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ADAPTIVE PREDICTION BY LEAST SQUARES PREDICTORS
IN STOCHASTIC REGRESSION MODELS WITH
APPLICATIONS TO TIME SERIES'

By C. Z. WEI
University of Maryland
Herein we consider the asymptotic performance of the least squares
predictors §, of the stochastic regression model y, = B1x,; + -+ +B,%,, +

e,. In particular, the accumulated cost function Y7_.(y, — 5, — &)% is
studied. The results are then applied to nonstationary autoregressive time
series. A statistic is also constructed to show how many times one should
difference a nonstationary time series in order to obtain a stationary series.

1. Introduction. Consider the multiple regression model
(1.1) Vo= BiXpy + 0 +BX,, g, n=12,...,

where the ¢, are unobservable random errors, B,,..., B, are unknown parame-
ters and y, is the observed response corresponding to the design vector x, =
(%p15-++5%,,) Then

n -1 n
bn = (bnl""’ bnp)/ = ( E xkx;e) Z Xp e
k=1 k=1

denotes the least squares estimate of B = (8,,..., B,) based on the observations
X1, Yi5--+3 X, Yy, assuming that X7'x x/ is nonsingular. Throughout the sequel
we shall assume that {e,} is a martingale difference sequence with respect to an
increasing sequence of o-fields { %,}; i.e, ¢, is %,-measurable and E(¢,|%,_,) =0
a.s. for every n. An important example is the case where ¢, are i.i.d. random
variables with E(e,) = 0. We shall also assume that the design vector at stage n
depends on the previous observations x,, ¥;,...,X,_1, ¥,_1; i-€., X, is &, _,-mea-
surable. The asymptotic properties of the least squares estimates were recently
studied by Lai and Wei (1982) and Wei (1985). Strong consistency and asymp-
totic normality of b, were established under general assumptions. In this paper
we shall study the asymptotic performance of {b,_;x,} as a sequence of
predictors of {y,}.

Let {3,} be a sequence of predictors of {y,}. Since we cannot foresee the
future, 9, is assumed to be %,_,-measurable. If one is interested in one period
prediction, (y, — $,)? would be the “cost” to be minimized. However, in the
sequential prediction case [see Goodwin and Sin (1984) for some examples], the
predictors are going to be updated adaptively and used repeatedly over many
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1668 C.Z. WEI

periods. In this situation the cumulative “cost” 7_,(y; — 3;)% would be more
appropriate. Under the assumption that

(1.2) E(e3%,_,) = o as.forall n,

for a reasonable sequence of predictors, one may expect that

12 )
(1.3) -2 (3’k‘5’k)2“’02 a.8.
gy
However, by Chow’s theorem (1965), it is not difficult to see
n n
> (- 5’k)2 = Y e+ C(1+0(1) as.
k=1 k=1
on the set {C, > o} and
n n
Y (=3)'= L e+C(1+0() as.
k=1 k=1
on the set {lim, _, . C, < o0}, where
n
C.= Z (o — - Ek)2~
k=1

Hence, C, is of essential importance. In fact, the quantity (y, — 3, — ¢,)* was
considered in the time series literature [Fuller and Hasza (1981)] and C, can be
viewed as a second order quantity in comparison with (1.3).

For the least squares predictors

(1.4) C,= X (B'x;,— b, x,)".
k=1

In Section 2 sufficient conditions are imposed on the design vector x, to show
that

1.5 ()n~0210gdet X, X% .
EXE
1

These results are then applied to the autoregressive models in Section 3. Since
our results reveal some deeper properties of nonstationary autoregressive time
series, a statistic, which is based on det(X}_x;x}), is then constructed to show
how many times we should difference an integrated autoregressive time series in
order to obtain a stationary one when the exact order of the underlying time
series is unknown; see Theorems 5 and 6. The result (1.5) provides a statistical
interpretation for our statistic. It seems difficult for one period predictors to
reveal the similar property (see the remark following Theorem 4). For detailed
discussion see Section 3.

2. Main theorems.

THEOREM 1. Suppose that in the regression model (1.1), (1.2) holds,
(2.1) supE{|e,|*|%,_,} < o a.s. for some a > 2,
n



ADAPTIVE PREDICTION 1669

and

n -1
(2.2) x;( Y x,,x;e) X, 0 a.5.asn— o,

k=1
where v is & nonnegative random variable. Then
n
(2.3) (1-0)C,+ Y [(b, - B)x,]* ~ nve? a.s.
k=1
on the set {1 >v>0,C, > o} and
n n
(2.4) C,+ Y [(b,— B)x,]* ~ azlogdet( Y xkx;e) a.s.
k=1 k=1

on the set {v =0, C, > o, A\, = o}, where \, is the minimum eigenvalue of
Zz_lxkx;,.

REMARK. Usually, one design vector will not dominate the whole design and
v = 0. But for the explosive models, v # 0; see Theorem 4.

ProoF. Let V, = (T7_x,x}) ! and @, = (Z2_X4er)Vo(ZroiXzes). Then
(2.16) of Lai and Wei (1982) gives

n k-1 2

Q,—Qy+ Z (x;sz—l Z xjfj) /(1 + X4V Xy)
E=N+1 j=1

(2.5)

n

n k-1
= E X%kakEi + 2 E {x;sz_l( Z xjej)ek}/(l + x;er_lxk).

k=N+1 k=N+1 Jj=1
By (2.15) of Lai and Wei (1982),
XVix, = x;er—lxk/(l + x4V, Xy).
Hence,
(2.6) 1= x3Vix, = 1/(1 + x3V,_Xy).
Notice that

. k
Jj=1

This, (2.5) and (2.6) imply

Q.- Quv+ X [xi(by_, =B’ - x3Vix,)
E=N+1

(2.8) n ”

= Y xVixpe+2 Y [xi(be_ — B)le(l — x:Vix,).

k=N+1 k=N+1
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On the set {1 >0 >0, C, > w0},

(2.9) Y [xk(buy — B)(1 - xVixs) ~ G(1— 0) a.

k=N+1
Using the local martingale convergence theorem [Lai and Wei, (1982), Lemma
2(iii)] on the set {1 > v >0, C, > o0},

n

(2.10) L [xi(bp; — B)]ex(1 — x4V,x,) = 0(C,) ass.
k=N+1

Consequently, (2.8)-(2.10) imply

n

(2.11) Q.- @v+CQA-0v)(1+0(1)= Y x,V,x,e as.
k=N+1

on the set {1 >v >0, C, > o}. By (2.1) and the local martingale convergence
theorem [Chow (1965)], on the set {I7_y, x,V,x, — w0},

Y x;erxk{e%—E(eilfk_l)}=o Yy kakxk} as.

) {
k=N+1 k=N+1

Hence, by (1.2), on the set {Z}_, x}V,x, > 0},

n n
(2.12) Y x,Vpx,e ~ ( Yy x;erxk)o2 a.s.
k=N+1 k=N+1
On the set {1 > v > 0},
n
(2.13) Y x,V,x,~nv as.
E=N+1

On the set {v =0, A, > 0}, by Lemma 2(i) and (ii) of Lai and Wei (1982),

n n
(2.14) Y xiVx, ~ logdet( Y xkx;e) a.s.
k=N+1 k=1

Finally, notice that
@19 Q= (= BV b, B) = X [(b, — B),]
Thus, (2.11)—(2.15) imply (2.3) and (24). O
The following theorems provide some simple conditions to ensure C,— o0 as.

THEOREM 2. Suppose that in the regression model (1.1), 1.2) and (2.1) hold.
If

n -1
(2.16) x;( Yy xkx;e) x,—>0 a.s,
k=1

(2.17) A, > © a.s.
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and
(2.18) 3 (6, - Byl = 0,0,
then )

n
C, ~ ozlogdet( Y xkx;) in probability.
k=1

REMARK. Condition (2.18) is a natural condition. Usually, we may even
expect that the quantity X7?_,[(b, — B)'x,]? has a limiting distribution. (It is a
multiple of a x2-distribution in the classical regression theory.)

ProoF. By (2.4) of Theorem 1, we only have to show that
(2.19) C,— o as.

We are going to use (2.8), (2.12) and (2.14). First, notice that these results hold
without the assumption (2.19). By (2.18) of Lai and Wei (1982)

n

E [x;z(bk—l - B)]Ek(l - x3Vix,)

k=N+1

= o( }'i [x5(b,_, — B)]2(1 - x;erxk)) + 0(1) as.
k=N+1

By (2.8), (2.12), (2.14), (2.20) and (2.18),

{ 3 {x;z(bk_l—s)m—x;vkxk)}(uoa»

k=N+1

(2.20)

~ o2logdet( ki xkx;z) in probability.
=1
Hence,
(2.21) , %‘, [x4(b,_, — B)]*(1 — x4V,x,) = oo in probability.
=N+1
But X7 _ . [x4(Mbs_; — B)I2(1 — x}V,x,) is a positive and increasing function of
n. By (2.21)

(2.22) Y [xilbss - B)IPA - x4Vixy) > o0 as.

k=N+1
Now (2.19) follows from the fact that

n

C,2 Y [xi(be_, —B)*(1 - x}Vix,) as. a

k=N+1

When the original model can be reparametrized so that the new design vectors
are weakly correlated, we have a better result.
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THEOREM 3. Suppose that in the regression model (1.1), (1.2), (2.1) and
(2.17) hold. If there is a constant nonsingular matrix A such that z, = Ax,
satisfy

n -1

(2.23) z;(Zziz;) z,—>0 a.s.
1

and

(2.24) lim inf }\m,-n(Dn‘l(Zziz;)Dn‘l) >0 a.s.,
1

where D, = {diag(Xzz})}"/? and A (M) is the minimum eigenvalue of M,
then

n
(2.25) C,~ ozlogdet( Y xkx;) a.s.
E—1

REMARK. Usually, there is an increasing sequence of positive real numbers,
such that @, - o0 and

(2.26) ( Y xkx;)/an ->T as,
k=1

where T' is a positive definite matrix. Then we can take A to be the identity
matrix and (2.24) is satisfied automatically. But (2.26) would not be satisfied if
the components of x, are linear combinations of some “weak” and “strong”
signals. This is the case when x, = B,x,_; + B.x,_, + ¢, and the characteristic
polynomial 22 — B,z — B, has one root equal to 1 and another root with
magnitude less than 1 (see Appendix 2 for further details).

We shall prove Theorem 3 via the following strong law of a martingale
transform, whose proof is given in Appendix 1.

LEmMMA 1. Let {e,, %} be a sequence of martingale differences such that
sup, E{|e,|*|%,_1} < © a.s. for some a > 2. Let u, be an %,_,-measurable
random variable, s2 = Y7 _,u? and f be a nondecreasing function such that

(2.27) flw(xf“(x))_ldx < 0.

Then on the set {s2 - oo}, '

(2.28) S, = i uze, = o(s,f(s2)) a.s.
E=1

REMARKS. (a) Lemma 1 is an improvement of Lemma 2 of Wei (1985). Under
the assumption a > 2, Wei (1985) shows that

(2.29) Y uze, = O(s,(logs,)’) as.ford > (min(e,4)) .
k=1
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Lemma 1 implies

(2.30) Y upe, = ofs,(logs,)’) as.ford>al.
k=1

(b) Theorem 1 of Wei (1985) on the strong consistency of the least squares
estimates can be improved by (2.30). For details, see Wei (1985).

PrOOF oF THEOREM 3. First we claim that

(2.31) fn_‘, [, - B)x,]” = o(logdet( i xkx;z)) a.s.

k=1 k=1

Note that z, = Ax, and A nonsingular imply that

k; [(b, — B)'x,]?

k=1 k=1 k=1
(2'32) n ’ n -1 n
=|D;' X zkek) (Dn ( ) zkz;a)Dnl) (Dn ) zksk)
k=1 k=1 k=1
n 2
= O Dn_1 Z Zkﬁk N by (2.24).
k=1

Apply (2.30) to each component of D, 'Y?_,z,¢e,. We obtain

n
Dn_l Z Z,e

(2.33) ‘
k=1

2 N 5
= o((log( Yy ||zk||2)) ) a.s. for § > 2a71
k=1

Since z, = Ax,,

(2.34) log( kzizlllz”lp) - O(IOg( f:.‘. (1%l )) as.

= O(logdet( Y xkxg)) as. by (2.17).
k=1

Combining (2.32)—(2.34) and the fact that « > 2, (2.31) is proved. Now using
(2.8), (2.12), (2.14), (2.20) and (2.31), we have

(2.35) C,— oo as.
By (2.31), (2.35) and (2.4) of Theorem 1, (2.25) is proved. O
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3. Applications.
THEOREM 4. Assumey, = py,_, + €,, Where {¢,} is a sequence of martingale

differences satisfying (1.2) and (2.1). Let y, be an %, measurable random
variable, p, = (SiZ1vkya+1)/(SR21yi) and C, = Li_o(Br-r — £)*¥i- Then

(3.1) lo| <1 implies C,~ o?logn a.s.;
(3.2) lo| =1 implies C,~ 2¢%logn a.s;
(3.3) lo| > 1 implies C,~ c%(p*—1)n a.s.

ProoF. By Theorem 3, Theorem 4 and (3.7) of Lai and Wei (1983), we have
that for [p| < 1,

(3.4) y,?/( i yf) -0 as.

k=1
and

n
(3.5) log( Y yf)/logn ->c as,

k=1
where ¢ = 1 if |p| <1 and ¢ =2 if |p| = 1. Now apply Theorem 3 with A =1
and observe that (2.24) is automatically satisfied. We obtain (3.1) and (3.2).

For the case |p| > 1, by Theorem 2 of Lai and Wei (1983),

(3.6) p ™y, >z as,
where z = y, + X_,p " *e, is nonzero a.s. This implies
n
(8.7) ( Y y,f)(p2 - 1)/p*"*D 5 2% as.
k=1
and

(3.8) y,?/( élyf) - (0 - 1)/0" as.

By Lemma 1 and (3.7),

:g(ﬁn —p)’ ¥ = [(:Z;liyksm) /(:gyf)}
(39) . n—1
)

k=1
=o(n) as.
Applying (2.3) of Theorem 1, we have
C, ~ no?[(o* - 1)/0*)/[1 = (0* = 1)/6"] as.
= naz(p2 - 1).
This completes the proof of Theorem 4. O
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REMARK. Under the assumption that |p| < 1, Fuller and Hasza (1981) have
shown that

1
(Puy — 0)32 = 0(-’;) in probability.

It seems difficult for their arguments to show the “doubling effect” which
appears in (3.2).

THEOREM 5. Assume y, = f,y,_1 + -+ +B,,_, + &,, where {e,} satisfies
(1.2) and (2.1). Let y,,..., y,_, be F,measurable random variables and

8(2) = 2 = Bz? = o =,

(3.10) ! a
=(1-2)1+ z)bkl:[l(l — 2cos 0,2 + 2%)™y(2),

where a, b, l and d, are nonnegative integers, 0, € (0, 7), 6, + 0, if k #j and
¥(2) is a polynomial of order ¢ =p — (a + b + 2d, + - -+ +2d,) which has all
roots inside the unit circle. Then

(3.11) logdet( Y yky,g) ~ clogn in probability,
k=1

where Y, = (Ypr-+es Ypop+1)r €=q+a(a+1)+b(b+ 1)+ 25, dy(d, + 1)
and

(3.12) C, ~ co’logn in probability.

Proor. By Chan and Wei (1986) there exist nonsingular p X p matrices G
and H, such that

n
(3.13) HnG( )y kaIZ)G’H,{ —g A,
k=1

where A is positive definite a.s. and
(3.14) (G’H;) (b, — B) -, some random vector 1.
Furthermore,

A, 0 0 0 0

0 B, .

0 0 DJ(1
(3.15) H'=|. . "? ) . s

0 0 Q,
where @, = \/;Iq,

ne 0 e 0 nb 0 e 0
a-1 . b-1
A = 0 n , B — 0 n
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and
nl .- 0
p(ky=|: - | witar-= (1 0).
0 1
O oo nde
By (3.13) and (3.15), in probability,

n !
log det( Y yky,g) ~2 log(det A,det B, [ | det D,(k)det Qn)
k=1 k=1

l
ala+1)+b(b+1)+2) dy(d, +1) + q)logn

k=1
=clogn.
Hence, (3.11) is proved. Now combining (3.13) and (3.14), we have
(3.16) L [, = BYwa]” —o 187"
k=1
By Theorems 3 and 4 of Lai and Wei (1983),
n -1
(3.17) y,{( )y yky;;) ¥~ 0 as.
k=1

and
(3.18) liminf(A,/n) >0 as.

In view of (3.16)—(3.18) and Theorem 2, (3.12) is shown. O

THEOREM 6. Assume the autoregressive model in Theorem 5 has roots equal
to 1 or less than 1 in magnitude only (i.e., b=d;, = --- = d; = 0). Suppose
B, # 0 and p is unknown, but r > p is given. Let y, = (,,--+, Yp_,+1)- Then

n 1/2
é,= [log det( Y yky,g) / logn — r] — a, in probability.
k=r
Proor. We can enlarge the model to be
In =@ Yyttt Y, toE,.
By Theorem 5,
é,- (g+ala+1)- r')l/2
=(r—a+a*+a—-r)""=a, inprobability. o
REMARKS. (a) Theorem 6 answers the question of how many times we
should difference an integrated autoregressive model when the exact order is
unknown.

(b) After differencing, the standard AIC and BIC criteria can be applied to
estimate the exact order. Therefore, Theorem 5 also provides a two step order
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selection procedure. For one step procedures and background knowledge of AIC
and BIC criteria, see Tsay (1984).
(c) Note that if only one root is suspected to be equal to 1 (i.e., @ = 1 or 0), we
may use d, as a test statistic. See Fuller (1976) or Dickey and Fuller (1979) for
other tests which are based on least squares estimates.

APPENDIX 1

In this appendix, we prove Lemma 1. First, we need another lemma.

LEMMA 2. Let {¢,, %#,} be a sequence of martingale differences such that for
some a > 2 and positive constant C,

(A1) sup E{|e,|*|%,_,} < C a.s.

Let u, be %, -measurable random variables, S, = X}_ju,e, and S} =
SUP; ¢ < nlSil- Then

a/2
(A1.2) E(S*)* < KE( Yy uf) ,
k=1
where K depends only on « and C.

ProoF. Let d, = u,e, and d ¥ = sup, _, _ ,|d,|. Then by an inequality due
to Burkholder, Davis and Gundy (1972) [see also, Chow and Teicher (1978), page
397] there exists a constant B which depends on « such that

n a/2
(A1.3) E(S*)*<B E( Y E(d,fm_l)) + E(d,;")“].
k=1
Since
E(|€k|2|5z_k—1) = E(|£k|a|5‘_k—1)2/a < C¥°,
(A1.4)
n a/2 n a/2
E[ )y E(dzwl)] < CE( )y u,%) :
k=1 k=1
Now
E(d})*<E Y |dJ*=E Y, E(Jugey||Fe-1)
k=1 k=1
SCE| X |uyl*| < CE( hM |uk|2)( lmfx lukla—2)
k=1 k=1 <k=n
(Al '5) n n (a—2)/2
< CE| Y |u)? ( > |uk|2)
k=1 k=1
n a/2
=CE Z Iuk|2
k=1

Combining (A1.3)-(A1.5), (A1.2) is proved. O
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REMARK. Taking the limits on both sides of (Al.2), Lemma 2 also holds for
n= oo.

ProoF oF LEMMA 1. Without loss of generality, we can assume that each u k
is a bounded random variable. Otherwise, choose a,, so large that ¥_, P[|u,| <
a,] < co and replace u, by u,lj,, <o, First, let us assume that
sup, E(|e,|*|%,-1) < C as. for some constant C > 0. Fix a constant e > 1. Define

7, = inf{n: s2 > e*}.

Notice that on the set {s2 = o}, 7, < o0 as. for all k. In order to prove (2.28), it
is sufficient to show that on the set {s? —» 0},

(A1.6) S,k/(s,k (sfk)) -0 as.

and

(A1.7) sup |S;— S, |/e*?f(e*) >0 as.
T <i<Tpiy

Since S, = S, _; + u, ¢, (AL.6) can be shown by proving

(A1.8) u,ks,k/s,kf(sfk) -0 as.on{sZ— oo}

and

(A1.9) S, _1/e**f(e*) >0 as.

Now on the set {s? — o},
Yy E(|ujej/sjf(sj?)|“|ﬂ'k_l) < Ckz u}/(sff“(sj?)) < o as.by (2.27).
j=1 =1

With a standard argument which uses the conditional Borel-Cantelli lemma
[Stout (1974), page 55], on the set {s2 — 0},

(A1.10) une,/(s2f(s2)) >0 as.

Since on the set {s2 > o}, 7, > o as., (A1.8) follows from (A1.10). For (A1.9),
let us rewrite S, _; as

o0
Vo= X Itps ntse
Jj=1

Note that s2 is %,_,-measurable. This implies that [7, > n] =[s2 < e*] is
%,_-measurable and (I}, . ., u,¢,, %,} is a sequence of martingale differences.
By Lemma 2,

o0 a/2
E|Y,* < KE{ Y I j]uf}

Jj=1

a/2
-1
= KE{ Y uf}

J-1

< Ke*e/2,
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Thus, for any § > 0,

0

IA

(1Y) = 8e772f(e’)} i E|Y)|*/(8%7*/%f *(e”))
Jj=1

J=1

IA

(K/8%) f: 1/7%(e’)

< (K T ele= 1) [ (af *(2) " e

< o0, by (2.27).

By the Borel-Cantelli lemma, (A1.9) is proved. Now let us show (A1.7). For
Tp < i< Te+1s

2
Si - S"’k = Z I[‘l’k<f<"'/¢+1]uj£j’
Jj=1

Note that
[r,<Jj< Ths1] = [, <j]ln BRI EF_,.

<j<n 1% 56} is a sequence of martingale differences. Observe

Hence, {I [m

that
i
Zk = Sup |Sl - kal < Sup Z I["k<j<7k+1]uj£j .
T <i<Tp,, l1<i<oo |j=1
By Lemma 2,
0 a/2
2
EZy < KE( X I[n.<j<fk+1]”j)
Jj=1
Tr+1— 1 @/2
— 2
=KE| ) u?
T+1

< K(e**1 - e*)? = K(e — 1)e**/2,

By the same arguments as we show for (A1.9), (A1.7) is proved. Finally, we have
to remove the assumption sup, E(|e,|*|#,_,) < C as. by sup,E(|e,|*/%,_,) < o
as. Let

Ay = {supE(e,1F,_,) < m).
n
Then P(U2_,A,,)= 1. Define
& = enliB(e,1%, ) < m-

Clearly, {e;, #,} is a sequence of martingale differences such thaton A, ¢, = ¢/,
for all n and

supE(e/|#,_,) <m as.
n
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Applying the case we had proved, (2.28) holds on the set A,, N {s2 — oo} for all
m. Hence, (2.28) holds on the set (U2_,A,.) N {s2 > c}. This completes our
proof. O

APPENDIX 2

In this appendix we are going to justify the assertion given in the remark
following Theorem 3. We restate this assertion as a proposition.

PROPOSITION. Suppose that x, = Bx,_, + ByX,_o + €,, Where the initial
values x_, = x, = 0 and the ¢, are i.i.d. random variables with E(e,) = 0,
0 < E(e2) < 00 and E(|e,|*) < oo for some a > 2. If ¢(2) =2%— P12 — By =
(z — 1)(z — v) with |y| < 1, then (2.23) and (2.24) hold but (2.26) is violated.

Proor. Lett,=x,— yx,_;and u,=x,— x,_,. Thenfor n > 1,

(A21) tn = tn—l + ) Up =YUp_y + &y
and
(A2.2) z,=Ax,=(t,,u,), where A = (i :Z)

Since y # 1, A is nonsingular. This implies (2.23) holds iff
n -1

(A2.3) x;,( inx;) x,—0 as.
1

But (A2.3) is a special case of (3.17). Hence, (2.23) is proved.
Now let 7,2 = ¥t and U? = X'u?. Then

. T? Zl:t,-u,
Zzizg = n
! Ztiui Un2
1
and
D - T, 0
o U}
We claim that
(A2.4) D‘l(zn:z z’)D‘1—> (1 O) a.s
. n 49 n 0 1 e
1

Clearly, (2.24) follows from (A2.4) directly. We will prove (A2.4) later. Let us use
it to show that (2.26) is violated first. Denote the maximum and minimum
eigenvalues of X7'z;z/ by 8, and A,. Then (A2.4) implies that

(A2.5) liminf §,/A (D,) =1 aus.
and
(A2.6) limsup A, /A (D,) <1 as.

n— oo
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It is well known that [cf. Lai and Wei (1985)]

(A2.7) nWU2 - (1-v2) "6 as.

It is also known that [Lai and Wei (1982), page 163]
(A2.8) T2 = O(n*loglogn) a.s.

and

(A2.9) 1i:1_1>i£f n~2(loglog n)T.2 = 02/4 as.

By (A2.5)~(A2.7) and (A2.9),
(A2.10) lim (A,/8,) =0 as.

If (2.26) were true, then (A2.2) would imply
(A2.11) (Zzizg)/a" — ATA’ as.
1
Since AT'A’ is positive definite, (A2.11) implies that liminf, , (A,/d,) > 0 as.

This contradicts (A2.10). Hence, (2.26) does not hold. Now, let us prove (A2.4).
Observe that this is equivalent to showing that

(A2.12) e, = (itiui)/(TnUn) -0 as.

1
In view of (3.17) (with p = 1) and (A2.1), we have that
(A2.13) (t,u,)/(TU,) -0 as.,
(A2.14) T;'T,_,—>1 as. and U;U,_, > 1 as.
These imply that
(A2.15) e,—e,_ ;>0 as.

By (A2.1), (A2.7)-(A2.9), Lemma 1 and the strong law of large numbers, we
obtain that

n n—1 n—1 n

n-—1
Dtu; =y X tu+ Yote Y Y U, + e
1 1 1 1 1

n—1
=Y Z tiui + O(Tn—llong—l) + O(Un—llogUn—l) + O(n)
1

n—1

=y Y tu,+o(T,_logn) + o(nlogn)
1

n—1

=v X tu;+o(T,_U,_,) as.
1

This together with (A2.14) implies that
(A2.16) e,=ve,_;+o(l) as.
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Let © be the event that (A2.15) and (A2.16) hold. Then, P(Q) = 1. By the
Cauchy-Schwarz inequality, sup,|e, (w)| < 1, Vw € . In order to prove (A2.12),
it is sufficient to show that for all w € ©, the limit set of C = {e,(w): n > 1}
consists of 0 only. Let e be a limit point of C. By (A2.15) and (A2.16), e = ve.
Since v # 1, e = 0. This completes our proof. O
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