymptotic properties of the maximum likelihood estimators of B° and z!.
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Bias-adjusted estimators of B° and z? are proposed and their properties are
discussed. Estimators for the parameters of the quadratic model and the circle
model are compared in a Monte Carlo study. For the circle,

(30— 10)" + (20 — u2)* = (p°)* =0,

Where BO = ("l'y’ :U'x’ 0) and Znt = ( nt’ nt) = (yto’ x?) + € The adjuSted
estimator of the radius displayed better properties than the maximum likelihood
estimator. The adjusted estimators also performed better than maximum likeli-
hood for the quadratic model.

2. The maximum likelihood estlmator In this section, we consider the
maximum likelihood estimators of z? and B° for the honlinear implicit model
(1.2) with normally distributed ¢,,. The maximum likelihood estimators B and 2,
are the values of B in Q and z, in I' that minimize

b,
(2.1) El (Z,,-2,)2,YZ,,— 2,)

subject to f(z; B) =0, t =1,2,..., b,. We assume that such B and 2, exist and
are measurable functions of Z ,, for sufficiently large n. Throughout, we denote
the Euclidean norm of a vector a by |a|

For sequences in which the error variances approach 0, B is consistent.

LeEMMA 1. Let the model (1.2) and (1.3) hold and assume:
@) a,;! = o(1).

(ii) For each n, the measurement errors ¢, t=1,2,...,b,, are indepen-
dently distributed with mean zero and known covariance matrix =,, where
2, = a,'® and P is a fixed positive definite matrix.

(iii) For every ¢ > 0, there exist a 8, > 0 and an N, > 0 such that if n > N,

Q,.(B) =5, 12 1nf (20 — 2)®~ (20 — z) > §,
t=12€T;
for every B in Q satisfying |B — B°| > ¢, where
I;={zinT; f(z; B) = 0}.
Then
plim B = B°.

n—o

ProOOF. Let

bn
P(B)=0bt) inf (Z, —2)® Y (Z, —2).
t=12€Tp
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Since B minimizes P,(B),
b,
Pn(ﬁ) < Pn(BO) < bn_1 Z antq)_le;zt = ‘Rn’
t=1

say. Because for any z,
(20 — 2)@ Y20 — 2) < 2[(Z,, — 2)® Y(Z,, — 2)’ + £, D ',
it follows that
Q.(B) <2[P(B) + R,] <4R,.

By Markov’s inequality, R, = O,(a, ). Hence, the consistency of B follows from
assumptions (i) and (iii). O

Assumption (iii) is an identification condition for B°. Suppose that |B — B > &
and consider the average of b, distances between z? satisfying f(z%; B°) = 0 and
the projection of z{ onto Iy in the metric of ®~'. Under assumption (iii), the
average distance is greater than a positive constant for large b,, and the
difference between B and B° can be detected.

If b, > oo, there are an increasing number of z? to estimate. However, the 2,
are uniformly consistent for z? provided the error variances decrease faster than
the number of data points increases.

LEMMA 2. Let the model (1.2) and (1.3) and assumption (i) of Lemma 1
hold. Also, assume

i) b,a; ' = o(1).
Then, for any & > 0, there exists an N; such that if n > N,

P{|2,— 20| < ¢ forallt=1,2,...,b,} >1 - &
Proor. By the proof of Lemma 1,
(2 - 2,)07(2? - 2,)' = 5,Q,(B) = O,(b,05")
and the result follows from assumption (i’). O

Lemmas 1 and 2 do not require continuity of f(z; B) and the only restriction
on the parameter space is the identification assumption (iii) of Lemma 1.

In deriving the limiting distribution of B, it is assumed that f(z; B) possesses
continuous first and second derivatives with respect to both arguments on
I’ X Q. Let £,(z; B) denote the 1 X p vector of partial derivatives of f(z; B) with
respect to the elements of z, let f4(z; ) denote the 1 X k vector of partial
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derivatives with respect to the elements of p and let f,,(z; B) denote the p X p
matrix of second partial derivatives with respect to the elements of z. We denote
the partial derivatives evaluated at (z?; B°) by a superscript 0 and a subscript ¢,
i €., fﬂt fﬁ(zh BO) f =1 (zt’ BO) and fzzt = fzz(zt’ BO)

The following theorem shows that n'/%(B — B°) has a limiting normal distri-
bution with zero mean, provided a, — oo faster than b,.

THEOREM 1. Let the model (1.2) and (1.3), assumptions (ii) and (iii) of
Lemma 1 and assumption (i') of Lemma 2 hold. Also, assume:

(iv) The parameter B° is an interior point of Q. There exists a compact
subset Iy of T and an v > 0 such that a netghborhood of z? with radius n is in
I, forallt—12 » b, and all n.

(v) The partial derwatwes through order 2 of f(z; B) exist and are continu-
ouson T X Q.

(vi) For all z in T, £,(z; B°) + 0.

(vii) lim,, , ., m = M, where

b
m = bn_l E ¢t lfﬂ ,fﬁt’
t=1

M is positive definite and ¢, = £5,012,.
(viil) The 2 + 8 moments of a'/%e,, are bounded for some & > 0.
(ix) b, ! = o(D).
Then, as n — oo,

n/*(B — B°) -, N(O,M™1).

PROOF. Because B° is an interior point of ©, there exists a compact ball Q,
about B° in the interior of @ such that on [, X @,, the partial derivatives
through order 2 of f(z; B) are uniformly continuous and bounded and

(2.2) £.(z; B)01.(z; B) > K, > 0.

Thus, by Lemmas 1 and 2, with probability approaching 1, all partial derivatives
through order 2 of f(z; B) evaluated at (Z,; B) or at any point on the line
segment joining (z%; B°) and (2,; B) are bounded and satisfy (2.2).

Consider the Lagrangian

br

(2-3) Z {%( nt t)q, 1(Znt - zt) + atf(zu B)}

t=1

where a, are Lagrange multipliers. Assuming that B and 2 %, are interior points of
Q and T, respectively, the partial derivative equations of (2 3) evaluated at B and
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Z, are

(2.4) -0 YZ,, —2,) +af(2,;B)=0, t=1,2,...,b,
b

(2.5) Y afy(2,;8) =0
t=1

(2.6) f(z,;8)=0, t=1,2,...,b,.

By assumption (iv) and the consistency of the estimators, the probability that p
and 2, satisfy (2.4)-(2.6) tends to 1 as n — oo.
If we expand f(Z,; B) around (z?; 9; B?), expression (2.6) becomes

(2.7) f,(zF;B*)(2,— 22) + f5(zF; B*)(B-B°) =0, t=1,2,...,b,

where (z*; B,*) is on the line segment joining (z?; B°) and (z,; B). Solving (2.4),
(2.5) and (2.7), we obtain

b’l
(B—B°%)m* = —b;1 Y £,(zF; B*)e,.0F £4(2,5B),

t=1

where ¢} = f,(z}; B,*)®£/(2,; B) and
b,
m* = b1 Y f4(z; B*)or £u(2,;B,).
t=1

It follows from the consistency of Z, and of ﬁ, the boundedness of the derivatives
and (2.2) that m* = m + O,(a,'/?). By assumption (ii), the boundedness of the
derivatives, (2.2) and the consistency of the estimators, we have

(2.8) B-B°=4,+0,(a;"),
where
b,
A =-b1 Z vt¢;lf1§)tm_l» fztent
t=1

Because E{AjA;} = O(n™'), A, = O(n~'/?). By assumption (i), a,'=

o(n~1/%). The result follows from assumptions (vii) and (viii) and the Liapounov
central limit theorem because, by assumption (ix), b, —» o0 as n = co. O

Assumption (viii) can be replaced by the assumption of identically distributed

+ Assumption (ix) guarantees that b, — oo so that a central limit theorem can

be applied. The limiting normal dlStl'lbuthIl of B in Theorem 1 is valid for
constant b, if the ¢,, are normally distributed.

In Theorem 1, the assumption that a,;! — 0 faster than n~'/2 permitted
terms of O, (a‘l) to be ignored. The terms of O,(a,') involve functions of
f..(z; B), the curvature of f(z; B). To study the effect of the curvature on the
estimators, we obtain higher order expansions of B and 2 Z,. Let assumptions (i),



ESTIMATION FOR THE NONLINEAR FUNCTIONAL RELATIONSHIP 153

(ii)—(@v), (vi) and (vii) hold. Also, assume:

(v') The partial derivatives through order 3 of f(z; B) exist and are continu-
ouson I' X Q.
(viii’) The fourth moments of al/2¢,, are bounded.

Then, it can be shown that

(2.9) é — BO =‘ Al + A2 + Op(n—1/2a;l/2)’
(2.10) 2,—z0=d,,+d, + Op(n—l/2a;1/2),
where

b,
(Av A2) = _bn_l Z (Ot’ ct)‘f’t_lfﬁ?tm_l,

t=1
dy, = e, [T - 159, '159],
d;, = — [c, + f/?z(Al + Az)'] b lfzotq) - anvtdu‘f’t_lfzoztvn
v = fzote;zt’ = %dltfzoztdit’
V, = E{d}d,} = a;'[® - 019, '1)0]

and ¢, and m are defined in assumption (vii). The leading terms in the
expansions, A, and d,,, are O,(n~'/?) and O,(a,,'/?), respectively, and both have
zero expectation. The second terms in the expansions are both functions of c,,
where c, is a quadratic form in the original errors ¢,, and depends on the matrix
of second derivatives. The expectations of the second terms are

b,
(2.11) E{d,} = —b;' ¥ B, 'fjm™" = 0(a;"),
t=1
(2.12) E{d,} = —[B, + 13,E(A,}] 6, 15® = O(a;?),

where B, = E{c,} = 3tr{f2,V,]. These results are derived in Amemiya and Fuller
(1985).

The expectation in (2.11) is a weighted average of B,, t = 1,2,..., b,, while
the expectation in (2.12) is a linear function of B, and E{A,}. Each B, can be
considered to be the contribution of the estimation variance of z? to the bias
approximations. The ¢th bias contribution is small when the elements of £2,, are
small or when the elements of the covariance matrix V, of the leading term in the
expansion of the error made in estimating z? are small. If the relationship f(z; B)
is linear in z, the expectations (2.11) and (2.12) are zero.

3. Bias-adjusted estimator. We use expansions (2.9) and (2.10) to develop
modifications of the maximum likelihood estimators. To motivate the modifica-
tion, recall that the estimators p and 2, were obtained by minimizing (2.1)
subject to

(3.1) f(z,;8) =0, t=1,2,...,b,.
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The terms in (2.11) and (2.12) with nonzero expectations are functions of ¢, and
¢, is a term in the expansion of f(Z,, B),

0= f(2,;B) = 15(2,— 20) + £5,(B — B°) + ¢, + Op(n""%a;'72).

Because E{c,} = B,, replacing the restriction (3.1) by a restriction adjusted with
an estimator of B, should produce estimators of B° and z? whose expansions
have smaller biases than those of the maximum likelihood estimators. Hence, we
suggest that estimators of B and z, be chosen to minimize (2.1) subject to

(3.2) f(z.; B) — tr[t,,(2,;B)V,] =0, ¢t=1,2,...,8,
where
V=2, - 2,8(2,; B)[£.(2,; B)=.82(8,; B)] '1.(2,; B)=...

To sunphfy our discussion, we consider one-step linearized improved estimators
of B° and z! usmg the maximum likelihood estimators B and 2, as preliminary

estimators. Let AP and Az, be the values of A and Az, that minimize
b,
E (Z2,,—2,— Az,)2,Y(Z,,— 2, — Az,)
=1

subject to the restrictions
ABf;(2,; B) + Azf/(2,; B) — str[t,.(2,; B)V,] =0,

for t =1,2,..., b,, where the restrictions are linear approxim"ations to restric-
tions (3.2). Then the one-step bias-adjusted estimators Z, and B are

(3.3) Z,=%,+A%2, and B=p+AB.

It is understood that %, and B are replaced by projections onto I' and £,
respectively, whenever Z, is outside T or B is outside Q. It can be shown that
(- Az,) and (—AB) are estimators of the expectations (2.11) and (2.12).

It is possible to use § and z Z, as new preliminary estimators and to iterate the
procedure The iterative procedure leads to estimators of B° and z? that
minimize (2.1) subject to (3. 2)

The second order expansions of the one-step estimators Z, and B are given in
Theorem 2. The theorem also holds for estimators constructed with a finite
number of steps of the iterative procedure. The proof of Theorem 2 contains
rather tedious Taylor expansions and is omitted. The proof is available in
Amemiya and Fuller (1985).

THEOREM 2. Let the model (1.2) and (1.3) with assumptions (i’), (ii)—(iv),
"), (i), (vii) and (viii") hold. Then

B-—p°=4A,+ Op(n‘1/2a;1/2),

2t - z(t) = dlt + d3t + Op(n_1/2a;1/2):
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where
d;, = - [ct - dltfzozte;zt + B, + f/?tA'll by lfzotq’ —a,0d;9; lfzozttvt’

A,, d,,, v, c, and B, are defined in (2.9)-(2.12) and E{d;,} = 0. If, in addition,
assumption (ix) of Theorem 1 holds, then

n'/*(B - B°) -, N(O,M™?).

Theorem 2 shows that the term A, in the expansion of B disappears in the
expansion of B. The expectations of the terms in the expansions of § — B° and
Z, — z} up to O,(n~"%a,'/?) are zero.

In our discussion, we have assumed 2, to be known. The results can be
extended to the case where =, = 02®, ® is a known positive definite matrix, o2
is unknown and o2 = a,'y for some ¢ > 0. For this model with the error
covariance matrix known up to a multiple, the maximum likelihood estimators of
B and z? are equal to f and 2, because replacing =, with ® in (2.1) leaves those
estimators unchanged. The results in Lemmas 1 and 2, Theorem 1 and the
expansions (2.9) and (2.10) remain valid for f and z, with an obvious modifica-
tion in assumption (ii). An estimator of o2 is

bn
6n2 = (bn - k)—l Z (znt - 2t)(Iy-l(Znt - 2l.‘),'
t=1

Under assumption (i’), the distribution of (b, — k)c, 262 can be approximated by
that of a chi-square random variable with b, — & degrees of freedom. Bias-
adjusted estimators of B° and z? of the form (3.3) can be obtained by replacing
3, in the definition of Vn in (3.2) with 62®. Rough calculations suggest that the
expansions of the bias-adjusted estimators with estimated o2 are those of
Theorem 2. Monte Carlo results support this conjecture but also show that the

estimation of 62 reduces the small sample effectiveness of the bias adjustment.

4. Monte Carlo studies. In this section, we present two Monte Carlo
studies of the modification of the maximum likelihood estimator suggested in
Section 3. For these examples, the bias-adjusted estimator has small sample
properties that are superior to those of maximum likelihood.

In the first study, the model is the quadratic

Ye— Bo— Bx; =0, Z,=(Y,X,)=(5x)+e,
where ¢, ~ NI(0, 2) and = = 0.06251. In this section, we omit the superscript 0
and the subscript n because no confusion will result.

We generated 200 samples of size 50. Each sample of size 50 was generated
by creating five Z, = (Y,, X,) vectors for each of the ten x-values
{—1.35, —1.05, —0.75,...,1.05,1.35}. The parameters (f,, B,) were set equal to
(0,1) in the data generation. For each sample of 50 observations, the maximum
likelihood estimate ( ,Ifo, ,I§1) and the bias-adjusted estimate (8, 8,) were com-
puted by minimizing (2.1) subject to (3.1) and (3.2), respectively. In constructing
the estimates, the covariance matrix 2 = 0.0625I was treated as known.
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TABLE 1
Empirical properties of alternative estimators for the quadratic model
Bo B,
Percentile ML Adj. ML Adj.
5 —-0.209 —-0.152 0.849 0.826
10 -0.165 -0.110 0.873 0.849
25 -0.121 —0.066 0.952 0.920
50 —0.069 -0.014 1.033 0.998
75 —-0.010 0.040 1.140 1.096
90 0.036 . 0.084 1.232 1.190
95 0.057 10.108 1.313 1.244
Mean —0.0685 —0.0152 1.055 1.019
Variance 0.0065 0.0060 0.022 0.019
MSE 0.0112 0.0062 0.025 0.020

By Theorem 1, (2.9) and (2.11), the theoretical asymptotic mean and covari-
ance matrix of the approximate dlstnbutlon of the maximum likelihood estima-

tor (ﬁo, ﬁl) are
E{(fy, B,)} = (0,1) + E{A,} = (—0.0500,1.0323),

@y VI(AB)) - nm = X (e )

_ ( 0.0046 —0.0045)
—0.0045 0.0127/°
Using the results for the one-step version of the bias-adjusted estimator given in
Theorem 2, the theoretical asymptotic mean and covariance matrix of (S,, 8;)
are (0,1) and the matrix in (4.1), respectively.

Characteristics of the empirical distribution of the estimators for 200 samples
are given in Table 1. The Monte Carlo variances are larger than the theoretical
approximations for both parameters. We have not shown that the estimators
have finite variances and there are theoretical arguments to the contrary.
However, there were no outlying estimates in our 200 samples and the ratios of
the empirical interquartile range to the standard error for the adjusted estima-
tors ,B0 and f; are 1.39 and 1.27. The observed ratios are close to the value of
1.35 that holds for the normal distribution.

For both estimators, the Monte Carlo biases are slightly larger in absolute
value than the approximate theoretical biases. The empirical bias reduction due
to the adjustment is (0.053,0.036) and is roughly equal to the theoretical bias
reduction (0.050,0.032). The bias of the adjusbed estimator ,30 is about three
times its standard error and the bias of f, is about twice its standard error.

By almost any criterion, the adjusted estimators display properties superior
to those of the maximum likelihood estimator. It is somewhat surprising that the
adjustment reduced both the variance and the absolute value of the bias relative
to maximum likelihood.
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For each sample, we computed Studentized statistics #; and ;, where #; and £,
are the differences /§ — B; and ,B B; divided by the square roots of the
corresponding estimated variances for i = 0, 1. By analogy to variance estimators
for the linear model [see, for example, Fuller (1980)] and based on arguments
presented in Wolter and Fuller (1982b), we estimated the covariance matrix of
the approximate distribution of the maximum likelihood estimator ( ﬁo, ﬁl) by
the formula

(4.2) V{(By, B,)} = 161,

where
bn
G =51 Y £5(2,; B) 9 1e(2,; B),
t=1 ’

A

b'l
m=G-b" Z fBz(it; B)théz(it; B)?t_l’

(zt,B)2 t/(2,; ),

\Af is defined in (3.2) and f,,(z; B) is the k& X p matrix of second partial
denvatlves of f(z; B) with respect to the elements of B and z. For the adjusted
estimator ( ,30, ,Bl), the covariance matrix of the approximate distribution was
estimated by the formula (4.2) with the adjusted estimators Z, and B replacing 2,
and B. The empirical percentiles of £, and Z; are given in rI‘able 2. Because the
maximum likelihood estimator is senously blased the use of #; to construct
confidence intervals would lead to seriously biased results. On the other hand,
the distributions of Z; for the adjusted estimators, while slightly skewed, are in
reasonable agreement with the percentiles of the standard normal distribution.
The second model for which the estimators were studied is that of a circle

(3- l"'y)2 + (x, - "’x)2 - p*=0,

Zt = (Yt’ Xt) = (yt» xt) + g,

where ¢, ~ NI(0,I). Samples of size 50 were created by generating 5 observations
for the 10 points on the circle associated with angles of 0, 25, 50, .. ., 175, 200, 250°.

TABLE 2
Empirical percentiles of Studentized statistics

ty t
Percentile ML Adj. ML Adj. Normal

5 —2.44 -1.76 —1.54 —1.83 —1.64
10 -2.07 -1.38 -1.21 —1.48 —-1.28
25 —-1.49 —0.84 —-0.41 —0.69 —-0.68
50 —-0.88 -0.19 0.26 —-0.01 0
75 -0.13 0.56 0.96 0.68 0.68
90 0.55 1.22 1.46 1.20 1.28

95 0.84 1.58 1.77 1.51 1.64
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TABLE 3
Empirical properties of alternative estimators for the circle model

2 e

Percentile ‘ML Adj. ML Adj.

5 —0.365 - —0.366 3.360 3.195

10 —0.318 -0.319 3.418 3.256

25 —0.149 —0.152 3.515 3.358

50 -0.015 -0.013 3.626 3.474

75 0.101 0.099 3.735 3.589

90 0.217 0.214 3.842 3.698

95 0.317 0.315 3.903 3.762

Mean —-0.0241 -0.0260 3.625 3.472
Variance 0.0421 0.0419 0.0274 ° 0.0297
MSE 0.0427 0.0426 0.0430 0.0305

The center of the circle is (p,, ) = (0,0) and the radius is p = 3.5. A total of
200 samples were generated and the maximum likelihood and the bias-adjusted
estimates of (1, u,, p) were constructed for each sample. The covariance matrix
of ¢, was treated as known in the estimation.

Empirical properties of the distributions of estimators of u, and p are given in
Table 3. The properties of the estimators of u, were very similar to those of the
estimators of u .. The approximate theoretical bias of the maximum likelihood
estimator of (p,, u,, p) is (0,0, 0.143). Thus, the bias adjustment does not alter
the theoretical properties of the maximum likelihood estimator of p, and this is
reflected in the similar empirical properties of fi, and i,. The absolute value of
the empirical bias is only slightly greater than its standard error for both /i, and
fize

The observed bias in the maximum likelihood estimator of p is about 1.5
standard errors smaller than the theoretical bias. The reduction in bias in the
estimator of p associated with the adjustment is about equal to the approximate

TABLE 4
Empirical percentiles of Studentized statistics

tip,=0 t:p=35
Percentile ML Adj. ML Adj. Normal

5 -1.74 -175 -0.89 —1.84 —1.656
10 —1.43 -1.44 —0.51 —1.42 —1.28
25 —-0.67 -0.69 0.09 -0.82 —0.68
50 —0.06 —0.06 0.73 -0.15 0
75 0.48 0.48 1.37 0.51 0.68
90 1.03 1.02 1.96 1.06 1.28

95 1.47 1.46 2.29 1.44 1.65
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theoretical bias of 5. The adjustment provides a definite improvement in the
mean square error properties of the estimator of p.

The use of the bias-adjusted estimator and the modified covariance matrix
estimator of the form (4.2) gives a Studentized statistic whose empirical distribu-
tion can be well approximated by the standard normal distribution. See
Table 4.
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