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ON A PARTIAL CORRECTION BY THE BOOTSTRAP!

BY REGINA Y. L1u AND KESAR SINGH
Rutgers University

The phenomenon of partial 7~ '/%-term correction by the bootstrap in
the estimation of sampling distributions of nonstandardized statistics is
explained and studied in this note.

1. Partial and total correction of n~'/2 terms. Let X,,..., X, be inde-
pendent and identically distributed (i.i.d.) random variables with a common
distribution F. Let T, = T(X,,..., X,,) be an estimator of T, a parameter of
interest which depends on F. The sampling distribution of 7,, is needed in order
to make inferences about Ty. In this paper, some aspects of the bootstrap
approximation of the sampling distribution of T,, are studied.

When the one-term Edgeworth expansion of a sampling distribution has the
form ®(x) + n”%p(x, F)¢(x) + o(n" /%), ® is the c.d.f. for the standard
normal distribution and p(x, F') is a polynomial in x and some functions of the
moments of F, the bootstrap approximation is typically correct up to o(n~1/2).
This phenomenon is well documented in the literature [see Bickel and Freedman
(1981), Singh (1981), Babu and Singh (1983), Babu and Singh (1984) and
Abramovitch and Singh (1985)]. We shall refer to this phenomenon as the total
n~Y/2.term correction by the bootstrap. This is the type of expansions one has for
the standardized statistics, namely, the normalized case [Vn (T, — Tj) divided by
the true standard deviation] and the studentized case [Vn (T, — Ty) divided by
an estimated standard deviation]. Consider now the following nonstandardized
case where the leading term in Edgeworth expansion involves the underlying
population:

H,(x) = P(Vn (T, — Ty) < x)
= ®(x/Sp) + n7?p(x, F)$(x/Sp) + o(n™'?).

Typically, VarT, = SZ/n + O(n"?). The corresponding bootstrap Edgeworth
expansion is

Hn,B(x) = P*(‘/r—"(Tn* - Tn) S4x)
= ®(x/Sg ) + n"?p(x, F,)$(x/Sp ) + o(n™'/?) as,

where P* stands for the bootstrap probability, F, stands for the empirical
distribution based on the original sample and 7,* stands for the functional T
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based on the bootstrap sample. Generally, |p(x, F') — p(x, F,))| = 0 in probabil-
ity; thus,

P(Vr(T, - Tp) <x) — P*(Vn (T* - T,) < x)
= ®(x/Sp) — ®(x/Sy ) + o(n7Y?) as.

A natural estimator for H,(x) based on the CLT is ®(x/Sg ). Thus, if Vn (SF
SZ) =4 N(0, a?) for some a, then

\/’7( n(x) - n,B(x)) g N(O’ b2)
and
Vn (H,(x) — ®(x/Sg,)) = N(p(x, F)é(x/Sg), b?),

where b% = ¢2(x/SF)x2a2/SF Thus, we see that the bootstrap estimator is
superior to ®(x/S ) in terms of the asymptotic mean squared error (ms.e.),
even though the rate of convergence for both estimators is n~'/2, The amount of
the reduction in the ms.e. [ = p%(x, F)¢$*(x/Sr)] due to the bootstrap generally
depends on the bias in 7, as an estimator of T and the skewness in the
sampling distribution of T,,. For example, if 7T, is the sample mean X, then
a’?=p,—o* and p(x, F)= —(p3/60%)(x% — 1), where p; is the ith central
moment and o2 is the variance of F. This fact was first observed in Beran
[(1982), Remark (e), page 218]. It appears that his remark did not receive the
attention it deserved. For instance, Hartigan (1986) states that, in the non-
studentized cases, the bootstrap estimator has no advantage over the estimator
based on the normal approximation, since the convergence rates are the same.
We shall refer to this correction of n~Y2p(x, F)¢(x/Sp) term as the partial
n~'2.term correction by the bootstrap.

The total n~/%.term correction improves the accuracy of the estimated
p-value as well as the achieved « in the following sense. In constructing a
two-sided confidence interval, the difference between the actual lower (also the
upper) tail probability and «/2 is reduced to o(n~'/2?) by the bootstrap com-
pared to O(n) /% from the normal approximation. However, the total tail
probability from the normal approximation is a + o(n~'/2) due to the cancella-
tion of the O(n)~'/? term in the Edgeworth expansion. The extra accuracy of
the bootstrap, therefore, is in terms of the following: (i) distributing the error
probability more evenly in the two tails of the two-sided confidence intervals and
(ii) bringing the estimated tail probability closer to the target in the case of
one-sided confidence intervals (which are needed for hypothesis testing). These
results on a in the case of total correction by the bootstrap are in Hall (1986) and
Babu and Bose (1986). The claim for the p-value can be established easily. Our
main aim in this note is to see if the preceding partial correction by the
bootstrap brings any improvement in the estimation of p-values in hypothesis
testing problems and in the coverage probabilities of bootstrap confidence
intervals. We shall see in the following sections that there is an affirmative
answer for the case of p-values and a negative answer for a.

We conclude this section with two remarks on the partial correction:
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REMARK 1. From a one-term Edgeworth expansion for a sampling distribu-
tion, one immediately obtains a one-term expansion for a quantile of the
sampling distribution. It clearly follows that the partial correction improves the
estimate of a quantile of the sampling distribution in the sense of reducing
the asymptotic m.s.e.

REMARK 2. For studentized statistics, there exists a phenomenon of partial
n~!-term correction by the bootstrap. It follows along the lines of Beran’s
remark that for studentized statistics the bootstrap is even superior to a
one-term Edgeworth expansion (after replacing the population moments with
the sample moments) in reducing the asymptotic m.s.e.

2. Partial correction and p-values. If E(T,) = Ty + o(n!), the one-term
Edgeworth expansion for H,(x) has the form

2
x Ky [x x
1 H =0 — |- === - 1|¢| = | + —172),
g ) (SF) 653/n (s,% )"’(sp) o
where k3/ Vn is the leading term in the cumulant of vn (T, — Ty). For testing an
hypothesis with H,: T = T, versus H;: Ty > T, one can use the two estimates

of the sampling dlstrlbutlon H, <I>(x/SF) and H, g, to obtain approximate
p-values, respectively,

Perr,n=1- Q(‘/;(Tn - To)/SF,,)
and
ﬁB n= 1 n B(‘/E(Tn - TO))
The true p-value p, based on H (x) is H(/n (T, — T,)). (Hereafter, for simplic-
ity, the subscript n in oy ,, Pg , and p, is suppressed.) We present a theorem

now which establishes the fact that py is closer to p than Py is to p in an
asymptotic sense.

THEOREM. Let (1) hold. Under H,, if (Vn(T, — T,), Vn(SZ — SZ)) has a
bivariate normal weak limit with means 0 and if k; j converges to k3 p in
probability, then Vn(pg — p) and Vn( Dot — P) have weak limits. If ¢ and n
denote the two weak limits, then E(£¢2) = A? and E(n?) = A% + B? for some
numbers A and B.

Proor. Let (Z, W) denote the bivariate normal weak limit of (Vn (T, -
T,)/Sg,Vn \/—(SF SZ2)). Both Z and W have mean 0; Z has variance 1. Using (1)

and some Taylor expansions, one can easily check that.
W
Vn(pg—p) =y - —29(2)
2S;
and

R W K3
Vn(Peur — P) 2o — T%¢(Z) - —@(Z2 -1)¢(2).
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The result clearly follows if we show that E[ZW¢(Z)]|[(Z% — 1)¢(Z)] = 0. Since
E(W|Z) = ¢,Z for some constant c,, it suffices to show that

E(Z*-Z%)¢¥(Z) =0 ie., f(z4 — 2%)¢}(2) dz = 0.

This is clearly so in view of the fact that ¢3(Z) is proportional to the normal
density with mean 0 and variance ;. O

We must admit that the preceding proof does not seem to provide much
insight on the validity of such a result. The form (1) for the expansion seems
crucial. It is not clear at the moment if there is any extension of the result if the
bias of T, is O(n~'), in which case, of course, the expansion is different from (1).
We conclude this section with the comment that, under moderate conditions, the
expansion (1) holds in particular for the class of U-statistics [see Callaert,
Janssen and Vevaverbeke (1980) and Bickel, Gotze and van Zwet (1986)]. The
expansion is also expected to hold for all (n~!-term) bias corrected statistics, in
particular jackknife statistics.

3. Partial correction and a. A natural question about partial correction is
whether the confidence intervals based on H,, z are better in terms of coverage
probabilities than the ones based on ®(x /SF ) It is known that in the case of
total correction, each tail error probability is a/2 + o(n~'/2) under the
bootstrap, whereas if the normal approximation is used for forming the con-
fidence intervals, the tail probabilities are a/2 + O(n~1/?) [see Hall (1986) and
Babu and Bose (1986)]. Thus, the total correction implies a more even distribu-
tion of the error probability in the two tails. In order to see if such a result holds
even for the partial correction, we expand the error probabilities in the cases of
partial correction and normal approximation when 7T, = X and Ty = p. The
confidence interval based on the normal approximation is

()_( _zl—a/2sn/\/;7 X+ zl—a/2Sn/‘/’7)’

where S, is the sample standard deviation and z, = ® '(a). The confidence
interval based on H, g is

(X - H;5(1 - a/2)/Vn, X - H; %(a/2)/Vn).
It turns out that

2, 95,
(2) p(#<x- f;{ )=a/2— ‘/_(22,,/2+ 1)¢(z,,5) + o(n"12)
and

P(p<X - H; (1 - a/2)/Vn)
(3) a

M3 -
=35 ng/2¢(za/2) +o(n~1?),



PARTIAL CORRECTION BY THE BOOTSTRAP 1717

under moderate conditions on the population. The same expansion holds for the
upper one-sided probabilities (with different signs before the n~'/? term). Thus,
if 2)_o0>1, ‘

|P(p < X - Hy5(1 - a/2)/Vn) — a/2|

5 2a 2Sn a |‘U.| _
=‘P(p. < X—/T) ) + (23/2 - l)a";‘/—z—(ﬁ(za/z) + o(n=12).

Hence, it follows that the confidence interval based on the normal approximation
in fact distributes the error probability more evenly if 2,_, , > 1, which typi-
cally is the case. The partial correction, therefore, does not seem to lead to better
confidence intervals in terms of each tail error probability. On the other hand,
the total coverage probabilities for both the confidence intervals are (1 — a) +
o(n~1/2). Incidentally, a more even distribution of « in the two sides also means
that the achieved level of significance would be closer to that intended if the
one-sided confidence interval is to be used for a one-sided hypothesis testing
problem.

We conclude this note by sketching the proofs for the expansions (2) and (3).
The expansion (2) is an easy consequence of the one-term Edgeworth expansion
for the studentized mean,

(4) P(\/E

s x) — ®(x) + 2 4 1)¢(x) + o(n~V2).

K3
—F(2
603\/77 ( *
One set of sufficient conditions for (4) to hold is (a) F is continuous and (b) F
has a finite sixth moment. To establish (3), one requires

(5) P*(‘/rf(l_/'—)?)sx)=<b(i) ﬁ—(x—z-l)qs(i)ﬂn(x) as.

n

S,]  60%n | S2 S,
where
(6) P(sup|yn(x)| > sn‘l/z) =o(n"%) foranye > 0.
X
Y stands for the bootstrap sample mean based on Y},...,Y,, an i.i.d. sample from

the empirical distribution of X;’s. Using (5), one obtains a one-term expansion
for H, 3(1 — a/2) with a probability bound on the remainder. After substituting
this expansion, one needs to use (4) ta deduce the required result (3). The result
(5) with (6) can be deduced following the standard proof given for the one-term
Edgeworth expansion for the sample mean. One set of conditions sufficient for (5)
is F is nonlattice and E|X|%? < co.

Some results of this section were also mentioned in Singh (1986).
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