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ASYMPTOTIC DISTRIBUTION THEORY AND EFFICIENCY
RESULTS FOR CASE-COHORT STUDIES!

BY STEVEN G. SELF AND Ross L. PRENTICE

Fred Hutchinson Cancer Research Center and University of Washington

A case—cohort design was recently proposed [Prentice (1986)] as a means
of reducing cost in large epidemiologic cohort studies. A *pseudolikelihood”
procedure was described for relative risk regression parameter estimation.
This procedure involves covariate data only on subjects who develop disease
and on a random subset of the entire cohort. In contrast, the usual partial
likelihood estimation procedure requires covariate histories on the entire
cohort. Accordingly, a case-cohort design may affect cost saving, particularly
with large cohorts and infrequent disease occurrence. Asymptotic distribution
theory for such pseudolikelihood estimators, along with that for correspond-
ing cumulative failure rate estimators, are presented here. Certain asymptotic
efficiency expressions relative to full-cohort estimators are developed and
tabulated in situations of relevance to the design of large-scale disease
prevention trials. The theoretical developments make use of martingale
convergence results and finite population convergence results.

1. Introduction. Epidemiologic studies and disease prevention trials often
involve the follow-up of a large cohort of subjects, a small fraction of whom will
develop the disease endpoint, or endpoints, of interest during a prescribed
follow-up period. Study objectives typically involve estimation of the relation-
ship between disease rates and individual exposures, characteristics or random-
ization assignments. In fact, the assembly of the histories of such “covariates”
will often constitute a major study cost. Consequently, there has been recent
interest in designs that involve collection of the raw covariate data on all study
subjects, but the processing of such only on some sampling basis. For example, in
a study of nutrient intakes in relation to the incidence of selected chronic
diseases, one may obtain diet records and blood samples on all cohort members,
perhaps several times during cohort follow-up. The diet records may simply be
stored with detailed hand coding and nutrient intake analysis taking place on a
sample basis. Similarly, blood serum samples may be frozen at an appropriate
temperature with expensive biochemical analysis to determine nutrient levels to
take place on a sample basis.

The relative risk, or relative risk process, is defined as the ratio of the
(instantaneous) disease rate given a general covariate history to that given some
standard history. It provides a natural approach to the modeling and under-
standing of the dependence of disease rates on aspects of the preceding covariate
history. In the presence of a large cohort with infrequent disease events, the
efficiency with which relative risk parameters may be estimated depends strongly
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on the number of subjects experiencing failure, but the marginal contribution
from subjects not developing disease is small. In considering covariate sampling
procedures, it is then natural to consider designs on which covariate histories are
assembled for all subjects developing disease, the cases in epidemiologic terminol-
ogy, along with a subset of the subjects not developing disease. One approach to
doing so involves the selection of an independent random sample (with replace-
ment) of subjects at risk but without disease (i.e., control subjects) at each
distinct failure time [e.g., Liddell, McDonald and Thomas (1977) and Breslow,
Lubin, Marek and Langholtz (1983)], which gives rise to a partial likelihood
approach to relative risk regression parameter estimation [Oakes (1981)]. This
approach leads to poorer efficiency results [Whittemore and McMillan (1982)]
than does the odds ratio estimator in corresponding situations but under simple
case—control sampling with unmatched controls (and binary response rather
than time to response). Suboptimal efficiency may result from the rather artifi-
cial usage of a selected control subject only in relation to the subjects time-
matched case(s), even though the subject may quite suitably serve as a member
of the “control” group at other time points as well.

The case—cohort design, recently described by Prentice (1986), avoids this
problem by selecting a subcohort randomly from the entire cohort, which then
provides a comparison group at all disease occurrence times. This design also
allows the comparison group to be selected in advance of cohort follow-up, a
distinct advantage in the prevention trial context since the subcohort can be
used for monitoring the achievement of intervention goals and for other pur-
poses. Also, in contrast to the control sample in a time-matched case—control
design, the subcohort provides a natural comparison group for a range of disease
endpoints.

Prentice (1986) proposed a “ pseudolikelihood” procedure for the relative risk
parameter along with heuristic procedures for parameter estimation. A corre-
sponding estimator was also given for the cumulative baseline failure rate, for
which no estimation procedure currently exists under time-matched case—control
sampling. It was also noted that the martingale convergence results, which
proved so advantageous in developing the asymptotic properties of the maximum
partial likelihood estimator and related quantities under full-cohort sampling
[Andersen and Gill (1982) and Prentice and Self (1983)], were not sufficient here
since certain generating o-algebras were not nested.

This paper develops asymptotic distribution theory for the case—cohort maxi-
mum pseudolikelihood estimator and related quantities using a combination of
martingale and finite population convergence results. Corresponding asymptotic
efficiency expressions are developed for relative risk parameter estimation.
Efficiency calculations are provided for certain cohort configurations and sub-
cohort sampling fractions.

2. Case-cohort estimators. Let (2, #, 2) be a complete probability space,
and let {#,, t € [0,1]} be an increasing right-continuous family of sub o¢-algebras
of F defined so that %, consists of failure (disease) time and covariate histories
up to time ¢ and censoring histories to time ¢*, for all subjects in a cohort C of
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size n. All processes discussed in this work are adapted to (%, ¢ € [0,1]}. More
explicitly, let N = (N,,..., N,) be the multivariate counting process defined so
that N, counts failures on the ith subject at times ¢ € [0,1]. Assume each N, to
have totally inaccessible j Jump times and N,(1) to be almost surely finite. ’I‘he
censoring process Y = (Y,,..., Y,), with left-continuous sample paths, is defined
so that Y,(¢t) = 1 if the ith subject is “at risk” for observable failure at time ¢
and Y;(¢) = 0 otherwise.

Each counting process N; can be uniquely decomposed into the sum of its
cumulative intensity process A; and a local square integrable martingale M, so
that

N(t) = Ay(2) + M(2)
=fot>\,~(u)du+Mi(t), all ¢,

assuming A; to be absolutely continuous. Under the usual independent failure
time and independent censorship assumptions, the intensity process A, possesses
a standard hazard process interpretation [e.g., Self and Prentice (1982)]. A
relative risk model [Cox (1972), Andersen and Gill (1982) and Prentice and Self
(1983)] for the hazard process then yields
2.1) A(8) = Y(ON(Or(BZA2)), all (i ¢),
where A, and r are fixed functions, 8] = (/301, -5 Bo,) is a relative risk parame-
ter to be estimated and Z/(¢) = {Zu(t), ,q(t)}, with sample paths that are
left-continuous with right-hand limits, is a regressmn vector consisting of data-
analyst-deﬁned functions of %,

The maximum partial hkehhood estimator 8 of B is defined as a solution of
d log L(B,1)/3dB = 0, where :

log L(8,4) = ¥ [logr{BZ(u)} dN(u)
(2.2) ieC

- log[ECYz(u)r{ﬁ'Zz(u)}] dN(u),

. with N = N,+ -+ +N,.
Here we con31der the properties of an “estimator” 8, defined as a solution to
3 log L(B, 1)/8/3 0, where

log L(B,t)= ¥ ftlogr{,B’Z(u)}dN(u)
(23) ieC

- log[ >:~Y,<u)r{/s'z,<u)}] dN(u),

where C is a subset of size 4 < n that is randomly selected from the entire
cohort C. Note that the definition of § involves covariate data only on subjects
that fail (N;(1) > 0) and on members of the subcohort C. Note also that
calculation of £ requires a system for identifying the counting process jump
times in the entire cohort C, but it does not require a cohort roster or even an
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enumeration of C. As will be shown, 8 defined previously differs slightly from,
but is quite generally asymptotically equivalent to, the maximum pseudolikeli-
hood estimator defined in Prentice (1986).

Corresponding to the maximum partial likelihood estimator # is a natural
estimator

- 1 _
(2.4) ORY [ ) Y(u)r{,B’Z(u)}] dN(u)
ieC
of the cumulative baseline hazard function A (¢) = [\ () du. Here we consider
the asymptotic properties instead of

(2.5) A(e) = [ [ T Y(w)r{F2u) }]—l‘dﬁ(u),

which aga:in involves covariate data only on subcohort members and cases. Note,
however, that calculation of A does require the cohort size n.

3. Asymptotic distribution theory for § and A. The estimators defined
previously can be shown to have asymptotic normal distributions under quite
unrestrictive conditions. Naturally, the necessary conditions for the desired
asymptotic convergence of (8, A) are also necessary for (8, A). Some additional
conditions are also required to ensure a sufficiently rapid convergence of certain
subcohort averages to their full-cohort counterparts. In order to display these
conditions, the notation of Prentice and Self (1983), hereafter referred to as PS,
will be extended as follows: Denote

SI(B,t) =n~' ¥ Y(t)xf(B,t), SU(B,t) =7t X Y()x{(B, 1),

leC ie€
j=0,...,86,
where
x(2(B,t) = r{B'Z(t)},
xD(B, t) = Z()rO(B'Z(t)},
xP(B, t) = Z,(t)**u®{(BZ,(2)) r{B'Z(2)},
(B, t) = Z,(t)**r®{BZ(¢)},
2B, t) = [u{B'Z(2)} — u{BsZ,(t)}| r{BsZ,()},
xP(B,t) = Z(t)u{B'Z(t)}r{BsZ,(t)},
and
xP(B, t) = Z,(2)**u®(B'Z,(2)}r{BsZ,(2)}-
Also define

E(B,t) = SV(B,t)/SO(B,t),  E(B,t)=S"(B,t)/S(B,1)
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and
V(B,t) = SP(B,t)/SO(B,t) — E(B, t)°?,
V(B,t) = S®(B, t)/SO(B, t) — E(B, t)°%

In these expressions a®? denotes the g X ¢ matrix with (i, j) element a;a; ; for
any a’ = (ay,...,a,), rx)=dr(x)/dx, r®(x)=dr®(x)/dx, w(x)=
log r(x), uM(x) = du(x)/dx and u?(x) = du®(x)/dx.

Conditions A-F that follow were shown in Prentice and Self (1983) to ensure
the asymptotic convergence of f and A:

A (Finite interval). [\ ,(¢) dt < co.
B (Asymptotlc stability). There exists a nelghborhood % of B, and functions
5O, ..., s©® defined on # X [0,1] such that
sup ||SV(B,¢) —sV(B,t)| »p0, j=0,...,6.

te(0,1]
BEZ

C (Alternate Lindeberg condition). n~?sup; ,||Z,()u™{B;Z()}|| = p

D (Asymptotic regularity conditions). sV/)(-, ) are continuous functlons of
B € %, uniformly in ¢ € [0,1] and s are bounded on % X [0,1], for j =0,...,6.
Also s(o) is bounded away from zero and the matrix

3= jo o(Bo, £)sO(By, t)Ao(t) dt

is positive definite, where v = s@ /5@ — ¢®2 and e = s /5O, Finally, sO(B, t)
and s“(B,¢t) are assumed to be twice differentiable with respect to 8 on
% X [0,1].

E (Asymptotic stability of observed information matrix).

sup ['n* T 12,(0)1*u(B2(2)) YA 0)r{BZ(£)}Aof£) dt = 0.
Be#*0 leC
F (Regression function positivity). r{8’Z;} is locally bounded away from zero
on Zforalli=1,...,n

Additional conditions are also required to ensure the desired asymptotic
behavior of certain subcohort averages:

G (Stability of subcohort averages).
(i) (Nontrivial subcohort). in~! -, a for some « € (0,1).
(ii) (Asymptotic normality of subcohort averages at B,). For ¢ > 0

supn -t Z Y,(t)r{BOZ,(t)} I{n_l/zlf}(t)r{ﬁ()zl(t)}>e) -p0,
leC

supn -t Z Y,()IZ,()I ’"{Bézz(t)} I{n—‘/2Y,(t)||z,(t)ur<‘>{B(,Z,(t)}>e} —-p0,
leC
and the sequence of distributions of n** E(B,, t) — E(B,, t)} is tight on the
product space of left-continuous functions with right-hand limits equipped with
the product Skorohod topology.
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(iii) (Asymptotic stability and regularity of covariance function). There exists
a neighborhood # of B, and functions qV)(B,t,w), j=0,1,2, defined on
% X [0,1]2 such that q)(-, ¢, w) are continuous functions of 8 € # uniformly
in (¢, w) € [0,1]%, the ¢ are bounded on Z X [0,1]? and

(t, w)e([0,1]?
BB

where
QO(B, t,w) =n7' ¥ Y ()Y, (w)x{2(B, t)x{(B,w),
leC
QV(B, t,w) =nt ¥ V()Y (w)x(B, £)x(B, w)"
leC
and

Q?(B, t,w) =n" lZCY}(t)Y}(W)x?’)(B, t)xP(B, w).

Moreover, sup, ., E[QY)(B, t,w)], j = 0,1,2, are bounded sequences.
(iv) (Asymptotic stability of subcohort averages).
sup [[SV(B,¢) — s(B,t)l »p0, j=0,...,3,

te[0,1]
BeZ

and

sup  |QVX(B, t,w) — gV(B, t,w)l >0,  j=0,1,2.
(¢, w)elo,1]?
BeZ
Note that # appearing in conditions B, F and G should be regarded as the
intersection of B,-neighborhoods for which these three conditions are individu-
ally satisfied. In these conditions || - || refers to the Euclidean norm and conver-
gence properties involve n — oco.

Conditions G(i)—G(iii) are required for the application of a central limit
theorem for random sampling without replacement from a finite population to
the processes S© and S®. In particular, G(iii) ensures the convergence of the
finite sample covariance functions to that of the limiting distribution. Condition
G(iv) is required for the consistency of § and the consistency of estimators of the
variance of 8.

Now let us prove

LEMMA 3.1 (Consistency of §). B — p Bo-

PROOF. As in PS set
X(B,t) =n""log L(B,t) —log L(B,, 1)},
A(B,t) = fo 1898, w) — 10g{SO(B, w)/SO(By, w) }SO( By, w)] Ao(w) duw.
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Also define
X(B,t) =n"Ylog L(B,t) — log L(B,, ¢)}.
Then
X(B,t) — A(B,t) = {X(B,t) — A(B, 1)}
-n7?! fot{log SO(B, w) — log SO(B, w)

—log SO(By, w) + log SO(By, w)} dN(w).

As shown in PS, X(B,t) — A(B,t) converges in probability to zero under
conditions A-F. The integral in the preceding expression can be written as

w1 [/ {log SO8, ) ~ log SO, ) ~ Tog SOy, )
+log SOy, w)) dH(w)
+ fot{logg(o)(,B, w) — log SO(B, w)

~log SO(By, w) + log SO(By, w) }SO(By, w)Ao(w) duw.

The second of these two integrals converges in probability to zero in view of
conditions A and B, regularity conditions D and G(iv). By virtue of the
continuity of r(-) and the left continuity of Z(-), the integrand of the first
integral is predictable and locally bounded for each B8 € %, so that this integral
is itself a locally square integrable martingale with variance process

B(B,t) = n~! [{log SO(B, w) — log SO(B, w) — log SO( By, w)
0

+1og SO( By, w) ) *SO(B, w)Ao(w) duw,

which again converges in probability to zero on the basis of conditions A, B, D
and G(iv). It follows that X(B, t) converges in probability to the same limit as
does A(B, t) for each B € #. A(B, t) was shown by PS to converge in probabil-
ity to a concave function with unique maximum at B = B, hence the argument
of Andersen and Gill (1982), Appendix 2, shows § —p 8,. O

The “score” process corresponding to (2.3) can be written as
n_1/2lj(ﬁo, t) =n"'23log I:(.Bo: t)/3B,
= [n7* E [2(w)uf(w) - Ew)] dNi(w)
3.1) = [ T [Z(w)uf () = B(w)] dMy(w)

_j(‘)tn_l/z{E"(w) - E(w)} dX(W)

- [ T [B(w) - E(w)] dM(w),

where A = A, + --- +A, and the notation u®(w) = uV(BiZ(w)}, E(w) =
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E(B,, w) along with other similar notation, is used here and subsequently. The
third term on the right-hand side of (3.1) is a local square integrable martingale
with respect to the filtration {£(¢), ¢ € [0, 1]}, where F(t)=F() V o(0),
with o(C) denoting the o-algebra of possible subcohort selections. This martingale
has covariation process

[[(E(w) - Ew)}**SO(w)r(w) du,

which converges to zero by the convergence properties implied by conditions B
and G(iv). Hence the third term in (3.1) converges in probability to zero. The
first term is the score process for the full-cohort analysis and is a local square
integrable martingale with respect to the filtration {#(¢), ¢ € [0,1]}. As shown
in PS, this term converges in distribution to a Gaussian process. The second term
involves the difference between subcohort and full-cohort means. When viewed
conditionally on % (1), the randomness in this term arises solely from the choice
of the subcohort €. The following simple proposition will be used to show that
the first and second terms of (3.1) converge jointly to independent Gaussian
random variables. The proof of this proposition is given in the Appendix.

ProposiTION 1. Let X, = (X,,,..., X,,) and 8, = (8,,,...,0,,) be inde-
pendent random variables such that:

(1) 8, is a vector of 7i ones and n — #i zeros, each possible configuration of zeros
and ones is equally likely and fin™! — a € (0,1).
(2) For some scalar functions of X, f,(X,), and for any ¢ > 0,

n~t g:l [ £in(X,) = f'n(xn)]2I{|f¢,,(X,,)—f."(X,,)|>nl/ze) -p0
and SE, - p of > 0, where f.,(X,) = n7'TL, [;(X,) and
St =17t X [fa(X%,) = £
4 i=
(3) The scalar functions of X,, g,.X,), converge in distribution to a Gaussian
random variable with mean zero and variance o;.

Then for h,(X,,8,) = n'?[A7 L%, 8;, ;X)) = F.iX)), {8(Xn)s Bu( X5 8,)}
converge in distribution to a bivariate Gaussian random variable with mean zero
and covariance matrix given by

o} 0
0 (1-a)a’lf ’

We are now in a position to prove

THEOREM 3.1 (Asymptotic normality of the score statistic).
n=20(By,1) —»p N(0, % + A)
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with
A /lfl (BO’ % )S(O)(x)S(O)(u‘)}‘O(x)xo(u) dxdw,
()

G(By, x,w) =(1 - a)a‘l[{s(")(x)s(o)(w)} _lh(l)(,BO, x,w)
+{sO(x)sO(w)} _2s(1)(x)s(1)(w)Th(°)(,80, x,w)
—50(x) "'sO(w) ZsD(w)R®( By, w, x)
~50(w) 150(x) s O(x)RD(By, x, )],
where hV)(B,, x, w) are given by
RO(B, x,w) = (B, x,w) — sO(B, x)s (B, w),
rO(B, x,w) = ¢V(B, x,w) — sO(B, x)s(B,w)”,

and
h®(B, x,w) = ¢®(B, x,w) — sO(B, x)s (B, w).

Proor. Straightforward algebra and conditions B and G(iv) give
n{E(t) - E(t)} = —nV}SO(¢) - SO(¢)}E(t)
+n12(SO(¢) — S(l)(t)}S"(")(t)_1
= —nSO(¢) - SO(¢)} e(t)
+n2(SO(¢) - S(l)(t)}s(")(t)_l + 0,(1).

Now consider application of Proposition 1, where X;, represents {Y(u),
Ni(u), Z(u);0 < u <1}, f;(X,) represents a linear combination of elements of
Y,()r{BZ(t)} and Y (£)Z(t)rV(BsZ(¢)} and g,(X,,) represents linear combina-
tions of elements of the full-cohort score process all evaluated at a finite number
of fixed time points in [0, 1]. Condition (1) of Proposition 1 follows from G(i) and
the fact that the subcohort is selected using simple random sampling without
replacement. Condition (2) is easily shown to follow from G(ii) by repeated
application of the inequality used by Andersen and Gill

la — b|2I{la—bl>e) =< 4|a|2I(|a|>e/2} + 4|b|2I(|b|>e/2)

and the convergence properties implied by G(iii) and G(iv). Condition (3) follows
from the convergence of the full-cohort score process to a continuous Gaussian
process with limiting covariance process given by

[{s®(0)/5O(w) = e(10)**}sO(w)Ao(w) duw,

which equals ¥ at ¢ = 1. Now using G(iv) and the Cramér-Wold device as in
Aalen (1977), we have convergence of the finite-dimensional distributions of the
full score process and n'/*(E(¢) — E(t)} to independent Gaussian distributions.
The tightness condition G(ii) implies weak convergence of these processes. The
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covariance function of the limiting process for n'/%(E(¢) — E(t)} is shown to be
G(B,, x,w) by a straightforward but tedious calculation of the covariance
process conditional on %#(1), the use of the convergence properties G(iii) and
G(iv) and the equivalence of the covariance of the limiting process and the
limiting finite sample covariance implied by G(iii). The fact that A is absolutely
continuous with respect to Lebesgue measure and that linear functionals of
the Gaussian processes are Gaussian implies that the first two terms in expres-
;?on (3.1) converge to a mean zero Gaussian random variable with covariance
+A. O

The asymptotic normality of § now follows from Theorem 3.1 and the usual
Taylor series expansions.

THEOREM 3.2 (Asymptotic normality of B).
n'?(f - By) »p N0, £7" + E71AE).

ProoF. A Taylor expansion of d log I:( B,1)/3dB about B,, evaluated at B,
gives 4
n=/? 3 log L(By,1)/3B, = {—n"" 8°log L(B.) /83 }n'/*(B ~ Bo),
where 8, is between 8 and B,, whence it is sufficient to show that

n~'8%log L(B4)/9B% ~» =,

for any random B, such that 8, —p B,.
As in PS define, for any 8 € 4,

K(8,0) = [ X [X(8,0) - 2,0) "u?(p2 ()] aNw),

where

X(B,w) = 89(B,w)/SO(B,w) - SV(B,w)**/SO(B, w)’.
Also let X(B, w) be similarly defined in terms of replacing each S’ by S, One
can then write

—n~'d%log L(B,t)/3B> — K(B, t)
= {n"'9%og L(B, t)/IB% - K(B, )}
+n—1f0‘{X(p,w) — X(8,w)) dN(w).

The expression on the left-hand side was shown to converge in probability to
zero under conditions A-F in PS, whereas that on the right-hand side can be
shown to converge to zero by G(iv) and the fact that' n !N(1) is bounded in
probability. It follows that —n~' d2log L(B,1)/B% and K(B,1) converge in
probability to the same matrix for any 8 € %, and hence, since 8 — p B,, that

—n"'9%log L(B4,1)/3B% —»p %,
for any random B, between 8 and 8,. O
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Application of Theorem 3.2 requires consistent estimators of ¥ and A. The
preceding shows —n~! d%log L(8,1)/3B? to be a consistent estimator of ¥.
Alternatively, and presumably preferably, one may consider the positive semide-
finite matrix 3(f) as estimator of ¥, where

2(B)=n"? 0117(/3, t) dN(t).

A simple argument of the type just given for —n~!3d2log L(8,1)/dB% in ‘
conjunction with G(iv) shows 2( B) to be consistent for =.
As estimator of A consider A(f§), where

A(B) = n“2f01f01(5(,8,x,w) dN(x) dN(w),

where~(5 is defined as G in Theorem 3.1 with each s’ and A replaced by S
and HY and & = 7in~". To show that A(f) is consistent for A, it is sufficient to
show G(B, x, w) — p G(By, x, w), uniformly in (x, w). The uniform convergence
of G(B, x, w) follows from the convergence of S, S® and @V, j = 0,1,2, as
described in G(iv) the convergence of H® to A, i=0,1,2, uniformly on
% x [0,1]2. This result plus the congisgeﬁcy of B gives the required convergence
of G(B,t,w). The consistency of A(S) then follows by noting that n~'N(¢)
converges uniformly to [{s@(x)A(x) dx, that n~'N(1) is bounded in probability
and that G resides in the product space of left-continuous functions.

THEOREM 3.3 [Weak convergence of n%(A — A,)]. nY%(B - B,) and
n* (A — A,) converge weakly and jointly to Gaussian random variables with
mean zero. The limiting covariance matrix of n*(f — B,) is ™'+ £"1AZL7Y,
where ¥ and A are given in Theorem 3.2. The limiting covariance between
nV%(A(u) — Ay(u)) and nV/%(A(t) — Ay(t)) is given by

[{80w)) " ho(w) dw

+ [ er(who(w) (27 + 7427 [Cew)Ao(w) dw

and the limiting covariance between n“*(f — B,) and n*/*(A(t) — A((t)) is
given by

(37 + 27027 [(e(w)ho(w) du.
ProOF. From Theorems 3.1 and 3.2, n'/%(f — B,) may be written as
£ VAU(By, 1) - £ [ B(2) - E(8))Ao(2) dt + 0,(1).
0

Following Andersen and Gill (1982) and using the convergence properties of the
S and S processes described previously, it is straightforward to show that
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n'/2(A(t) — Ay(t)) equals
ft{S(O)(w)}_lnl/2 dM(w) + nV%(f8 - BO)T
0

x jo ‘e(w)Ao(w) dw + 0,(1)

= /:{S(o)(w)} Ttz dM(w)

(3.2) . ,
+172U(Bo, 1) 2 [ e(w)ho(w) duo

_/(;lnl/2{E~(t) - E(t)}T}\o(w) dw¥!

X fo “e(w)Ao(w) dw + o,(1).

PS have shown the weak convergence of [{SO(w)} 'n~'/2dM(w) and
n~Y2U(B,, t) to independent continuous Gaussian martingales with limiting
covariance functions

L (82(w)/89(w) = e(w) **}SO(w)Ao(w) duw

and
A (8O(w)} " Ao(w) dw,

respectively. Now, using the same arguments as in Theorem 3.1, it can be shown
that the first three terms on the right-hand side of (3.2) converge weakly to
mutually independent continuous Gaussian processes. Using the orthogonality
relationships and the covariance calculations given above and in Theorem 3.1,
the stated limiting covariance structure for n*/%(§ — B,) and n'%(A — A,) is
easily calculated. By virtue of G(iii) and G(iv), these covariances are readily
estimated by replacing population quantities by their natural sample estimators.

O

4. Relationship of B to previous work. Prentice (1986) proposed a pseu-
dolikelihood estimator of B for the case-cohort setting that is slightly different
than S. He proposes estimating 8 by the solution to the equation

0= [' T |Z(w)r®(pz,(w))
0 jec
(41)
_ SO(B,w) + ﬁ_lzieD(w)Zi(w)r(l)(B’Zi(w))
SO, w) + AL e pany?(B'Zy(w))

where D(w) = {i: i ¢ C, N(w) # N(w —)}. Thus the only difference between
Prentice’s estimator and B is that the “comparison risk set” at time w includes
all subcohort members at risk at w plus any individuals who are not in the

dN(w),
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subcohort but who are observed to fail at time w. Absolutely continuous failure
rates imply that at most one individual will be in D(w) at any time. It is
straightforward to show that Prentice’s estimator and 8 are asymptotically
equivalent provided an individual’s contributions to S® and S© are asymptoti-
cally negligible in the sense of G(ii).

Prentice also proposed an estimator of the variance that is somewhat different
than the estimator proposed here. He decomposes the variance of the “score”
statistic n~/2U(B,,1) into two terms: The first term is n~! times the sum of
variances of each risk set’s contribution to the score statistic; and the second
term is n~! times the sum of covariances between score contributions from pairs
of different risk sets. Prentice suggests estimating the first term in his variance
expression by 3(f) with the minor (and asymptotically negligible) difference
that the sums he uses in computing the $§)’s are over subcohort members plus
members of D(w). Thus, to demonstrate consistency of Prentice’s variance
estimator, it must be shown that his second term converges to A(S8,).

Prentice writes n~! times the second term in his variance estimator as

(42) onl ¥ N T oy
jec\C ’ {k: <t}

where C\ C denotes the set of individuals who are not in the subcohort, v, j
denotes the covariance between score contributions of the £th and jth risk set
and the ¢,’s represent the failure times. Using Prentice’s notation, the v, ;’s are
given by the expression

(4.3) — (B + b — bik),(cij —- B;R; ) rjty; PRy + 1y — rik)_l’

where ry; = Y)(¢,)r(B3Z,(t,)), by = Yi(2)Z,(¢;)r (1)(.36Z1(ti))a ¢ =r~(BsZ(t)), B
and R; denote sums of b,; and r;;, where all sums are taken over subcohort
members plus D(¢;). Expression (4.3) may be decomposed into five terms:

RI:IRJTI th,k ; BkB Rk Z‘R Z l_] Tik
-B/R;'R;* Zbikrz’j - B;,R}*R;! Zbijrik
+R;'R;! Z[(bik - bij)’cij + (bjk - bik)’BjRJTI]

-1
X1 (1 — ’}‘k)(Rk + 1 — Tik)

Again noting the asymptotic negligibility of including D(¢;) in the summations,
n — 7i times the first four terms in (4.4) converges to the four terms comprising
G(By, t;, t;,) in Theorem 3.1, whereas n — 7 times the fifth term in (4.4) con-
verges to zero. Replacing v,; by (n — ) "'G(B,, t;, t;) in expression (4.2) and
rewriting (4.2) as a double integral with respect to counting process gives

(4.5) 2/0‘/0"G(ﬁo,x,w)n—1d17(x)(n—ﬁ)“ Y dN(w).

iec\C

(4.4)

Since n~N(t) and (n - A)~ IZ,EC &N;(t) converge umformly to the same
monotone, continuous limiting functlon Jis©@(x)A(x) dx and since G can be
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proximated uniformly by a step function on a subset of [0,1]2, which has
Lebesgue measure arbitrarily close to 1, it follows that expression (4.5) converges
in probability to A(B,).

5. Asymptotic relative efficiency. In making the decision to use a
case—cohort instead of a full-cohort design, the cost savings must be balanced
against a loss in statistical efficiency. In this section we compute asymptotic
efficiencies of the case—cohort pseudolikelihood estimator 8 relative to the
partial likelihood estimator £ in the special case of a single binary covariate and
exponential relative risk function. We assume that the covariate takes value one
in a fraction II of the entire cohort and takes value zero in fraction 1 — II. We
also assume that all subjects in the cohort are followed from time zero to either
failure or to the end of the study at ¢ = 1.

For fixed scalar covariates, the asymptotic relative efficiency is given by the
expression

(5.1) (1+A="H)7},

where
1

A=21- a)a—lfo /O‘E[Y(u)y(t){z — e(u))

(5.2)

X {Z — e(t)}exp(2BZ)] dAo(u) dA(2)
and
(5.3) 3= fo 'E[Y(£){Z - e(¢))%exp(BZ)] dA(2).

Under the above assumptions, the integrand in (5.2) may be written as
Mexp{2B — Ao(2)eP} {1 — e(u)}{1 - e(t))
+(1 = Iexp{ —Ay(¢) }e(u)e(t)
and the integrand in (5.3) may be written as
(6.5) Iexp{B — Ay (t)ef}{1 - e(2)}? + (1 — M)exp{ —A(t)}e?(2),

where

(5.4)

Mexp{B — A(t)e?}
(5.6) e(t) = Mexp{B — Ag(t)e?} + (1 — Mexp{—Ao(2)}

Substituting (5.4), (5.5) and (5.6) into (5.2) and (5.3), performing the inner
integration in (5.2) explicitly and making a change in variables gives

A=201- a)a"l{l'[ezﬁf[w - G(w)][1 - p(w)] e * dw

(5.7)
+(1 - H)fG(w)p(w)e"”dw}
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and
(5.8) s = Heﬁf[l —p(w)Pe " dw + (1 - H)fpz(w)e‘“’dw,
where the limits of integration are from 0 to A (1) and

w— log[HeB +01 - H)ew(eﬂ—n]

(5.9) G(w) = +log[1 + II(e? - 1)], for 8 # 0,
w, for 8 =0,

and

(5.10) p(w) = Heﬁ[l'leﬁ +(1- H)e“’(ep‘l)] o

When B = 0, the expressions for A and 2 simplify considerably. In this case,
the ARE may be written

(5.11) {1+20-a)a 1+ (1 -d)d g1 -d)]} ',

where d denotes the probability of failure prior to the end of the study in the
group with Z = 0 [i.e., d = 1 — exp{ —A(1)}]. A Taylor expansion of log(1 — d)
shows that (5.11) is approximately {1+ (1 — a)a"'d}~! if d is small. It is
interesting to note that this is precisely the ARE of the case—cohort estimator of
the log—odds ratio y at y = 0 (8 = 0), where

, {1-a-df)a-a)
. d/(1-d) !
based only on a binary response that indicates for each subject whether or not
the failure time exceeds unity. When B8 # 0, the integration in (5.7) and (5.8) may
be easily done numerically. Table 1 gives values for the ARE when II = 0.5 for
two values of B and two failure probabilities d. The values are tabulated as a
function of the relative numbers of cases and noncases (controls) that are

TABLE 1
Asymptotic relative efficiency® (% increase in standard error)
g‘;ﬂ Subcohort Relative risk
Case-control probability fraction 1(B=0) 2 (B = 0.693)
1:1 0.05 0.053 0.52 (0.39) 0.55 (0.35)
0.10 0.111 0.55 (0.35) 0.57 (0.32)
1:3 0.05 0.158 0.79 (0.13) 0.80 (0.12)
0.10 0.333 0.83 (0.10) 0.84 (0.09)
1:5 0.05 0.263 0.88 (0.07) 0.89 (0.06)
0.10 0.555 0.92 (0.04) 0.93 (0.04)

“Two-sample problem with equal group sizes, ¢ = time on trial, no loss to follow-up, no staggered
entry.
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expected by the end of the study. These “case—control” ratios are translated into
subcohort fractions «, as a function of failure probability in Table 1.

As seen in Table 1, the ARE increases slightly as B increases. As expected, the
ARE decreases as the number of “controls” per case decreases.

The theoretical values in Table 1 may be compared to the results of Prentice’s
simulation study. In that work, a full-cohort size of 500 was used, with
“case—control” ratios of 1:1 (subcohort to 55) and 1:5 (subcohort of 275) and
overall disease probability of 0.10.

For a relative risk of 1, Prentice observed sample relative efficiencies of 0.66
and 093 at 1:1 and 1:5 case-to-control ratios, respectively. This can be
compared to AREs of 0.55 and 0.92 from the first column of Table 1. It is
interesting to note that the ratios of the average of the variance estimator in the
simulation study were 0.54 and 0.93, respectively, virtually identical to the
corresponding AREs.

At a relative risk of 2, Prentice observed sample relative efficiencies of 0.59
and 092 at 1:1 and 1:5 case-to-control ratios, respectively. These can be
compared to AREs of 0.57 and 0.93 from the second column of Table 1. The
ratios of the corresponding variance estimator averages from the simulation
study are 0.58 and 0.91, respectively. It seems reasonable to conclude that there
is little evidence for any important difference between asymptotic relative
efficiencies and the corresponding actual relative efficiencies under the simulation
conditions, particularly since the sample relative efficiencies were based on a
rather small simulation study.

6. Discussion. The conditions for asymptotic normality of the case—control
estimators that are described above are fairly complicated and do not easily lend
themselves to simple interpretations. It would be useful to describe a few, more
restrictive but more easily understood conditions under which the desired results
obtain. The following five conditions are sufficient for the asymptotic properties
of the full-cohort estimator to obtain (conditions A-F): (1) the relative risk
function r(-) is twice continuously differentiable and in a neighborhood of S,,
r{B’'Z(t)} is locally bounded away from zero for all i = 1,..., n; (2) {(N,, Y}, Z;);
1 < i < n} are independent, identically distributed processes with the Z; left-
continuous with right limits and bounded almost surely; (3) random, noninfor-
mative right censoring with a positive probability of not being censored prior to
time 1; (4) finite interval (condition A); and (5) ¥ is positive definite. Condition
B follows from (2) by Andersen and Gill’s Theorem III.1 about the strong law of
large numbers in Banach space. Conditions C and E follow from the boundedness
of the Z, Condition D follows from (1) and (3) by arguments that parallel
Andersen and Gill’s Theorem 4.1. Note, however, that noninformative censoring
is an additional assumption here that is required to assure regularity of the
limiting functions s in B. Conditions A and F correspond to (4) and (1),
respectively. Two additional conditions may be added to these five to obtain the
asymptotic results for the case—cohort estimator: (6) nontrivial subcohort [condi-
tion G(i)] and (7) tightness of the sequence of distributions on n'/2[ E(¢) — E(¢)],
J = 0,1. Conditions Gf(iii), G(iv) and the Lindeberg conditions in G(ii) follow
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from (2)—(4), using similar arguments as before. The tightness condition is the
least intuitive and most difficult to verify. In general, the tightness condition
would be expected to fail if the Z,(¢)’s were fluctuating wildly in ¢.

A useful generalization of the previous theory would be to allow for stratifica-
tion. Suppose K strata are defined in the cohort. From the kth stratum of size
n;, a subcohort of size 7i,, is sampled, where the subcohort fraction 7i,/n, may
vary among strata. The stratified analysis would proceed by forming stratum
specific functions log L,(B, t) as given by (2.3) except where the summations are
restricted to be over individuals in the kth stratum. The “estimator” B is then
defined as the solution to the equation 93 log L,(B,1)/d8 = 0. Provided that
the regularity conditions given previously hold for each stratum, the limiting
distribution of n'/2 33 log L,(B,,1)/3B is Gaussian with mean zero and vari-
ance ¥ + Awhere ¥ = £¥, and A = 3 A, with ¥, and A, being stratum-specific
versions of ¥, A given in Theorem 3.1. Thus the results of Theorem 3.2 are
obtained with the limiting variance given by $-' + ¥ 1AL,

It is interesting to compare the AREs in Table 1 to AREs of a synthetic
case—control design. In this design, K time-matched controls are randomly
selected for comparison with each case. The ARE at B8 = 0 for this design is
given by K/K + 1. Thus for K equal to 1, 3 and 5, the AREs are 0.50, 0.75 and
0.83, respectively. As seen from Table 1, these AREs are dominated by the
case—cohort design with the greatest improvement in efficiency coming at the
larger disease probabilities. As speculated by Prentice, this is due to the fact that
with increasing disease probability, the size of the comparison set for each case
increases with the case—cohort design but is constant (= K) for the synthetic
case—control design even though the total number of cases and controls used in
the two analyses are equal.

APPENDIX

ProoOF oF PROPOSITION 1. Pick ¢ > 0. For 7,8 > 0, let %, ;, denote the set
on which

. .
nt Y [ fiaX,) - f~n(xn)]2I{|f,~,,(X,,)—f.,,(Xn)|>nl/z-r} <38
i=1 .
and
IS?, — of| < 8.
Let (g,, h,) denote (g,X,), 2,(X,,8,)) and write their joint distribution func-
tion as

P{g,<w, h,<v} = P{g, <w, h* < v}
(A1.1) = EX,.{I{e..sw,X,.ey’,,s,)P[h: =< v:lxn]}
+EX,.{I{gnsw,X,.ey,.a,)P[h: < U;i"lxn]},

where A} = h,7i'*(n — fi)~'/38;,! and v} = ofi"*(n — f)~'/?S;;!. By Hajek’s
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theorem on sampling without replacement from a finite population as stated in
Cochran (1977), pages 39-40, for any € > 0, a 7> 0 and § > 0 may be chosen
such that for large enough n and for X, € %, ;,, P{h} < v} X,} is within & of
®(v}) where ®(-) denotes the standard unit Gaussian cumulative distribution
function. By continuity of ®(-) and the convergence properties implied by
conditions (1) and (2), v} may be replaced by v* = va'/?(1 — a)"'/%s;"! in this
approximation. By the convergence properties implied by condition (2), the
probability of the set %, ;, may be bounded below by 1 — ¢ for large enough n.
Thus the second term on the right-hand side of (Al.1) is bounded by &. In
addition, this implies that Ex {I;, ., x,es,,)} is within ¢ of P{g, < w},
which, in turn, is within ¢ of ®(w/0,) for large enough n. Thus, by taking n
large enough, P{g, < w, h, < v} can be made arbitrarily close to ®(w/o,)®(v*).
a .
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