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TESTING THAT A STATIONARY TIME SERIES IS GAUSSIAN

By T. W. Epps
University of Virginia

A class of procedures is proposed for testing the composite hypothesis
that a stationary stochastic process is Gaussian. Requiring very limited prior
knowledge about the structure of the process, the tests rely on quadratic
forms in deviations of certain sample statistics from their population counter-
parts, minimized with respect to the unknown parameters. A specific test is
developed, which employs differences between components of the sample and
Gaussian characteristic functions, evaluated at certain points on the real line.
By demonstrating that, under H,, the normalized empirical characteristic
function converges weakly to a continuous Gaussian process, it is shown that
the test remains valid when arguments of the characteristic functions are in
certain ways data dependent.

1. Introduction. Let {X,} be a discrete-parameter stationary stochastic
process with E(X,) = p and Cow(X,, X,) = o(r) for r =0, +1, +2,... . In this
paper we describe a class of chi-squared tests of the composite hypothesis that
{X,} is Gaussian, with p and 0(0), (1), 0(2),... unspecified, and we develop a
specific procedure for practical application. In general, the tests employ a
statistic which is a quadratic form in differences between sample means and
expected values of certain functions of the sample data. In the specific applica-
tion, the means of these functions are components of the empirical characteristic
function evaluated at certain constants, A, Ao, ..., A . Aside from stationarity
and a relatively mild condition on the autocovariance function, our procedures
require no prior knowledge about the process {X,}. Moreover, the distribution
theory of the test remains valid when the choice of A’s depends in certain ways
on the sample data.

Despite the importance, in selecting methods of inference, of determining
whether a stochastic process is Gaussian, the applied researcher has had few
useful tools for this purpose at his disposal. Several recent papers have shown
the dangers of simply applying to time series the standard tests designed for
random samples. A simulation study by Gasser (1975) indicates that the Pearson
chi-squared test can be greatly excessive when applied to correlated data.
Chanda (1981) has worked out the large-sample distribution theory of the test
for processes satisfying Rozanov’s (1967) strong-mixing condition and for certain
linear processes and Moore (1982) has done the same for stationary Gaussian
processes with absolutely summable autocovariances. In the specific case that
o(r) = 0 for all r and no parameters are to be estimated, Moore shows that the
Pearson test is excessive at all levels of significance.

With the object of developing a valid large-sample test, Lomnicki (1961) and
Gasser (1975) demonstrate the asymptotic joint normality of sample measures of
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skewness and kurtosis under the Gaussian hypothesis. They work out the
asymptotic variances of these statistics, which depend on infinite sums of the
form Zo(r)?/0(0)® and Zo(r)*/0(0)%, respectively, but they do not discuss
the problem of obtaining consistent estimates of these quantities.” Thus, these
moment results do not of themselves support an operational test of the Gaussian
hypothesis. The only such test of which we are aware is one developed by Subba
Rao and Gabr (1980) and Hinich (1982), which exploits the behavior of the
bispectral density function under H,. [See also Ashley, Patterson and Hinich
(1986).] Just as the spectral density function is a frequency decomposition of the
variance of the process, the bispectral density can be interpreted as the frequency
decomposition of the third central moment E{(X, — p)®}. As such, it is uni-
formly zero under the null hypothesis, and for any other symmetrically distrib-
uted process with E{|X,|3} < co. Thus, knowledge of the asymptotic distribu-
tion of the bispectral density under H, makes possible a valid large-sample test,
although one not able to detect symmetric alternatives.

In Section 2 we describe a new class of chi-squared tests of the Gaussian
hypothesis, which is based on the value of a quadratic form minimized with
respect to the mean and variance of X,. Section 3 presents a particular applica-
tion of this procedure, in which the quadratic form depends on deviations of
components of sample characteristic functions (c.f.) from their expected values.
The application may be considered an extension of a test of fit for independent
samples that was developed by Koutrouvelis (1980) and Koutrouvelis and
Kellermeier (1981). We demonstrate also the weak convergence of the sample c.f.
under H,, and a certain maintained hypothesis and we use this result to show
that the distribution theory of the test remains applicable when the arguments
of the c.f. depend in certain ways on sample data. Section 4 presents an
application of the procedure. A supplement containing details of proofs is
available from the author.

2. A class of chi-squared tests of the Gaussian hypothesis. Let
X, X,,..., X7 be a sample of equally spaced observations of the stochastic
process {X,} = {X,(w)}, X: @ X R! > R, defined on the probability space
(2, #, P). As the maintained hypothesis for testing H,: “{X,} is Gaussian,” we
assume that

o0
(A1) {X,) isstationary; Y. |r|f|o(r)| < o0, some{ > 0.

r=-—o00

Henceforth, we shall often write o2 for 6(0). For A € A C RY introduce the
functions

g(X,;\), g:R'X ARV, g Borel measurable, independent of T,

T
gr(N) =Tt Y g(X;7), grRTXA-RY,

t=1
8(0; \) = E{g(Xs;; M)}, 8 © X A-RY,
where N > 2, 6 = (p,0?) € © and O is an open subset of R! X R’,. The test to
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be presented employs a quadratic form in the N-vector gr(A) — gq(6; A) of
deviations of sample means of the elements of g(X, A) from their expected
values under H,. The d-vector A contains certain constants that can be used to
define these functlons of the data. For example, the jth element of g(-; \) might
be an indicator function on the set (A,_;,A,;] in R'. For the apphcatlon
developed in Section 3, g7(\) comprises real and imaginary components of the
sample c.f., evaluated at real numbers {A }.

We now state the first of several conditions that g and the space A must be
chosen to satisfy. Let 8(X,) = g(X,; N\) — 8o(6; \), suppressing the dependence
on A and 6 for brevity, with §,(X,) as the jth element. The fourth-order
cumulants of the N-dimensional process {g(X,; A)} are defined by

Kjklm(q: r,s;\) = E{gj(XO)gk(Xq)gl(Xr)gm(Xs)}
_E{gj(XO)gk(Xq)}E{gl(Xr)gm(Xs)}
~B{2,(X)&(X,) ) E{8:(X,)én( X,))

—E(8(X0)8n(X,) ) E{&:(X,)8/(X,))

for ¢,r,s =0,+1,+2,... and j, &k, [,me€ {1,2,..., N}. We assume that the
cumulants satisfy, for each A € A,

1)

o]

sup K@, 7,q +1;N)| < o0,
(A2) _oo<q<°or=z_:°o| /klm( q )|

Sk, l,me (1,2,...,N}.

Before introducing the test statistic, we present two preliminary lemmas
which follow from (Al) and (A2). The first is a central limit theorem for g(A).
Let f(»; 0, \) be the spectral density matrix of {g(X, A\)} at frequency » and
define I'(8; ) = 27f(0; 6, \). Assumptions (Al) and (A2) imply the following
conditions, which are enough for the first result:

) T o)< e
(3) Var{g;(Xp;\)} <o, N€A,je{1,2,...,N}.

LEMMA 2.1. When {X,} is a stationary Gaussian process satisfying (2) and
when g and A satisfy (3) with Var{g (Xy; A\)} > 0 for each j, then

T'*(gr(X) — &(6; M)} —»p N{O,T(6; 1)} asT — oo.
REMARK. The existence of f(0; 8, \) is one of the conclusions of the lemma.

ProOOF. Generalizing to the multivariate case the argument of Gastwirth and
Rubin [(1975), page 816] on the asymptotic normality of finite-variance functions
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of stationary Gaussian processes, one concludes that
Tl/z{gTO‘) - &o(6; A)} - N(O, V. ),

where V, = lim,_, ,T'E{X]_ ,8(X,)XT_,&(X,)’}. By Gebelein’s lemma (1941)
[Rozanov (1967), page 182], we have

[v,u(7; M) | =|Cov{g(Xo; N), g( X5 N}

< [Var{g;(Xo; )} Var{gy(Xo; A)}]*la(r)| /02,
ke {1,2,...,N}; r=0,%1,+2,...,

so that (2) and (3) imply 0 < X2 _  |y;(7; A)| < 0. It follows [Anderson (1971),
page 380 and Priestley (1981), pages 416 and 657] that the spectral density
matrix of g(X,; A) exists and is uniformly continuous on [ — =, 7]. Continuity at
v = 0 implies [Anderson (1971), page 459ff. and Hannan (1970), page 208] that
V, =27f(0; §,\). D

The test requires a consistent estimator of f(0; 8, A) and we now show, as the
second preliminary result, that one exists under (A1), (A2) and H,.

LEMMA 2.2. For positive constants c,, c¢,, ¢, and c; let the function K:
[—1,1] » R* and the positive integer My, T > 1, be chosen to satisfy

(4a) K(-y)=K(y), K(0)=1,

(4b) |K(y)| < ¢,

(4c) ,K(yz)"K(yl),501|y2‘y1',

(4d) lim 1~ K(3)) /bl = 5, some e, >0,
(5) MT = [T64¢(T)] A T - 17 (1 € (O’ 1),

where [-] denotes ‘“greatest integer no larger than” and ¢(T) satisfies
lim,_ ¢(¢T)/o(T)=1 forall £ > 1. Let

/> K(y) = 1’ Y= 07
K =
() {2K(y), y€(0,1]
and define
é(Xﬁ >‘) = g(th§ >‘) - gT(A)-
Then under (Al), (A2) and H, the statistic
T-r
© 00 = @0 T RO/M[T T 806 8K
t=1
converges almost surely (a.s.) to f(0; 6, M).

REMARK. K(y) is the lag window of the spectral density estimate. An
example of a function which satisfies (4) is the “modified” Bartlett window



TESTING THAT A TIME SERIES IS GAUSSIAN 1687

[Anderson (1971), pages 512-513 and 527]: K(y) =1 — |y|, ¥y € [—1,1]. For this
function the constants c,..., c; are all unity. For the point of truncation, the
choice M, = [T¢], ¢ € (0, }) satisfies both (5) and an additional condition (13),
introduced in Section 3. '

Proor. This follows from Gaposhkin (1980). Condition (4) is his Condition 1;
(A1), (A2) and Gebelein’s lemma, under H,, give his Condition 2’ and (5) is his
Condition 3’. Gaposhkin’s Theorem 4 (page 173) establishes the a.s. convergence
on [ —m, 7] of the estimator f,(»; A), which is given for » = 0 by the right side of
(6) with g(X,; A, 0) = g(X,; N) — go(0; A) replacing g(X,; A). Since the sample-
mean vector gr(\) satisfies Gaposhkin’s condition (24), his Theorem 5 (page 175)
extends the result to fT( v; A). O

We now present the general form of our test statistic of the Gaussian
hypothesis and a theorem which gives its distribution under H,,. Let G,()A) =
2wa(O; A), where fT is given by (6) and let G;(A) be the generalized inverse.
Introduce the quadratic form

Qr(6;N) = {gr(X) — £4(6; 1)) GH(M){gr(X) — go(6; 1)).

We shall obtain a test statistic by minimizing @,(6; A) with respect to §. Under
the assumptions to be introduced, such a minimizer will be shown to exist a.s. for
sufficiently large T, but it may not be unique. For uniqueness we define 6. to be
the minimizer of @;(6; ) which is nearest (X, S2), where

Xy

T T
— _ - \2
T-'Y X, Si=T'Y (X,-X;).
t=1 t=1

The following assumptions will guarantee the existence and uniqueness of such a
0Tc

Letting 6, be the true value of § under H,, we assume that, for each §, € ©,
AEA, .

(A3) T'(8,; A) is positive definite.

(A4) g,(6; N) is twice continuously differentiable with respect to 8 in a neighbor-
hood of 4,.

(A5) The N X 2 matrix D(y; A) = d5,(0; A)/30]g_g, (N > 2) has rank 2.

(A6) The set Oy(A) = {0 € O: gy(0; A\) = gy(0y; A)} 1s nowhere dense in ® and
O is a bounded subset of R' X R*,.

(A7) T(8; A) = T(6,; ) and D(8; A) = D(6,; M) for each 6 € By(A).

REMARK. (A3)—(A5) are standard assumptions. (A6) and (A7) are needed to
handle cases, such as the application in Section 3, in which the mapping g,(:; A):
® — R" is not one to one. For fixed A € A, ©,(]) is the set of parameter values
which has the same image as g,(6,; A). (A6) implies that ©(A) is a finite set and
(A7) requires that I'(6; A) and D(6; A\) be constant over it.
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THEOREM 2.1. Under H, and (A1)—(A7), the statistic TQr(67; N) converges
in distribution to central chi-squared with N — 2 degrees of freedom for each
fixed A € A.

Proor. Take A € A to be fixed. If ©y(A)\ {6,} # @, then by (A6) there
exists ¢ > 0 such that inf{|§" — §”|: 6’, §” € ©,(A)} > 4e. Let

F{Gr(\), gr(N),0) = 3QL(6; 1) /36
—2D(6; A)'G7(M){gr(A) — g,(6; A)}

and F, = dF/36. Then F(I(6’; ), g(8’; A), 8’} = 0 for each 8’ € Oy(A) and by
(A3), (A5) and (A7),

Fy{T(8'; 1), 84(67; A), 8’} = 2D(6,; A)'T~*(8y; A)D(6;; \)

is for each 8’ € ©y()), a positive definite matrix. By the implicit function
theorem [e.g., Rudin (1976), pages 224-227], there is an open set #" y» and a
collection of open sets {#,(6'): 6" € @,())} such that (I'(6; A), g,(8; \)} € #,
{I'(87; X), 8o(8"; X), 8"} € %,(8’) and such that to each {G, g} € #), and each
0" € ©y(A) there corresponds a unique 8” = h, (G, g) such that {G,g,0")
«\(0’) and F(G, g, 0") = 0, where h,, is a continuous mapping of # , into O. If
©(A) = {0,}, then there is but a single set %,(6,) and function hy,. By the
continuity of A, there exists §(6’) > 0 such that A,(#)) C s/0’) whenever
W C S50\ (p; A), 8o(0p; A)}, where hy(#,) is the image of h, over #, and
s,(y) denotes an open ball of radius r about y. Taking 8 = inf{8(6"): §’ € Oy(N)},
we then have hy(#)) C s(8’) for each 6’ € ©y\) whenever %’ y C
Ss{I'(0p; A), 8¢(8o; M)}

By (Al), (A2) and Gebelein’s lemma (1941), {g(X,; )} satisfies the strong
ergodic theorem [Hannan (1970), pages 204-205], so that gr(A) = gy(y; ) a.s.
Also Gr(A) » T'(6y; A) as. by Lemma 2.2. Thus, there exists T, such that
{Gr(A), gr(M)} € #', for each T > T, and almost all w. Since (X, S2) - 6,
a.s. under (Al) and H,, there also exists T, such that |(Xj, S2) — f,| <e
for T > T, and almost all w. Take T* = T, v T, If OyA)\ {6,} # &, take
6, € ©y(A), 6, # 6, and let §,, 4, be the minimizers of Qr(6; A) belonging to
the sets h,(#7) and h,(#)). We then have, for T > T*, |6, — 6, <e
and |6, — (X , S2)| <, so that 6, - (Xp, S2)| < 2e. Since 16, — 6,| <e and
|6, — 6,] > 4e, we also have |4, — (X, S?)| > 2e. Thus, for T > T*, the mini-
mizer 6, satisfying ‘ .

|67 — (X7, 83)| = min{|d - (X7, S3)|: § € hy(#3), 6 € ©,(N))
is unique and |0, — 6| < e for almost all w. In the case Oy\) = {6,}, then

uniqueness is automatic. Since ¢ is arbitrary, we have 6, — 0, a.s.
Let

Q2(07; N) = {&8r(N) — go(0r; )\)}'I‘"l(ﬂo; M {gr(N) — go( 05 A}
Since Gp(A) = I'(6,; A\) as., the limiting distributions of TQ%(6,; \) and
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TQ.(6; \) are the same. We show that TQ2(8r; A) — p x*(N — 2). By the
mean value theorem there is a 6 between 6, and 6, such that

&r(A) — 8o(07; A) = gr(N) — 8¢(0p; N) — D(8; \)(67 —.6,).
Multiplying by D(67; A)’T"%(6y; A) and using the condition F{G (M), gp(N),
0} = 0 with the facts |GF(A) — TY(8,; A\)| = op(1) and |g7(A) — g¢(0y; N)| =
Op(T~'/?), we conclude that

8, — 6, = {D(07; \) T~ (8,; A)D(8; 1)}
XD(87; A)'T~1(86; M) {&r(X) — &o(0o; M)} + 0p(T71/).

Substituting the right side for 6, — 6, in the expression for g,(A) — go(0r; A)
gives

T'*(gr(A) = &y(0r; M)} = {Iy — B(67,6; 1)} T
X {&r(N) — &o(8p; N)} + 0p(1),
where I, is the identity matrix and
B(6;,8;\) = D(8; A\){D(8; X)' T~ (8,; \)D(6; 1)}
XD(8; A)'T=1(6,; A).

By (A4) and the a.s. convergence of 0, it follows that B(6y, §; \) = B(6,, 8,; \)
a.s. Letting

A(6y; \) = Iy — T72(6,; A)B(6,, 65; A)T~12(8,; ),
an idempotent matrix of rank N — 2, we then conclude that
T*{gr(N) — 8o(0r; A)} = TV/2(bp; ) A(6; N)T~1/2(6; \) T2
X {gr(A) — go(b; M)} + 0p(1)
and, therefore, that
TQP (673 N) = T(gr(A) = &o(f; A)) T™/(6; ) A(6; )
XT7Y2(8y; M) {gr(A) — &o(8p; M)} + 0p(1).

It then follows from Lemma 2.1, the Mann—-Wald Theorem and standard results
pertaining to the distribution of quadratic forms [e.g., Rao (1973), page 186]
that, for each A € A, TQ%(0,; \) = p, xA(N — 2). O

3. A specific test. To apply the result of Theorem 2.1 to the test of H,, one
must find a set A € R? and a function g: R! X A - R which satisfy (A2)-(A7).
In principle, many such choices are available, but in practice the verification of
(A2), in particular, may be difficult. Here is an example. It is easily shown that
(A4)—(A7) hold when one takes A = {A € RN*1: —c0 <Ay <A; < -+ <Ay <
+o0} and gA(X;A) = 1(>\,-_.,>\,](Xj)’ J€{1,2,..., N}, where “1” denotes
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indicator function. From the definitions of g-(A) and g,(0; A) it is apparent that
the procedure would be an extension of the classical Pearson chi-squared test to
Gaussian processes satisfying (Al). On the basis of results presented by
Gastwirth and Rubin [(1975), page 821ff.], we conjecture that (A2) holds also in
this case, but a proof is not yet available.

For the application to be described, g(A) comprises real and imaginary parts
of the empirical characteristic function (c.f.) evaluated at certain real numbers
{A;}. As mentioned in the introduction, this example extends to the case of
stationary Gaussian processes the test of fit described by Koutrouvelis (1980)
and Koutrouvelis and Kellermeier (1981), the latter of which is based on an
estimation technique proposed by Feuerverger and McDunnough (1981). More-
over, we are able to go somewhat farther and show that the conclusions of
Theorem 2.1 hold when the set A depends in certain ways on the sample data.
This provides flexibility analogous to the use of data-dependent cells in the
Pearson test [cf. Moore and Spruill (1975)].

For N > 2 an even integer, define

(7)) A={AeRMO<A <A <A3<A < -0 <Ay <Ay< oo},
() 8(X,; A\) = (cos A X,,sin A\, X,, cos A, X,, sin )\4'X,,..., ,
cosAy_, X,,sin A yX,) .
The sample means and expected values of g(X,; A) are thus

(92) gr(A) = {R'ecT(AI)!ImCT(A2)"":ReCT(AN—l)’Ich(AN)}/’
8o(0; X)) = {Recy(0; ), Imcy(8; Ay),...,

9b ’
(&) Recy(0; Ay_,), Imco(6; AN)} ’
where

T
(10a) er(N;) =T Y exp(ir;X,), i=V-1,

t=1
(10b) co(8; ;) = E{exp(iX;X,)} = exp(ihp — Nio?/2)

are, respectively, the empirical and Gaussian c.f.’s.

Since the components of g(X,; A) are bounded, they have finite variance and
Lemma 2.1, therefore, applies to give the limiting normal distribution for
T'?(gr(N) — g4(0; \)}. We state the conclusions with respect to (A2) as

LEmMA 3.1. If {X,} is a Gaussian process satisfying (Al) and if A and
8(X ;M) are given by (7) and (8), respectively, then

0

sup >z |'Cjkzm(q,r,q+r;)\)|<oo

—00<Qg<00 r=-—o00

foreachj, k,l,m € {1,2,..., N} and each A € A.

Proor. In expression (1) for the fourth-order cumulant, with s = g + r, let
T’jklm(q’ r,g+r\) = Cov{gj(XO)gk(Xq)’ él(Xr)gm(Xq+r)}
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represent the first two terms on the right side and let

ij(q; A) = E{gj(XO)gk(Xq)} = COV{gj(Xo; A), gk(Xq; A)}
Then

SuPZl"jklm(Qy"»‘I"‘ r;}\)l < Sup2|njklm(q’r7q+ r;}\)l
q r q r

+ Zlez(’”§ A)Yim(T5 A)l

+sup X |vjm(r + @ M) v(r — g5 1))
q r

The second term may be bounded as
17 M Yam(s M) < Xltam(r5 2) | < Xlo(r)] < o0,

the first inequality following from the unitary bound on elements of g; the
second, from applying Gebelein’s lemma with the normalization ¢ = 1. The last
term is treated similarly. The first term can be bounded by direct calculation of
the expectations for each of the cases corresponding to the number of even
subscripts J, k£, [ and m. O

We do not prove (A3), but merely note that the restrictions on A in (7) rule
out the possibilities that components of g(X, A) have zero variance or are
perfectly correlated. (A4) and (A5) are easily verified. Because the normal c.f.,
(10b), is periodic in the parameter u, with

co(uo,og; }\j) = co(po + 27k/\;, 085 )\j), k=0,+1,+2,...,

the vector equation gy(; A) = g* may have no unique solution for 8. We verify
(A6) and (A7) by determining the set ©,(A) in the case that the A; are rational
multiples of A,, which will always be so in practice. Thus, for j =2,3,..., N
take A; = A;m;/n;, where the integers m;, n; have no nontrivial common fac-
tors. If II, is the smallest integer into which each of n,, ng,..., ny divides
evenly, then it should be clear that

0y(N) = {(po + 27kIIN/A,08): k=0, 41, £2,...} N O,

which clearly consists of isolated points. The periodicity of the c.f. gives us (A7).

Two examples of the use of the c.f. test are given in Section 4. Before the
procedure can actually be applied, however, one must confront the problem of
choosing the {A }. Ideally, we would like to choose N and the vector A satisfying
(7) so as to enhance the power of the test. In fact, it would not be possible to do
this without specifying the joint distribution of X, X,,..., X, under the
alternative hypothesis and working out the distribution theory of the test under
such an alternative. Thus, there is substantial ambiguity about how one should
choose A in practice, and there has been justifiable criticism of such applications
of sample c.f.’s on these grounds, e.g., Csorg6 [(1984), page 49]. Of course, one
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encounters precisely the same difficulty in applying the classical Pearson proce-
dure, the number and boundaries of cells also having to be chosen more or less
arbitrarily. In the present application, where the range of alternative procedures
is far more limited than that in the classical goodness-of-fit problem, the absence
of optimality criteria for choosing A seems to us less objectionable. In any case
there are computational considerations which will in actual practice place certain
limitations on the choice of A. We have found that when either N is large or the
spacing between the A is small, relative to the scale of the data, the matrix
G (M) often appears computationally singular. Also, at values of A; which are
large, again relative to the scale of the data, the moduli of the c.f. c,(6; A;) and
its derivatives will be small in the neighborhood of 6,, making it difficult to find
a minimum of @,(f; A) with much precision.

These considerations suggest that it will be desirable in practice to let the
values of A;, A,,..., Ay depend on the scale of the sample data. For example, we
could consider replacing A; with X;/Sy, for some constant X;, where SZ is the
sample variance. In fact, for technical reasons discussed later, a somewhat more
elaborate arrangement will be required in order to assure that the A; remain
bounded. Whatever such scheme is employed, it is clear that the dependence of A
on the sample greatly complicates the distribution theory of the test. The
analogy with the use of data-dependent cells in the Pearson procedure is helpful
here .and our analysis of the problem at hand parallels closely that for the
Pearson test by Moore and Spruill (1975). The remainder of the section is
devoted to this issue.

We begin with an assumption about the nature of the data-dependency of A
and then state our main result. The plan is to replace the {A;} with certain
bounded data-dependent functions of them, denoted {I1(A )}, and to show that
the distribution theory of the test remains as described by Theorem 2.1. Let A, [
be finite, positive, scalar-valued constants and take A to be as in (7), but with the
added restriction that Ay < A. Recalling that (2, %, P) denotes the underlying
probability space, define the #measurable function

I: 2 x[0,A] - [0,i] =2.

Thus, I;(x) = Lp(w; x), x € [0,A], is a random function with the same domain
(i.e., ) as the process { X,(w)}. We assume that:

(A8a) I;(x) is increasing and continuous for each T' and almost all . B
(A8b) There exists a nonstochastic continuous increasing function /_: [0, A] —
#, such that for each ¢ > 0,

T(1/2-¢€) sup |lT(x) - lw(x)l -p0
xE[O,X]

For the vector-valued functions
LT(A) = {lT(AI)’lT(A2)""7 lT(AN)}’ LT: Q X A _)gN,
LN = (LA LMo lo(Ay)}, Lot A > &,
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we have, from (AS8),
(11) T“”"‘)fulﬂLr(?\) - Loo(x)| -p0.
[S]

THEOREM 3.1. If {X,} is a Gaussian process satisfying (Al) and if the
elements of Lp(\) and L_(\) satisfy (A8), then for each A € A,

(12) T|QT{0T; Ly(N)} — Qr{r; Lw(}‘)H -p0
as T = oo.

REMARKS. (i) (A8) permits adjustment of the A ; with respect to the scale of
the observations, or in certain other ways that might be desired, while keeping
the adjusted values bounded, as the proof of the theorem will require. The result
(12) indicates that the use of such data-dependent A ; does not alter the limiting
distribution of the test statistic under H,.

(ii) As an example of a scale adjustment that satisfies (A8), choose positive
constants A and /, an even integer N > 2 and A satisfying 0 <A, <A, <A<
A, < -+ <Apn_; <Ay =A. With SZ being the sample variance, let

Sr=Spv(A/l), e=av (A/I)
and define

(A,/S7) NIN/A, 1<j<N-1,

(A\;/8p) AL, Jj=N,
I.(\;)=X\;/e, 1<j<N.

This arrangement clearly satisfies (A8a). Assumption (A8b) holds also, since

sup |lp(x) — I (x)| < sup |x/S;p—x/0| =A|Spt— o7}
x€[0,A] x€[0,A]
and since (Al) and the fact that the fourth-order cumulant of a Gaussian process
vanishes imply that |S; — 6| = 0p(1) [Anderson (1971), Theorems 8.3.2 and 8.3.3,
pages 463-467].

lT()\j) =\,/Sr=

The main tasks involved in proving (12) are to show (i) the consistency of the
spectral density estimate and, therefore, of G;{L(A)} and (ii) the asymptotic
normality of T'%[gr{Lr(A)} — &o{07; Lr(A)}]. These results follow from the
next two lemmas.

LEMMA 3.2. Let f(0; A) be as defined in (6), with g(X,; \) as given in (8).
Choose the function K(y) and sequence of integers {My} to satisfy the condi-
tions of Lemma 2.2, with the additional condition

(13) sup T~/2+3M . = constant > 0, some & € (0,3).

T— o0

If (A8) holds, then for each X € A,
| £2{05 Lz (M)} = F2{0, L, (\)} || ~p 0.
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ProoF. Letting A;(T; A\) denote the j, kth element of the matrix
fT{O L (M)} — fT{O L «(A)}, we have from (6) that

2mh ;4 (T; \) = Z R(r/Mp)T™ Z [£4Xs Lo(A)}8u( Xos s LT(A)}
(14) r=0 .
~8,{Xs La(M\)}& X, L(M))].
Recall that
8{Xs Lr(N)} = g{Xy; Ly(N)} — gr{Lp(N)},
where
. o cos{lT(Aj)Xt}, Jodd,
8/ X Lr(A)) = {sin{lT(}\j)Xt}, J even.

Expanding the sines and /or cosines of (14) in Taylor series about /_(-) and using
the bounds on these functions, it is easy to see that

27| A 1(T; )| < 2¢,{ (Mg + 1)T1/2+9)

T
4 {1 (8) = L+ i) = LAV B X

+TV210(N,) = LA 1l (M) = Lo(Ay)]

e ]

t=1

T
X{T_l XXX, |+3

t=1

where the constant ¢, is from (4b). Since 77 'X|X,| and T7'%|X,X,,,| are Op(1),
it follows from (A8b) and (13) that |A ;,(T; )| —»p O for each j, k € {1,2,..., N}
and each A € A. O

In what follows we let
(15) Zp(6; L) = T*gr(L) —go(6; L)}, Le&h,

and write Z;(6; ;) for the jth element of this vector. The key to establishing
the asymptotic normality of Z;{f,; Ly()A)} is the following result on the weak
convergence of the process Z,(0; L), which we prove under conditions slightly
more general than (Al).

LEmMA 3.3. Let {X } be a stationary Gaussian process satisfying (2). Let
Z.(0; L) be defined as in (15), (8) and (9) and take %, [ to be as in (A8). Then
the measures of the sequence of random functions {Z;} on the space CN[0,[]
converge weakly to that of a continuous Gaussian process Z , where, for fixed
L e ¥N, Z_(0; L) has mean vector zero and covariance matrix I'(6; L).
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REMARKS. (i) Conditions for weak convergence of the empirical c.f. have
been given by Csoérgd (1981) for the case that the sample data are i.i.d.

(iii) The conclusion of the lemma would be false if Z; were defined on
CN[0, o0), since the empirical c.f. ¢, (x) is almost periodic, whereas |c,(6; x)| — 0
as |x|] » oo. [cf. Feuerverger and Mureika (1977), page 89]. This difficulty
accounts for the bounds imposed on the function I(-) in (A8).

Proor. By Lemma 2.1 the finite-dimensional distributions of Z; converge
weakly to those of Z_. Corollary 7 of Whitt [(1970), page 943] 1mp11es that the
conclusion of the lemma holds if the marginal measures of {Z1(6; /;)} on C[0, 1]
are tight, j € {1,2,..., N}. By Theorem 12.3 of Billingsley [(1968), pages 95-96],
tightness will have been established if we can show that there exist 8 > 0, a > 1
and a nondecreasing function A(s) on [0, [] such that

B «
(16) E{|Z,0(05 55) = Zz(83 8,)[ ) <|h(sy) = h(s))]|
for all T and all s,, s, € [0, []. Let

Yr(s) = TV*{cr(s) — co(6; 5)},

where ¢, and ¢, are defined in (10). Then, regardless of whether j is odd or even,
we have

2 2
|Yr(s,) = Yr(sy)| = {ZjT(a; s9) — Zir(0; 31)} .
Thus, (16) follows with 8 =a =2 and h(s) = AY?s if, for a finite positive
constant A, we can show that
2
(17) E{|YT(S2) - YT(31)| } <A(sy - 31)2

for all T and all s, s, € [0, [].
Letting R(s, — s,) = Re¢y(0; s, — s,) and, without loss of generality, setting
6 = 1, an easy calculation shows that

E{|YT(S2) = Yr(s)) } T Z Z [exp {exp[s2o(t— u)] - 1}

t=1u=1
+exp(—sf){exp[sfo(t - u)] - 1}
—2R(s, — 5,)exp(—s,5,){exp[s;5,0(¢ — u)] — 1}].
The terms with ¢ = u contribute to the sum the expression
[2 — {exp(—s?) + exp(—s2)} — 2R(s, — s,){1 - exp(—5,5;)}],
which is bounded above by 2{1 — R(s, — s,)}. Applying the mean value theorem

to the remaining terms, with §,, between 0 and o(f — ©) and a,, =1 — d,,, we
obtain

E{|YT(32) - Yr(sy) |2}

(18) < 2|1 — R(s, —s,)| + 2T

||[v]q

Z { 817827 atu)

+2\I’2(81, 32; atu)}lo(t - u)l’
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where
\I’l(sla 825 atu) = '3129Xp(_312atu) + Szzexl)(_322atu) - 231329xP(_3132atu) "

¥y(s1, 85 @) =[1 = R(s, — 81)|s18.xp(—s,5,a,,).
It is not difficult to show that ¥,(s,, s,; @,,) < (s, — 5,)% all ¢ u. To develop
a bound for ¥y(s,, s, a,,), we note that a,,=1-6,>1— |o(¢— u)l > e
for some ¢ >0, the last inequality following from (2) and stationarity.
From the obvious inequality xe ** < (ee)”, it follows that Wo(S1, Sg; @py) <
|1 — R(s, — s,)|(e€)”! uniformly in ¢, u. We also have
1= R(s, — 8,)| = E[1 — cos{(s, — 8,)X,}] < (s, — 5,)°(1 + p2) /2,
where we continue to take ¢ = 1. Applying these bounds to (18), we obtain

E{IYT(Sz) - YT(SI)IZ}
T t-1

< (85— 8)"|(1 +p?) + 21+ (1+p2)/(ee)}T' Y Y |o(t - u)]|.

t=2 u=1
Bounding the double sum as

T ¢-1 T-1
T Y Yle(t-u)|= X (1—r/T)|o(r)]
t=2t=u r=1
T-1
< lim ) (1-r/T)|o(r)|
T- o0 r=1
= Z Io(r)l»
r=1
we obtain inequality (17), with
A= (1447 +2{1+ (1+p2)/(ce)) E‘, la(r)| > 0. i
r=1

With Lemmas 3.2 and 3.3 in hand, we now turn to the proof of the principal
result.

PRrOOF OoF THEOREM 3.1. Using the notation (15), we have
T|QT{0T§ LT(A)} - QT{aT; Lw(7\)}|

= |ZT{0T§ LT(A)},G;‘{LT(A)}ZT’{GT; LT(A)}
= Zp {015 Lo(A)} GH{L.(\)}Zp {675 L (M)}

< |ZT{0T; LT(A)},F_I{HM Lw(}\)}ZT{aT; LT(A)}
=Zp {075 L(N)) T~ b3 Loi(A)} Z1 (075 Loy(N)) |
+|Zp {825 Lr(N)} [GF{Lr(A)} = T7Y60; Lo(A)}] Z {6y Ly(M))}|
120 (023 LMY [6F{Lo(M)) = T7805 Lo(M)}] 20 {675 LM} |-

The last two terms are 0p(1), since by Lemmas 2.2, 3.1 and 3.2, Gr{L(\)} and
Gr{L1(\)} both converge in probability to I'{6,; L_(\)}. The conclusion of the
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theorem follows if it can be shown that
(19) Ur=|Zp{07; L1(N)} — Zp{61; L,(A)}|-p0.
The mean value theorem gives

Up <|Zp{80; Lr(N)} = Zp{60; Lo(A)}]

+ T2 D{é'; LT()\)} - D{é} Loo(}\)}l |67 — b5l,

where 6 and 4 are between 6; and 6,. The second term is op(1), since
|D{6; L;(\)} — D(6; L(\)}| converges in probability to zero and T/*(6y — 6,)
is Op(1). To deal with the first term, we need (i) the result of Lemma 3.3 that Z;
converges in distribution to the a.s. continuous process Z,, and (ii) the uniform
convergence (in probability) of L, to L, as given by (11). With these facts, the

“random-change-of-time” argument [Billingsley (1968), page 145] shows that the
first term of (20) is 0p(1), which establishes (19). O

(20)

Although it is reasonable to expect violations of H, to produce large values of
the test statistic, a theory of its distribution under nontrivial alternatives is not
available. In this circumstance, it may be advisable to follow Fisher’s suggestion
and treat the chi-squared test as two-tailed.

4. Examples. We use the Canadian lynx and Wolfer sunspot data to il-
lustrate the application of the c.f. test of Section 3. The lynx data, described at
length by Campbell and Walker (1977), consist of annual numbers of lynx
trapped on the Mackenzie River in Canada during the years 1821-1934. The
annual sunspot data, 1700-1960, are from Waldmeier (1961). Both series were
used by Subba Rao and Gabr (1980) to illustrate their bispectral density test.
They concluded that neither series is a linear Gaussian process.

To apply the c.f. test, we choose A = (1.0,1.0,2.0,2.0) and take I1(A;) = A;/Sy,
j =1,2,3,4. The estimate G()\) is obtained from f,(0; A), as given by (6), using
M, =[T%]and K(y)=1- |y|, y €[—1,1]. For the lynx data (T = 114), the
minimum of TQ(; A\) nearest (X, = 15380, S%=15789?%) is at O;=
(2101.8,1617.22) and we obtain the value TQ(fy; A) = 22.35. This corresponds
to a probability value in the upper tail of the x*(2) distribution equal to about
2 X 1075 and is clearly significant at the 1% level in even a two-tailed test.
Applying the same procedure to the logarithm of the lynx data, we obtain
TQ(65; \) = 891, still significant at the 5% level. The sunspot data (T = 261)
give TQ,(0,; \) = 23.64, with 8, = (36.1,26.3%) and (X, S7) = (469, 38.52). We
conclude that neither the lynx data nor the sunspot series is the realization of a
Gaussian process satisfying (Al).
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