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BELIEF FUNCTION REPRESENTATIONS OF
STATISTICAL EVIDENCE

BY PETER WALLEY

Cornell University

In Glenn Shafer’s theory of parametric statistical inference, observa-
tional evidence and prior evidence are separately represented by belief or
commonality functions @ and R, which are then combined by.Dempster’s
rule. We characterise, for finite parameter spaces, the functionals @ and
R for which statistically independent observations may be combined by
Dempster’s rule, and those for which Dempster’s rule is consistent with
Bayes’ rule. The functionals are determined up to an arbitrary partition of
the parameter space and an arbitrary scale parameter, which might be chosen
to reflect aspects of the evidence on which the statistical model is based. Our
results suggest that Dempster’s rule is not generally suitable for combining
evidence from independent observations nor for combining prior beliefs with
observational evidence.

1. Shafer’s model for parametric statistical inference.

1.1. Introduction. In recent years, starting with A Mathematical Theory of
Evidence, Glenn Shafer has developed a mathematical framework in which
assessments of evidence can be represented by belief functions, set functions
which generalise additive probability measures. The basic strategy of the theory
is that the available evidence should be broken down into simpler “entirely
distinct bodies of evidence,” each of these bodies assessed separately and the
resulting belief functions combined by Dempster’s rule of combination to give an
overall assessment of evidence.

The problem of parametric statistical inference is perhaps the most immediate
and important testing ground for Shafer’s theory. This paper aims to answer
questions raised by previous discussions of the parametric statistical model,
notably those of Shafer [(1976a), Chapter 11, (1976b) and (1982)] and the earlier
work of Dempster [e.g., (1966) and (1968)].

Suppose we observe the outcome of a statistical experiment known to be
governed by one of a finite set of probability models parametrised by 6. In
Shafer’s approach we separate our assessment of the evidence concerning ©
provided by the statistical observation, to be represented by some commonality
function @ defined on subsets of ©®, from our assessment of prior evidence,
represented by a commonality function R. (Commonality functions are in
one-to-one correspondence with the more usual belief functions.) Then @ and R
are combined by Dempster’s rule to give a posterior assessment of the total
evidence.
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This strategy follows the familiar Bayesian line, but the generalisation of
additive probabilities to belief functions promises to provide some important
advantages over the Bayesian approach.

(a) Prior ignorance may be represented in a natural way by the vacuous belief
function. Unlike Bayesian “noninformative” priors, the vacuous function has all
the invariance properties and other properties that one would expect of a
representation of ignorance [see Walley (1987), Chapter 5]. At the other extreme,
a large amount of prior evidence can give rise to a Bayesian (additive) prior and
the theory reduces essentially to the Bayesian theory. In most practical prob-
lems, the prior evidence will be translated into a belief function intermediate
between these extremes.

(b) Both prior and observational evidence are represented by commonality
functions (R and Q). Bayesians, on the other hand, represent prior and observa-
tional evidence by two functions (prior probability distribution and observed
likelihood function) that are conceptually different; the likelihood function can
generate probabilities only when it is combined, by Bayes’ rule, with some prior
distribution. In Shafer’s theory, observational evidence alone may give rise to
nontrivial beliefs, represented by @, without any reference to prior beliefs.

(¢) By admitting nonadditive probability models, the theory can model
imprecision in beliefs and avoid the arbitrary choices of precise prior probabili-
ties that are needed in applying the standard Bayesian theory. [There are, of
course, other approaches which allow imprecise probability models, including
Bayesian sensitivity analysis and other theories of upper and lower probability.
See Walley (1987) for a critical survey.]

(d) Shafer’s theory aims to provide constructive methods for translating
evidence into numerical probability assessments. The basic strategy is to decom-
pose the evidence into smaller, more manageable pieces, to assess probabilities
based on each piece, and to combine the assessments through Dempster’s rule.
For example, a prior commonality function R may be constructed in this way
through some decomposition of prior evidence. This basic strategy is to be
supplemented by specific methods for assessing particular types of evidence, e.g.,
evidence in the form of likelihoods. A crucial problem for the subjective Bayesian
theory, and for any other theory of epistemic probability, is to show us how to
construct probabilities from a given body of evidence. (In our view, this problem
remains largely unresolved.) Because of the insights it promises concerning the
relationship between probabilities and ev1dence the theory of belief functions
deserves careful attention.

There are three basic problems for a belief-function model of parametric statisti-
cal inference.

(i) How do the statistical model (%, ®, P) and the observation x give rise to
a commonality function @?

(ii) How can prior evidence be represented by a commonality function R? In
particular, how should an assessment already in the form of a Bayesian prior
distribution be translated into the form of a commonality function?
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(iii) How should @ and R be combined to give an overall (posterior) assess-
ment of evidence about ©?

A fundamental principle of Shafer’s theory is that Dempster’s rule of combi-
nation is the appropriate method for combining beliefs based on “unrelated
bodies of evidence.” In this paper we investigate the implications of Dempster’s
rule for problems (i) and (ii). Statisticians are used to regarding statistically
independent observations as “unrelated” or “noninteracting” (given the para-
metric model). This suggests that Dempster’s rule be used to combine @-func-
tions based on observations that are statistically independent for all § in ©. We
might require that the @-function resulting from combination agree with the
Q-function based directly on the joint observation. [See Shafer (1976a), page 247,
and (1982), page 338 for further discussion.] In Section 2, we show that this
requirement (plus weak regularity conditions) leads either to violation of the
sufficiency principle or to Bayesian @-functions which are (essentially) Bayesian
posteriors with respect to a uniform prior. We conclude that Dempster’s rule is
not suitable for combining evidence from statistically independent observations.

Since prior and observational evidence are intuitively “distinct” or “unre-
lated,” a second role for Dempster’s rule is in combining @ and R, thus dealing
with problem (iii). In case R is induced by a Bayesian prior distribution, we
might require that the combination of @ and R be induced in the same way by
the Bayesian posterior, i.e., that Dempster’s rule be “consistent” (in a weak
sense) with Bayes’ rule. In Section 3 we show that this requirement implies that
R be Bayesian and, in fact, a power transformation of the Bayesian prior which
induces it. Then @ is determined on singletons as the same power transformation
of the likelihood function. In Section 4 we investigate extensions of @ to all
subsets of . A class of extensions is derived which includes formalised versions
of fiducial and likelihood inference as extreme cases, as well as reducing to
Bayesian inference in the case of a Bayesian prior R.

The class of extensions suggests a new rule, different from Dempster’s rule,
which can be used both for combining evidlence from statistically independent
observations and for combining prior with observational evidence, and we are
finally led to question the central role of Dempster’s rule in Shafer’s theory. We
argue in Section 5 that both Dempster’s rule and the new rule are unsuitable for
combining prior beliefs with statistical evidence; both rules can lead to in-
coherence when belief functions are interpreted as betting rates. Our general
conclusion is that there are serious objections to any theory of statistical
inference which is based on Dempster’s rule of combination.

1.2. Belief and commonality functions. The mathematical theory of belief
functions on finite spaces is presented by Shafer (1976a). The basic definitions
are summarised next; for details, see Chapters 2 and 3 of Shafer’s book. We
assume throughout that the parameter space © is finite, ® = {4,,..., 65}, where
N> 2.

There are four mathematically equivalent descriptions of a belief function,
denoted by BEL, PL, m and Q. All four are set functions defined on all subsets
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of ©. In this paper we concentrate on the commonality function @, since
Dempster’s rule has a simple multiplicative form [see (6)] in terms of Q.

To motivate and interpret these definitions, suppose that a subset B of O is
chosen randomly according to some probability mass function m défined on the
class of all subsets of 0, so that m(B) > 0, £z .gm(B) =1 and m(¢) = 0. We
can regard the chosen B as a “set observation” or ‘“randomly coded message”
that carries the meaning that the true value of 8 belongs to B, but supplies no
further information about 6 [Shafer (1982)]. The function m is called the
probability assignment. Naturally, we will say that the observation B is con-
sistent with a particular § € ® when § € B.

The commonality function @ is defined for all A c ® by
(1) Q(A) = ). m(B).

BoA
Thus Q(A) is just the probability of obtaining a set observation that is con-
sistent with every element of A. Clearly @(¢) = 1 and Q(A) > Q(B) whenever
A C B. Let |B| denote the cardinality of the set B. By the Mobius inversion
theorem, m can be recovered from @ by

(2) m(B)= Y, (-1)*"?'Q(A) forall Bc .

Setting B = ¢, we obtain the normalization condition

(3) Y (-n"*Q(a) =1
A+o
The belief function BEL is defined for all C ¢ © by
(4) BEL(C) = ¥ m(B)= ¥ (-1)"'Q(4).
BcC AccCe

BEL(C) is interpreted as the probability of obtaining a set observation that
implies the occurrence of C.
The plausibility function PL is defined for all D c © by

(5) PL(D)=1-BEL(D)= ¥ m(B)= ¥ (-1)""'Q(4).
BND#¢ AcD
A+¢
PL(D) is interpreted as the probability of obtaining a set observation that is
consistent with some element of D. Note that the plausibility and commonality
functions agree on singleton sets. ,

PL and BEL are in fact the upper and lower envelopes of a class of probability
measures on 0, so that PL(A) > BEL(A) for all A c 0, PL(A) > PL(B) and
BEL(A) > BEL(B) whenever A D B. This suggests that PL and BEL might be
interpreted as upper and lower betting rates, but that turns out to be incon-
sistent with the use of Dempster’s rule of conditioning as a way of updating
betting rates; an example is given in Section 5. Shafer’s theory has been
criticised for its failure to supply a behavioural interpretation for the set
functions m, @, BEL and PL; see Williams (1978) and the response of Shafer
(1981).
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Two extreme types of commonality function can now be defined. Call the
commonality function @ vacuous when Q(A) = 1 for all A C © or, equivalently,

_ _f1 ifB=0,
m(B) = BEL(B) = {O otherwise,
0 if B=go¢,

PL(B) = {1 otherwise.

This corresponds to always receiving the uninformative set observation B = ©
and is a natural model for complete ignorance about the true value of 4.

At the other extreme, call @ Bayesian if Q(A) = 0 whenever |A| > 1. Equiv-
alently, m(B) = 0 whenever |B| > 1, and BEL and PL are identical additive
probability measures on O that agree on singletons with m and Q. In that case,
the possible set observations are all point observations that leave no doubt about
the true value of §. The usual Bayesian account of probability may be identified
with this special case, by identifying a Bayesian probability measure with BEL
or PL.

The combination of commonality functions @, and @, by Dempster’s rule is
denoted by @, ® @,, and is defined whenever @,({8})Q,({6}) > 0 for some § € ©
by

(6) (Q: ® @,)(A) = kQ,(A)Q,(A) for nonempty A O,

where the normalizing constant & is determined by (3),

1= 2A¢¢( - 1)|A|+1Q1(A)Q2(A)

[Shafer (1976a), Theorem 3.3].

Clearly, Q, 9 Q,=Q,® Q,. If Q, is vacuous, @, ® @, = Q,. If @, is Bayes-
ian, so is @, ® Q,.

1.3. The basic axioms. We now introduce the axioms whose implications are
studied in the rest of the paper. Consider a standard parametric model {P;:
6 € @}, where the P, are probability mass functions on a sample space Z. The
discussion will refer only to a single finite parameter space ©, but we will
consider different models P, which describe different statistical experiments
governed by the same parameter 6.

The basic idea is that an observation x € & gives rise to beliefs about © that
are represented by some commonality function @, defined on subsets of ©. It is
assumed that the function @, depends on the parametric model and the
observation only through the values Py (x),..., Py (x). That assumption, which
is a weak form of the likelihood prmc1ple means that we can write Qx(A)
Q(A, 1) for all A c ©, where 1 is the N-vector (Py(x),..., Py (%)) and @ is a
functional that describes the general translation of observatlonal evidence into
beliefs about ®. We will, therefore, drop reference to the observation x and write
our axioms and theorems in terms of the functional . Of course, the axioms are
plausible only if one bears in mind the interpretation of t as a vector of
likelihoods.
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Define &= {(7},...,7y): 0 < 7,< 1 for all j, 7,> 0 for some j} to be the set
of likelihood vectors that are not identically zero. (Throughout the discussion, all
vectors considered are N-vectors.) Our first axiom is

(Al) Q(-, 7) is a commonality function on ® whenever T € %.

This axiom formalises the basic requirement of Shafer’s approach, that
statistical evidence can be represented by a commonality function Q(:,t) or
(equivalently) by a belief function. It is assumed that @(:, v) can be defined for
all conceivable likelihood vectors 7. (Different likelihoods T might be generated
by different observables in various conceivable experiments governed by the
same parameter 6.)

(Al) relies on the weak version of the likelihood principle formulated earlier.
The two statistical methods discussed by Shafer [(1982), Sections 3.1 and 3.2]
which apply to finite spaces ® do satisfy the weak version of the likelihood
principle and (Al), as well as (A2). (The third method discussed by Shafer
[(1982), Section 3.3], following Dempster (1966), is outside the scope of this paper
because it applies only to an infinite space ® which parametrises all multinomial
distributions.)

Write 1o for the product vector (1¢); = 7;0;. We require that the commonality
function @, ,, based on two statistically independent observations x and y
agrees with the combination of @, and @, by Dempster’s rule. In view of our
assumption that observations affect @ only through their likelihood functions,
this becomes, since independent likelihoods multiply,

(A2) Q(-,7) ® Q(+,0) = Q(-, T0) whenever 1 €. ¥, 6 €% and 10 € ¥.

The functionals @ satisfying (Al) and (A2) (plus weak regularity conditions)
are characterised in Section 2. In Sections 3 and 4 we drop (A2) but add two
more axioms concerning the commonality function R(-, p) induced by a Bayes-
ian prior distribution p, where p; is the prior probability of {6;}. Let £ =
{p:(V))p; 20, Zlepj = 1} denote the class of all probability mass functions on
©. The next axiom requires that any Bayesian prior p be translated into a
commonality function R(-, p) on © that represents the prior evidence about ©.

(A3) R(-, p) is a commonality function on ® whenever p € £.

The final axiom demands a weak sort of consistency between Dempster’s rule
and Bayes’ rule. If p denotes the Bayesian prior, 7; = P,,j(x) denotes the likeli-
hood function and (p ° 7); = p;7;/2p;7; denotes the posterior by Bayes’ rule, we
require that the combination of R(-, p) and Q(-, 7) agree with R(-, p° 7).

(AY Ifpe P, 1 €& and p;1; > 0 for some j, then

R(-,p) @ Q("T) =R(-,poT).
In other words, if we translate the Bayesian prior and the observational evidence
separately into commonality functions, their combination by Dempster’s rule
should agree with our translation of the Bayesian posterior.

It might be reasonable to identify R(-, p) directly with the Bayesian com-
monality function that agrees with p on singletons, especially if we wish to carry
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over the behavioural interpretation of Bayesian probabilities to the correspond-
ing belief functions. The behavioural interpretation of belief functions is prob-
lematical, however, as it can lead to incoherence. The identification of R(-, p)
with p is therefore not entirely compelling and will not be assumed here. We see
in Section 3 that the weaker axioms (A3) and (A4) are enough to force R(-, p) to
be Bayesian and, in fact, to be a power transformation of p on singletons.

Four weak regularity conditions will be assumed throughout the paper. These
seem uncontroversial and may be skipped by readers who wish to proceed to our
main results. The first says that the plausibility of a singleton {6} based on
observation x is bounded away from 0 provided # assigns probability 1 to x.

(R1) For each 1 <i < N, there is ¢; > 0 such that Q({6,}, 7) > c; whenever
Ti = 1.

The next condition says that the plausibility of a singleton {8} goes to 0 as
Py(x) goes to 0, provided all other models assign probability 1 to x.

(R2) For all 1 € & such that 7, = 1 whenever j + i, @({6,},7) = 0 as 7, > 0.

Define I, to be the vector whose jth coordinate is 1 if §; € A and 0 otherwise.
Write 1 = I for the unit likelihood. (R3) and (R4) are nontriviality conditions

concerning the sets A which receive nonzero commonality values under the unit
likelihood.

(R3) If A € ©® and Q(A,1) > 0, then Q(A4, 1,) > 0.
(R4)If Ac ©,Q(A,1)>0and 1 < i< N, then there is some 1 € & with 7, < 1
and Q(A, 1) > 0.

The effect of dropping any of (R2)-(R4) is to admit further “trivial” functions
in Theorem 1 and is clear from the proof of Lemma 2.

2. Dempster’s rule for combining independent observations. We first
investigate the implications of (A2), that the commonality functions derived
from two statistically independent observations should combine by Dempster’s
rule to give the commonality function derived from the joint observation.
Theorem 1 characterises the mathematical form of the functionals @ that satisfy
(A2) [plus (Al) and regularity conditions] in terms of a partition of ® and N
positive real constants.

THEOREM 1. A commonality functional @ satisfies (Al), (A2) and regularity
conditions (R1)-(R4) if and only if there is a partition {A,,..., A} of © and
positive real numbers A, ..., Ay such that, for all T € &,

Q(A,7)=k(r) [[ 1} whenA o,
) e
Q(¢,7) =1 and Q(A,1) =0 otherwise,
where

A" ={A: AC A, forsomel <j<s, A+ ¢}
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and

S
k(7) = ( Y [1 -~ (- TJ.»)]) > s,
i=1 b;cA,;

Proofs of Theorem 1 and the other theorems are given in Section 6. In the rest
of this section we investigate the functionals (7) as possible representations of
statistical evidence. In particular, we consider further specialisation of the
functional form, sources of the partition and constants A, consistency with the
likelihood principle and a numerical example.

In the representation (7), the sets A; in the partition are characterised by the
fact that each A; is assigned probability m(A;,1) = 1/s under the unit likeli-
hood. Generally, the functions in (7) are additive across the partition {A,, ..., A,)}
in the sense that (forallt€ %, A C 0,1 <i <5s),

PL(A;, 1) = BEL(A4,,1),

PL(A;7) = Y. PL(A N A, 1)
i=1

and

BEL(A, ) = Y. BEL(A N A,, 1).

i=1

PL and BEL are thence given by their values for A C A;:

(8) PL(A, ) k('r)[l S TIG- 7}1)],
geA
©) BEL(A,7) = k() 1 (1- 7}1)[1 ~TI(- T}f)].
6,eA—-A g,eA

It is easily seen that, for all t€% and A C 0, Q(A, 1), PL(A, 1) and
BEL(A, 7) are each continuous in r, nondecreasing in 7; when 6, € A and
nonincreasing in 7; when 6, & A.

Can additional axioms be justified to further restrict the functional represen-
tation (7), i.e., to restrict the admissible partitions and A ;7 Corollaries 1 and 2
describe the effect of two further axioms, (A5) and (A6). To force A; to be
constant over j, it is enough to require the following weak invariance axiom,

(A5) Q({6;}, 7) = Q({6;}, T) whenever 7, = 7,.

COROLLARY 1. The commonality functional @ satisfies the assumptions of
Theorem 1, together with (A5), if and only if there is a partition {A,,..., A} of
© and a positive A such that Q is given by (7) with each \; equal to A.

If we strengthen (A5) as follows to require that @ be invariant under
permutations of the indices of ®, we can show also that there must be either 1 or
N sets in the partition.

(A6) Q({0,,...,0,},7) = Q{b;u), - -, 0;(x)}, M) whenever r € #,1 <k <N, j(-)
is a permutation of {1,..., N} and = is defined by 7;;, = ,.
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COROLLARY 2. @ satisfies the assumptions of Theorem 1, together with (A6),
if and only if there is some positive N such that either

Q(A,7) =k(r) [[ 1} forallre S andA + ¢,
g,€A

(10) .
wherek(t) ' =1- ] (1- ),
6,0
oY
N
(1) Q({oj},¢)=7}/2¢} forallte #and1 <j < N,
i=1

with Q(A, ) = 0 when |A| > 1.

The invariance axiom (A6) is perhaps too strong in that it ignores additional
structure of © that may arise from the evidence on which © is based, as
indicated in the following section. The two extreme cases (s =1 and N) are,
however, especially interesting. The representation (10) corresponds to the trivial
partition (s = 1), with Q(-,1) vacuous, and (11) to the finest possible partition
(s = N), with Q(-,1) Bayesian, corresponding to the uniform probability distri-
bution on ©. The representation (11) appears to be related to the fiducial
argument, since it generates additive probabilities from likelihood evidence
alone, without reference to prior beliefs; see Shafer [(1982), Section 3.2] and
Dempster (1966, 1968). (Of course Fisher applied the fiducial argument only to
continuous spaces, whereas © is finite here.) On most interpretations of “plausi-
bility,” we would expect any @ which assigns probability 1 to the actual
observation to be fully plausible, so that PL({#}) = Q({#}) = 1, and this condi-
tion leads to s = 1 in (7).

2.1. Sources of the partition. If we take A =1 in (10) and (11), we obtain
two of the models suggested by Shafer [(1982), Sections 3.1 and 3.2] as represen-
tations of statistical evidence. Shafer regards the two models as appropriate in
different circumstances, depending on the sort of evidence on which our paramet-
ric model {F;: 6 € O} is based. He suggests representation (10) for the case in
which the different P, are based on independent empirical data and (11) when
the P, are based on a single frequency distribution (e.g., the distribution of errors
e when x = § + e). Of course, intermediate cases are possible and some of these
might give rise to the intermediate representations (1 <s < N) in Theorem 1.
As a simple example, consider the model x = 6 + e, where x is a measurement of
a real variable on a communications channel, § = 0 or 1 represents the absence
or presence of a signal and e is random noise whose distribution P, depends on
the unknown type of transmission medium (¢ =0 or 1). Here © = {(0, ¢):
6 =0,1; ¢ = 0,1)}. Suppose that the two distributions P, and P, are established
empirically through two separate sets of observations of the noise e, one for each
medium. Under Shafer’s interpretation, the structure of this evidence for our
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model could be reflected by partitioning ® into A, = {(0,0), (0,1)} and A, =
{(1,0), (1,1)}. (So A, is the event that a signal is present; A, that it is absent.)
Then conditional on 8, the separate evidence for Py and P, gives representation
(10) for ¢; while conditional on ¢, the single frequency distribution P, gives
representation (11) for §. Thus the marginal beliefs about the signal 6 will be
Bayesian, i.e., BEL ([ = 0]) + BEL (6 = 1]) = 1, for any observation x.

Typically, the class ® of possible models is constructed by comparing the
experiment at hand with “analogous” experiments whose statistical behaviour is
known. An alternative method of constructing the partition A4,,..., A, is to take
each A; to correspond to a single analogy. Several different analogies may be
considered and each may suggest several different parametric models. In the
coin-tossing example of Section 2.4, with 6 the bias of the coin, our experience
with ordinary coins suggests that 6 ~ 0.5, giving A, = [0 = 0.5]. A second
analogy is that the coin is not ordinary, giving A, = [ # 0.5]. The two analogies
are quite different because of both our different past experience of biased versus
ordinary coins and the different mechanisms by which A, and A, might have
arisen (e.g., deliberate deception seems likely if the coin is biased). We might
further split A, into [6 > 0.5] and [@ < 0.5] if we believed the two directions of
bias would arise through different mechanisms.

This method of constructing the partition is similar to Shafer’s suggestion in
that it reflects the source of the parametric model @, but is quite different in
effect. In the communications example, it seems most natural to take the
different transmission media as different analogies, since our past experience
treats the different media separately but does not distinguish cases in which a
signal was present from those in which it was absent. Thus we take A, = [¢ = 0]
and A, =[¢ = 1], giving Bayesian marginal for ¢ but not for 6, whereas
Shafer’s method gives Bayesian marginal for & but not for ¢. When the
observation x provides little information about each parameter, however, it
seems unreasonable that either marginal should be Bayesian. For this reason,
both methods of constructing the partition seem less satisfactory than adopting
the trivial partition s = 1, which gives representation (10) and non-Bayesian
marginals for each parameter.

2.2. Interpretation of A. The significance of the parameters A ; in Theorem 1
can be clarified by looking at the case s = 1, for which @ can be expressed in
terms of a “weight of evidence” function w [Shafer (1976a), Chapter 5] as

(12) Q(4,7) = k(n)exp(~ ¥ w(B, 7)),

B?A

where w({0;}, ) = —Alog7; for 1 <j < N and w(B, 1) = 0 for other sets B.
Here w(B, 7) is interpreted as the total weight of evidence focused on B by 7.
Thus 7 provides evidence. of weight —A log ; against {6,}. [Note that these
weights of evidence are additive across independent observations. In fact, from
(6) and (12), Dempster’s rule of combination is additive in weights of evidence.]
It is clear that A; determines the scale for measuring the weight of evidence
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against {f;}. Small values of A; will “discount” the failure of 6, to predict what is
observed, while values A; > 1 will “emphasise” this failure.

Theorem 1 allows the A; to be different, but it appears that we would rarely
want to discount different parameter values at different rates. So we concentrate
on the case A = A, which is implied by any of axioms (A5)-(A7) or by the
assumptions of Theorem 2. If we require that the combination by Dempster’s
rule of Q(-, ) with a Bayesian prior w agrees with the Bayesian posterior of =
and 7, we obtain A = 1. The same conclusion follows from the embedding
arguments in Shafer (1982).

2.3. Difficulties with the representation. We have assumed a weak version of
the likelihood principle, that the commonality function produced by observation
x depends only on the probabilities assigned to x by each parameter value. In
the present context this assumption is significantly weaker than the usual
likelihood principle. In fact, the following version of the strong likelihood
principle, requiring invariance under multiplication of likelihoods by a positive
constant, forces the “fiducial” representation (11).

(A7) Q(-,c7) = Q(-, 1) whenever r€e ¥ and 0 < c < 1.

COROLLARY 3. @ satisfies the assumptions of Theorem 1 plus (A7) if and
only if it has the form (11) for some positive A.

Indeed, consider an experiment with possible outcomes x and y such that
Py(x) = cPy(y) for all § € ©, where 0 < c < 1. If x and y generate @, and @,
by (7), it is easy to see that @, # @, unless s = N and A, is constant. Thus even
the sufficiency principle (or weak likelihood principle), which asserts that possi-
ble observations from the same experiment which generate proportional likeli-
hood functions should give rise to the same inference about 6, is violated unless
s = N.

To see the effect on @ of renormalizing likelihoods, consider ({6}, cl) =
c*/¥s_[1 — (1 — ¢*)“i]. This tends to 1/s as ¢ — 1 and tends to 1/N as ¢ — 0.
More generally, for any 1 € ¥ and 1 < s < N, Q(-, c7) approaches the Bayesian
function given in (11) as ¢ — 0. Thus an observation with uniformly low
probability generates near-Bayesian beliefs. Now one way of obtaining such an
observation is to include the outcome of an independent ancillary experiment,
say the results of 100 tosses of a fair coin, in the observational report. Doing so
will evidently change the commonality ‘function @ generated by the observation.
If this change in @ has any empirical significance, the change is disturbing and
calls into question our understanding of an “observation.” (If such “uninforma-
tive” ancillaries may alter our inferences, we need to know which to report and
which to ignore.) If the change in @ has no operational significance, it appears,
by letting ¢ — 0, that any @ is operationally equivalent to the Bayesian @’
obtained by normalizing @({6}) (11). Since the combination of @ with any prior
belief function is Bayesian, one reaches the Bayesian conclusion that any
posterior beliefs can be represented in the form of a probability measure,
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frustrating our original aim to generalise the Bayesian approach by admitting
imprecise probabilities.

Further problems with representations (10) and (11) arise when we try to
embed them in belief functions defined on subsets of ® X %, as in Shafer (1982).
All their extensions to belief functions on ® X & have properties which con-
tradict basic intuitions about ‘“plausibility” and “belief” [see the discussion of
Shafer (1982), page 344].

In view of these difficulties, especially the violation of the sufficiency principle
by any non-Bayesian @-function in Theorem 1, we do not find these functions
attractive as representations of statistical evidence. We are then forced to reject
at least one of axioms (Al) and (A2). If (A1) is rejected, then (A2) must also be
rejected. So we are led to give up the requirement (A2) that the combination by
Dempster’s rule of @-functions based on independent observations agrees with
the @-function based on the joint likelihood.

This can be done in several ways. First, we might retain Dempster’s rule to
combine evidence from independent observations, but not require that the
combination be obtainable from the joint likelihood, as in Shafer [(1976a),
Chapter 11]. This might be reasonable when we are uncertain that the paramet-
ric model applies to each observation, so that the individual likelihood functions
contain information additional to that in the joint likelihood (which might, for
example, be used to identify outliers). But if the statistical model is fully
accepted, the joint likelihood of the observations does seem to contain all the
relevant information about 6. Reduction of the data using sufficiency is a
common practice in statistics and a theory of evidence that always requires
“individual” likelihood functions rather than just the joint likelihood faces
serious problems over what constitute “individual” observations. Obviously, a
given likelihood function can be factored into independent components in many
ways and thus can arise as a joint likelihood from many dissimilar sets of
observations.

A second, more appealing, line is to give up Dempster’s rule for combining
evidence from independent observations. We can then try to retain (A2), but
with some other rule of combination replacing Dempster’s rule. This line is
pursued in Section 4.

2.4. Coin-tossing example. In an example given by Shafer [(1976a), page
243], we obtain 5 heads in 10 tosses of a possibly biased coin, in which the chance
of heads is known to be some multiple /10 of 1/10. Assuming a Bernoulli
model, ® = {1,2,...,9}. In Table 1 we give PL(A) and BEL(A) for selected
subsets A of ® under various belief-function representations. The given PL and
BEL values are generated by just the statistical observation. In most practical
contexts they would be combined with a prior strongly concentrated near § = 5
to take account of our past experience with coins. Columns A-D are based on
Corollary 1 with A =1. Column A gives the Bayesian function (11), with
PL(A) = BEL(A) for all sets A. Model B is based on (10) using the observation
consisting of the 10 ordered outcomes and is already very close to Bayesian.
Column C is also based on (10), but using the observed number of heads (a
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TABLE 1
Values of PL(A) (upper) and BEL(A) (lower) for selected subsets A C © in the coin-tossing
example. Columns A-D are based on (7) with \; = 1 (B on the 10 ordered outcomes, C and D on
the number of heads). Columns E-J (and A) are based on (17) with A = 1 or 1. The partitions used
were A; = {5}, Ay = {5} fors =2 and A, = {5}, A, = {1,2,3,4}, A; = {6,7,8,9} fors = 3.

A B c Db E F G H 1 J
s 9 1 1 2 1 2 3 9 2 1
N 1 1 1 1 1 1 1 05 05 05
0 o g e e g0 gww o g g
T
T Y
0 o pme e o v g, o o
o o g o e o g
(4,5} 091 (iol0 oae a0 055t o O3B 0sas oo
{3,4.5} 0805 (cotr o001 0476 015 055l ot °% 0sas 00w
(4.5.6) OTI2 G7iis oew oess  0ss 070 oesz ' ceso oass
(3,4,5,6) 0825 (08 0760 0800 0582 070 oso0 0703 0660 0,353
{3,4,5,6,7) 099 (0% 001 ooss 0893 094 oo O8% 082 0672
(2.3,4,5,6,7,8) 09967 (070 (o063 09961 09939 09967 09954 9B 0gso 0omm
w2 ooy Q006 O 0L 0107 00 004 gq 0172 092
2o Dug QUL 0 0I6E 04l 020 010 g5, O30 064
(L2.34) 0365 o Oa oms 0 o oo 038 ot 0%

sufficient statistic for 8). The sufficiency principle is violated and model C is far
from Bayesian. Column D is also based on the observed number of heads, but
with s =2, A, = {5} in Corollary 1. It is somewhat closer to Bayesian than
model C is.

3. Consistency of Dempster’s rule with Bayes’ rule. We now consider
combination of the “statistical” commonality function Q(-, 1), based on an
observation x with P(, (x) = 7, with a “prior” commonality function R based on
prior evidence separate from that provided by x. @ and R are combined by



1452 P. WALLEY

Dempster’s rule to give a posterior @ @ R. Shafer’s theory generalises the
Bayesian theory by allowing prior evidence that is too weak to generate a
Bayesian R. For example, with a complete lack of prior evidence, R is vacuous
and the posterior is just @. In those cases where the prior evidence is strong
enough to generate a Bayesian prior p, where p; is the prior probability for {0 I
we require (A3) and (A4), as well as (Al), from Section 1.3: Thus R(-,p) is a
commonality function, and if p o v denotes the posterior under Bayes’ rule, then

R(" p) ® Q("T) = R(‘,p°“l‘),
whenever the posterior is well defined. Theorem 2 asserts that these axioms plus
weak regularity conditions imply that R must be Bayesian and establishes the
form of @ on singleton sets. We require the following additional regularity
condition, where m, denotes the uniform probability distribution on ©.

(R5) R({6;}, m,) does not depend on i.

This requires the prior commonality function based on m, to be constant on the
singletons of @, since the uniform distribution m, does not distinguish between
the singletons.

THEOREM 2. Suppose (Al), (A3), (A4) and (R1)-(R5) hold. Then, for some
positive A:

(a) For all p € 2, R(-, p) is Bayesian with

N
(13) R({8.},0) =0}/ X0} forl<i<N.
j=1
(b) Forallre ¥and1<i <N,
(14) Q({6;},7) = k(7)) forsomek(r) > N~L

REMARKS. (i) Given A, R is completely determined by (13).

(ii) @ is not fully determined by (14). (A1) is, therefore, not necessary for the
representation in Theorem 2. It is necessary that (R3) and (R4) hold for
singleton sets A, but not for general A. The other conditions (A3), (A4), (R1),
(R2) and (R5) are necessary for (13) and (14).

(iii) A special case of Theorem 2 follows from the results of Krantz and
Miyamoto (1983), who studied the case where ©® contains only two points. They
imposed stronger conditions than the preceding, including the likelihood princi-
ple (A7), which lead to the same formulas (13) and (14), but fully determine
through formula (16) in Section 4.

(iv) If we weaken (R5) to the condition that r, = R({6,}, m,) is nonzero for
each 1 < i < N, formula (13) generalises to R({6,}, p) « 7,0}, with T,r, = 1.

If we require that the commonality function R generated by a Bayesian prior
p agree with p on singletons, then we obtain A = 1 in Theorem 2. The com-
monality function @ is then proportional to the likelihood function on sin-
gletons. This case is generalised in Theorem 2 only through the scale parameter
A. As A tends to zero, R(-, p) tends to the uniform distribution on {6;: p, > 0}.
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As M tends to infinity, R(-, p) tends to the uniform distribution on {6;: p; =
max p;}.

Values of A between 0 and 1 enable us to “discount” the prior p, replacing it
by a prior which is proportional to p* and closer to the uniform prior. But, for
consistency with Bayes’ rule, we must discount the likelihood function and
posterior to just the same degree A. This method of discounting might be useful
in a wider class of problems if we allowed the parameter A to vary between
formulas (13) and (14) to reflect differing degrees of confidence in our prior and
likelihood evidence. We then lose consistency with Bayes’ rule (A4), but that is
no longer appropriate when we have incomplete confidence in the prior or
likelihood.

Models which allow different degrees of discounting for the prior and likeli-
hood have already appeared in the psychological and statistical literature. The
phenomenon of “conservatism,” which has been widely observed in empirical
studies of probability revision [Kahneman, Slovic and Tversky (1982)], can be
modelled as discounting the likelihood function by taking A <1 in (14) but
A = 1in (13). The models with A different from 1 in (13) but A = 1 in (14) may be
seen as special cases of the “obstinacy-timidity impediment functions” proposed
by Lad (1978) as descriptions of non-Bayesian learning patterns.

The Bayesian regression models of West (1985) employ scale parameters to
discount discrepant components of the prior-or observational evidence. Different
observations can be discounted to different degrees in order to reduce the
influence of “outliers” on posterior beliefs.

Wolfenson and Fine (1982) study models in which a Bayesian prior is “dis-
counted” by replacing it by prior upper and lower probabilities, but the likeli-
hood function is not. Typically, we will have more confidence in the Bayesian
posterior than in the Bayesian prior and this is reflected in different discount
parameters for the prior and posterior.

We next turn to the problem of extending @(:, 7) from the singletons to all
subsets of ©. Clearly, the representations in Theorems 1 and 2 are consistent
with each other, so one way to extend @ is to add (A2) to the conditions of
Theorem 2.

COROLLARY 4. @ and R satisfy (A1)-(A4) and (R1)-(R5) if and only if there
is some partition {A,,..., A,} of ® and some positive X such that R is given by
(13) and @ by (7) with A ;= A.

Adding the likelihood principle (A7) forces both @ and R to be Bayesian, with
essentially the same form, Q({6;},7) « 7}, R({6,}, p) & p}. We next look for
non-Bayesian @ which extend (14), satisfy (R1)-(R4) and (A7) and therefore
violate (A2).

4. Partial consonance.

4.1. Extensions of . We require extensions of € to all subsets of ® which
satisfy (14). The next result gives two possible extensions.
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PROPOSITION. (a) For each A C O, Q(A, 7) is minimised over all commonal-
ity functions @ satisfying (14) by the Bayesian commonality function Q,, with

N
(15) Qb({ai}’ T) = "'ik/ gl"'j}\'

(b) For each A C ©, Q(A, ) is maximised over all commonality functions @
satisfying (14) by the consonant commonality function,

(16) Qc(A’ T) = min{q-l?‘: 0,' € A}/maX{"l}}\ 1<y

IA

N}.

Thus the Bayesian @, uniformly minimises @(A, t) and the consonant @,
uniformly maximises @(A, t) amongst all possible extensions. In that sense, the
consonant @ is as “far from Bayesian” as possible, given its relative values for
singletons. The system @, with A = 1 formalises likelihood inference and was
suggested by Shafer [(1976a), Chapter 11]. We now derive a class of commonality
functions which has @, and @, as extreme cases and contains partially conso-
nant functions whose behaviour is intermediate between @, and Q..

We require two further axioms. First, we require that @(-,1) act as an identity
under Dempster’s rule, i.e., that an “uninformative” observation giving unit
likelihoods has no effect on beliefs.

(A8) Q(-,1) ® Q(-, ) = Q(-, T) whenever 1 € .%.

The final axiom is a version of Dempster’s rule of conditioning [Shafer
(1976a), Chapter 3].

(A9) If €% and Iz €S, then Q(A,lz) « Q(A, 1) when A C B, and
Q(A,7Iz) = 0 otherwise.

(A9) requires agreement between two ways of adjusting the commonality
function @Q(-,7) on learning that 6 belongs to B. One way is to adjust
the likelihood t to I, thereby assigning zero likelihood to each 6 outside B
and leaving the other likelihoods unchanged, giving commonality function
Q(-, 1Ig). A second way is to define the prior commonality function R(-, I)
by R(A,Ig) =1 when A C B, and R(A, Iz) = 0 otherwise, to represent the
prior information that 6 belongs to B, and to combine R(-, Ip) with (-, )
using Dempster’s rule (6). The two answers agree just when (A9) holds.

We also require one further regularity condition, which asserts that the
plausibility of any hypothesis 6, should not increase when the likelihood of a
different hypothesis is increased.

(R6) Q({6;}, 1) is nonincreasing in 7; whenever i # j.

THEOREM 3. The assumptions of Theorem 2, together with (A7)—(A9) and
(R6), hold if and only if there is some X > 0 and some partition {A,,..., A,} of
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© such that R is given by (13) and for all 1 € &,

(17) Q(A, 1) = k('r)min{fi)‘: 6, A} when A e /%, Q(d,7) =1,
and Q(A,t) =0 otherwise,

where o/ = {A: ACA,; forsomel <j<s, A+ ¢} and
J
-1

k(t)=|) max{*r,-": 0, Aj} >s L
j=1

REMARKS. (i) The case s = N gives the Bayesian function (15) and s =1
gives the consonant function (16). For general s, Q(-, t) is additive across the
partition A,,..., A,, and is consonant conditional on each A;. In this case we
say that Q(-, 1) is consonant over the partition or partially consonant. The
requirement that 6 should have plausibility 1 whenever it assigns probability 1
to the observation leads to s = 1 and formula (16). Then 6§ has plausibility 1
whenever it maximises the likelihood function. The effect of varying s can be
seen by comparing columns E, F, G and A of Table 1. Increasing s tends to bring
PL(A) and BEL(A) closer together. Comparison of C with E and D with F
shows that, for the same partition and A, (17) tends to give much wider interval
widths PL(A) — BEL(A) than does (7).

(ii) The functions BEL and PL corresponding to (17) are

PL(A, 1) = k(1) % max{Ti": ;€ AN Aj}
j=1

(18) = i max{PL({6,},7): 6, € AN 4},

j=1
S
BEL(A,1) = k(1) ¥ (max{r): 6,€ A;} — max{} 6, A°n A }).
j=1

(iii) Each of Q(A, 1), PL(A, ) and BEL(A, 1) is continuous in 7, nondecreas-
ing in 7; for 7; € A and nonincreasing in 7; for 7; € A°. @({6,}, 7) = PL({6,}, 7) is
strictly increasing in 7; unless Q({6,}, 7) = 1.

(iv) Theorem 3 remains valid when (A7) is replaced by the weaker axiom:

(A10) Q(-, c1) = Q(-,1) whenever 0 < ¢ < 1,
and also when (A9) is replaced by the weaker axiom:

(A1) When AC B, A + @, 1 €% and 1l € &, Q(A, 1Iz) = Q(B, tI,) if and
only if @A, 1) = Q(B, 7).

(Only these weaker axioms are used in the proof.)
4.2. Combination of independent observations. When s < N, the functions

given by (17) are not of the form (7) in Theorem 1 and so cannot satisfy (A2).
Thus, Dempster’s rule of combination cannot be used to combine evidence from
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independent observations. [A restricted version of (A2) does hold in the case
where one observation has the form [ € B], i.e., Q(-,7) ® Q(-, Iz) = Q(-, 7Ip)
whenever 1 € & and Iz € &£.]

Next we define a new rule for combining partially consonant commonality
functions which, unlike Dempster’s rule, can be used to combine evidence from
independent observations. Our purpose in introducing the rule is not to advocate
its use—indeed, we will argue later that it shares some of the defects of
Dempster’s rule [see especially (v) and (vi) of Section 5]—but rather to show
that there are alternative rules for combining belief functions which have
advantages over Dempster’s rule.

The new rule B is defined for partially consonant commonality functions @,
and @, for all nonempty sets A by

(Q: B Q,)(4)

o it Q,(4) @4(4) - 0,
kmin{Q,({6})@,({6}): 6 € A} otherwise,

where k& > 0 is uniquely determined so that @, B @, is a commonality function
by (3). Then @, B @, is well defined provided @,({0})Q.({6}) > 0 for some
0 € ©.1f Q, is partially consonant over 4,,..., A, and @, is partially consonant
over B,,..., B, then @, B @, is partially consonant over the common refine-
ment C,,...,C, with C; = A; N B,. Thus the class of partially consonant com-
monality functions is closed under B. (But B cannot be used to combine
arbitrary commonality functions, since their combination under it need not be a
commonality function.)

It is easily verified that for the @-functions in Theorem 3, Q(-,To) =
Q(-, ) B Q(-,6) under this rule, i.e., combination of independent observations
by the new rule agrees with direct use of joint likelihoods. Thus, (A2) is satisfied
by (17) if Dempster’s rule is replaced by the new rule (19). Note that the new
rule, like both Dempster’s rule and Bayes’ rule, is multiplicative in the com-
monality numbers of singletons. Moreover, the new rule is symmetric in @, and
Q,, @, B @, = Q, when @, is vacuous, and @, B @, is Bayesian when @, is
Bayesian. It follows that the functions @ and R of Theorem 3 satisfy (A4) when
Dempster’s rule is replaced by the new rule. Thus, (19) may be used to combine
prior with observational evidence as well as to combine evidence from indepen-
dent observations.

Given 0 < 7 < 1, write 7 for the N-vector with 1) = 7, 1) =1 for i # j.
Then the functions Q;, defined by @ (A, ) = Q(A, 7), have the same simple
form under both representations (7) and (17),

™ if b€ Aes”,
(20) Q(A,r)x(1 iffeAect
0 ifA¢&" and A # ¢.

Moreover, for both representations, @(A, t) can be obtained by combining N of
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these functions:
(21) Q(',"')=Ql(""'1) ® Qz(',"z) & - QQN(',TN)-

The representation of Theorem 1 is obtained by taking ® to be Deémpster’s rule
(6) and that of Theorem 3 by replacing & by the new rule B8 defined in (19).

4.3. Discounted likelihoods. As in Section 2.2, some insight into the role of
the parameter A can be gained by transforming the consonant function @, (16)
to its corresponding weight of evidence function

w(B, 7) = A max{o(B, 1),0},
where
v(B, 1) = log(min{r;: 6, € B} /max{r;: 6, € B°})

and log(0/0) is taken as 0. Thus, only those subsets B for which min{r;:
0, € B} > max{r;: 0, € B¢} are assigned positive weight of evidence. Shafer
[(1976a), Section 11.2] shows that the sum of weights of evidence over all subsets
containing 6, but not 6,, which he interprets as the “weight of evidence
favouring 8, over 6,,” is just A log(r,/7,) when 7, > 7,, and 0 otherwise. Indeed,
this property characterises the functions @, [Shafer (1976a), Theorem 11.3].
Thus, weights of evidence are a constant multiple A of positive log likelihood
ratios.

For the consonant function (16), Q(A, t), PL(A,7) and PL(A,r7) —
BEL(A,r) = min{PL(A, 7), PL(A° 1)} are all nonincreasing in A. Their be-
haviour as A varies is illustrated in Table 1. (Compare columns E and J. The
partially consonant F and I behave similarly.)

Notice that while the partition A,,..., A, and the scale parameter A in
Theorem 3 may depend on the source of the models in ® (since ® has been fixed
throughout the discussion), they may not depend on aspects of the Bayesian
prior and likelihood such as their mutual consistency or the consistency of
different observations. Thus, we must not only discount a Bayesian prior and
likelihood function to the same degree A, but also discount all possible likelihood
functions to this same degree. At the cost of giving up (A4) and (A2) for rule (19),
we can employ this form of discounting much more widely, as a way of reducing
the “informativeness” of a commonality function to reflect our degree of con-
fidence in the prior assessment or likelihood function on which it is based. That
is, we might use the functional forms for R and @ given by (13) and (17), but
allow A to depend on the particular prior p and likelihood .

5. Conclusion. Equation (14) states that the commonality (or plausibility)
function on singletons is proportional to some positive power of the likelihood
function. This is compatible with likelihood inference, which takes the likelihood
function to express the relative support provided by the data for single values of
0. But likelihood theorists have often insisted that the likelihood function cannot
be used to define the support for larger subsets of ®, whereas (17) does extend
the commonality function in (14) to all subsets of ®. At one extreme (s = N),
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the plausibility function derived from statistical evidence alone is additive, as in
fiducial inference. At the other extreme (s = 1), the plausibility of a set A is
obtained from the maximum of the likelihood function over A. This corresponds
to a version of likelihood inference in which the likelihood function L is
extended to all subsets of ® by L(A) = max{L(0): § € A}, as in the definition
of the generalised likelihood-ratio statistic, widely used in hypothesis testing.
The other values of s in (17) give functions intermediate between these two
extremes.

Note also that Theorem 3 leads to Bayesian inference (with the minor
generalisation through the scale parameter M) if we require that @ always be
combined with a Bayesian prior distribution. Then all values of s in Theorem 3
give the same Bayesian posterior. (The case s = N gives a Bayesian posterior for
any prior commonality function, but non-Bayesian priors will typically produce
non-Bayesian posteriors when s < N.)

The representations of statistical evidence defined in Theorem 3 seem more
reasonable than those in Theorem 1, especially as they satisfy the likelihood
principle (A7). The new rule of combination (19) can then be used to combine
evidence from statistically independent observations, but Dempster’s rule cannot
and we are led to ask what role Dempster’s rule does have in statistical
problems. The following considerations suggest that, in problems of parametric
statistical inference at least, Dempster’s rule is not a satisfactory way of
combining evidence.

(i) No convincing arguments have been advanced to support Dempster’s rule,
even as a method for combining specific types of evidence such as prior and
likelihood evidence. [Compare with the coherence arguments in Walley (1987),
which support a different rule, the generalised Bayes’ rule discussed later.] In
problems where we have a Bayesian prior, as in Theorem 2, Dempster’s rule is
consistent with Bayes’ rule, but so are other rules such as (19) or the generalised
Bayes’ rule. In examples where Dempster’s rule gives plausible results [Shafer
(1976a)], so do other rules. Dempster’s rule therefore seems somewhat arbitrary.

(ii) We saw in Section 2 that Dempster’s rule cannot be used to combine
evidence from statistically independent observations without violating the
sufficiency principle in a serious way, unless the set functions involved are
actually Bayesian (the case s = N).

(iii) By (ii), Dempster’s rule cannot be used (without violating the sufficiency
principle) to combine new observational evidence with prior evidence when the
prior evidence itself includes earlier observations, even if these are statistically
independent of the new observations. Thus, Dempster’s rule cannot be used to
sequentially update beliefs as new observations are obtained. More generally, it
should not be used without careful attention to the source of prior beliefs.

(iv) On the other hand, the new rule (19) can be used consistently to combine
new observations both with independent observations and with prior evidence,
through the representations of Theorem 3. This seems a substantial advantage
over Dempster’s rule.
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(v) If the prior R is non-Bayesian and we interpret the PL and BEL
functions generated by both prior and posterior as upper and lower betting rates,
then use of Dempster’s rule or (19) to combine prior and likelihood can lead to a
sure loss (or “Dutch book™). This can happen even when the possible likelihood
functions take only values 0 and 1, so having the effect of conditionalizing the
prior.

The following example of such a sure loss can be interpreted as a model for
the “three prisoners” problem discussed by Walley [(1987), Chapter 6.3]. Let
N=4and &= {x y}. Take the statistical models P, to be degenerate distribu-
tions at x when i =1 or i = 3 and to be degenerate at ywheni=2o0ri= 4
Consider the prior probablhty assignment m({0,}) = m({6,}) = m({65,0,}) =
which corresponds to the prior commonality function R(A) = 3 when |A| =1 or
A = {0,,0,} and R(A) = 0 otherwise. Observing x has the effect of conditional-
izing the prior on the event B = {#,, 65}. Dempster’s rule of conditioning [Shafer
(1976a), Chapter 3] defines the posterior commonality function R(A|x) to be
proportional to the prior R(A) when A ¢ B and zero otherwise. Be-
cause R(B) =0 and R({6,}) = R({6)), this gives R({6,}}x) = R({d;}}x) = 3,
R(A|x) = 0 otherwise. The same posterior is generated when Dempster s rule of
combination (6) or the alternative rule (19) is used to combine the prior R with
some commonality function @ induced by the degenerate likelihood function,
provided @ satisfies the minimal conditions Q({6,}) = Q({0;}) and @(A) =0
unless A C B [which are satisfied, for example, by all the functions of form (7) or
(17)]. Similarly, observing y has the effect of conditionalizing on {6,, 8,}, giving
posterior R({6,}|y) = R({6,}|y) = 3, R(A|y) = 0 otherwise.

Now consider the event D = {6,, 6,}. The prior satisﬁes BEL(D) = PI(D) =
2 whereas the posterior has BEL(D|x) = PL(D|x) = ;= BEL(D|y) = PL(D|y).
The prior and posterior are inconsistent; a bet on event D prior to the
observation at lower betting rate BEL(D) = 2, together with a posterior bet
against D at upper betting rate PL(D|x) = PL(D|y) = 3, will produce a sure
loss. Thus, PL and BEL cannot (coherently) be interpreted as upper and lower
betting rates when Dempster’s rule of conditioning is used or when rule (6) or
(19) is used to combine prior and likelihood.

(vi) Only those lower probability functions with the mathematical properties
of belief functions can be combined by Dempster’s rule. Dempster [(1968), page
225] and Shafer [(1981), page 15] have used this as an argument for restricting
attention to belief functions. But the class of belief functions is too small to
model all reasonable belief states. Consider, for example, beliefs about the
outcomes of two physically unrelated coin-tosses, one made with an ordinary
coin (believed to be fair) and the other with a coin that is so deformed that we
are completely ignorant about its bias. Beliefs about the two outcomes can be
properly modelled by a lower probability function, the lower envelope of all
additive probability measures under which the two tosses are independent and
the possible outcomes of the first toss each have probability 3. This lower
probability function is not a belief function, however, and there seems to be no
reasonable alternative model which is a belief function. Analogous examples can
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be constructed in which prior beliefs concerning statistical parameters cannot be
represented by a belief function; e.g., reinterpret the outcomes “heads” or
“tails” as presence or absence of a signal on two communications channels, where
each signal is generated by a random mechanism and itself generates a noisy
observation. It seems, therefore, that in some statistical problems we must use
lower probability models that are not belief functions and so cannot be combined
by Dempster’s rule. [The rule (19) is even less satisfactory in this respect as it
applies only to those belief functions which are partially consonant.]

We have argued that Dempster’s rule should not be used to combine evidence
from statistically independent observations. Arguments (iii), (v) and (vi) suggest
that neither Dempster’s rule nor the new rule (19) is suitable for combining prior
and likelihood evidence. There is, however, an attractive alternative rule for
combining prior and likelihood, the generalised Bayes’ rule studied by Walley
[(1987), Chapter 8]. This generalises Bayes’ rule by admitting a wide class of
“coherent” upper and lower probability models for prior beliefs; this class is
somewhat wider than the class of belief functions admitted by Dempster’s rule
[it includes the model defined in (vi), for example]. The generalised Bayes’ rule
can be justified as the uniquely coherent rule for combining prior and likelihood
when upper and lower probabilities are interpreted as upper and lower betting
rates. It meets our objections (i), (ili), (v) and (vi) to Dempster’s rule of
combination. In our view, the generalised Bayes’ rule has substantial advantages
over Dempster’s rule in statistical problems and the theory of coherence is more
promising than the theory of belief functions as a foundation for statistical
inference.

6. Proofs of main results.

LEMMA 1. Suppose @ satisfies (Al), (R1) and
(22) (VAes;r,0,10€F) QA 10) = k(1,0)Q(A4,7)Q(A,0),

where o/ is a class of nonempty sets containing all singletons. Define /" =
{A e A+#¢, QA1) > 0}. Then

(VAeod—otrc?) Q(A,r)=0,
(23) (VA e*) (AN(A),..., Ay(A) 2 0) (V7 €2)

! N
Q(A, 1) = k(r) [T @
J=1

for some k(1) = N~', where A (A) may take the values 0* and oo, with the
conventions (V x > 0) x°* =1 and 0°* =0; (Vx < 1) x® = 0 and 1° = 1. Also,
A;(A) =2 A (B) whenever A,B€ /", ADBand1<j<N.

PrOOF. For A €/, 0 <x <1, define @;(A,x) = Q(A,o), where o; = x,

o, =1 for i # j. Since any T € % can be expressed as a product of N such o’s,
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repeated use of (22) gives
N
(24) (VAev,1e9) Q(A,'r)=k0('r)l—[1Qj(A,Tj).
=

But X Q({6;}, ) = 1 by (A1), hence k(t) > 0. Now fix j, i # j and A € . For
all 0 < x < 1, define f(x) = @ (4, x)/Q,({6;}, x). By (R1) and (Al), this is well
defined and 0 < f(x) < ¢; ! for 0 < x < 1. Use (22) to show

(25) f(xy) =f(x)f(y) forall x and yin[0,1].

Clearly f(0) and f(1) take the values 0 or 1. If f(0) =1, then (V 0 <x < 1).
f(x)=1.1If f1) =0, then (V0 <x<1) f(x)=0.If f(x)=0 for some x > 0,
then (V 0 <y<x) f(y) =0 and f(x/*)=0 by (25), hence (Vv 0 <y<1)
f(y) = 0. Thus there are five types of solution to (25):

HVO0<x<1)f(x)=0.
() (VO<x<1) f(x)=1.
(i) f(0) = 0, VO < x < 1) f(x) = 1.
(i(V)(VO<x<1) f(x) =0, f(1)=1.
W fO) =0, fA)=1,(V0<x<1)f(x)>0,30<x<1) f(x)#1.

In case (v), define g(y) = log f(e”?) for y < 0 and g(y) = —g(—y) for y > 0.
Then (25) gives Cauchy’s equation g(y + z) = g(y) + g(z) for all real y, z, with
8(y) < —logc; for y <0, and g not identically zero. The only solutions are
g(y) = Ay for some real A > 0. Hence, f(x) = x* for 0 < x < 1, and this also
covers cases (ii)—(iv) by taking A = 0,0 + , oo, respectively. Taking A (A) =
either (Vv 0<x<1) Q(A4,x)=0 [case @i)] or (VW 0<x<1) Q(A x)—
kj(x)x™, where k;(x) = Q ({6;}, x) > c;. By (24), either (V 7 € ¥) Q(A T) =
or (VTESL) QA, 'r) = k('r)l'lN_l'r A4, where k(1) = ko(T)T k() > 0. By
(A1), 1 < X,Q({0;}, 7) < Nk(7). IfA Bevrzfr with A D B, then(VO <x<1)
Q,(A, x)/QJ-(B, x) = M@ ~NB) < 1 since (-, x) is a commonality function,
so that A (A) > A(B).O

LEMMA 2. Suppose Q satisfies (Al), (R1)-(R4) and (22). Then Q has the
form (23), with (for A € ") A (A)=0 unless §;€ A, and o« > A (A) >
Ai({6;}) > O when 6, € A.

ProoF. By Lemma 1, @ satisfies (23). Suppose A € «/*. Using (24), (R3)
gives @ (A,0) > 0, hence A (A) =0, when 6, & A. By (R4), A(A) < oo for all
J. All singletons are in &% by (R1). By (R2), Q;({0;},x) > cxM ) - 0 as
x — 0, so that A;({6;}) > 0 + . Cases (iii) and (iv) in Lemma 1 are thus ruled out
by (R2) and (R4). Thus, whenever 6, € A € &%, 0 < A ({6;}) <A, (A) < 0.0

LEMMA 3. A commonality function @ is idempotent, i.e., @ ® @ = @, if and
only if for some 1 < s < N there are disjoint A,,..., A, C © such that Q(A) =
s~ ! when A is nonempty and contained in one of the A, Q(¢) =1and Q(A) =
otheruwise.
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ProoF. If Q has the given form, (@ & Q)(A) « Q(A)? « Q(A) for A # ¢, s0
Q is idempotent. Conversely, suppose @ is idempotent. Let A,,..., A, be the
distinct subsets of ® with m(A;) > 0. By (6), (V A # ¢) Q(A) = kQ(A)Q(A) for
some k > 0,s0 (VA =#¢)Q(A) 0 or k~'. Hence, Q(A,) = k™. For any i # j,
A, # A; so without loss of generality A; ¢ A,. Then
Q(A,; mAj) = Y m(B)
B;AimAj
> Y m(B)+m(A;)=Q(A,) +m(A) >k},
BoA,

so that A, N A;=¢. Thus A,,..., A, are disjoint. It easily follows that @ has
the given form, with m(A4,) =s ' =k~ 0O

COROLLARY 5. A commonality functional @ satisfies (A8), i.e., Q(-,1) acts
as an identity under Dempster’s rule, if and only if Q(-,1) has the form given in
Lemma 3 and Q(A, 1) =0 for all 1 € & unless A is contained in one of the sets
A,..., A,

ProoF. If @ satisfies (A8), Q(-,1) must be idempotent and so have the form
given in Lemma 3. If (Vv j) A¢Z A;, then Q(A,1)=0, so Q(A, 1)
Q(A, 1)Q(A,1) = 0. The converse is easy to check. O

ProoF oF THEOREM 1. Suppose @ satisfies (Al), (A2) and (R1)-(R4). Let &/
be the class of all nonempty subsets of ©. (A2) implies (A8), so by Corollary 5
there are disjoint A,,..., A, with @(A,7) =0 unless A €& = {A: 3 ))
A cCAj} By(Rl), A,..., A, must be a partition of ©. (AZ) implies (22), so the
conditions of Lemma 2 hold. Let A be any proper subset of A, that contains 6,.
To establish (7), we need to show that A (A) = A;(A,). Let Q; be as in (24) and
let m; be the probability assignment corresponding to @;. Then A — {6;} and

— {6,} are in /%, hence Q,(A — {6}, x) = ki(x) = Q;(A,— {6}, x) from
Lemma 1. Because A contains A — {6,} but not A, — {6;}, by (1) we must have
m;(A, x) = 0. Hence,

(Vo<x<1)Q,(A,x) =k (x)x¥*= 3} mi(B,x)=m;(A,x)
A, DBDA

= Q '(Aly x) =k ~(x)x>‘j(At)‘

Thus A;(A) = A;j(A,) is constant over A C A, for which 6, € A. Writing A; =
A (A, (7) holds To obtain the expression for k(7), use (3)

For the converse, suppose @ has the form (7). Then m(A4, 1) =
Yo a(—1)B-4IQ(B, 1) is clearly zero except when A € &%, and is eas11y com-
puted to be zero when A = ¢. m(4,71) = k('r)Hg caT; JH,; ca-al — 7 M)y >0
when A C A,, A # ¢. Thus Q(-,7)isa commonahty function.

Since k('r) > s~ (R1) holds with ¢; = s~!. When some 7, =1, k(1) < 1, so
Q({8;},7) <1 A — 0 as 7. = 0. Thus (R2) holds. (R3) holds because QA IH)=1
if Aest, and (R4) holds because Q(A,T) > 0 whenever A € &/* and
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(V 6, € A) 7, > 0. Finally, (A2) follows from (7) and the multiplicative form of
Dempster S rule (6). O

PROOF OF THEOREM 2. Assume the axioms and regularity conditions hold.
Define r(A) = R(A,m,) and &/= {A: A # ¢, r(A) > 0}. We show that &/
contains just the singleton sets.

By (A4), whenever 1 € &, p € Z and p o 7 is well defined,

(26) (VA#¢) R(A,por)=~k(p,7)R(A,p)Q(A,r) forsomek, > 0.
For v € #, let 1" € 2 denote the normalized version of r, 1/ = 7;/Xr. Taking
p = m, in (26) gives
(27) (Wre¥, A+¢) R(A, 1) =ky(1)r(A)Q(A,r) forsomek, > 0.
Now for any 1 € ¥, 6 € & with 16 € ¥ and A # ¢,
R(A,(70)’) = ky(70)r(A)Q(A,10) [by (27)]
=k,(7',6)R(A,1)Q(A,a) [by(26)since(16) =1'00]

= ky(1', 0)ky()r(A)Q(A, 7)Q(A, 0) [by (27)].
Hence, (V A € &) Q(A, 10) = k(1,0)Q(A, 7)Q(A, 0), where k& > 0. Thus @
satisfies (22). Now by (A3) and (R5), *N ,r({6,})) = Nr({6}) > 1, so that «/
contains all singletons. Thus @ satisfies the conditions of Lemma 2. Taking r =1
in (27) shows Q(A,1) > 0 whenever r(A) > 0, so that &/ = /. By Lemma 2,

(28) (VAed,1€%)Q(A,1) = k(1 )I_ITA(A)

where A (A) > A({6}) >0 for §,€ A. Now cons1der the constant likeli-
hood 7 = cl, where 0'< ¢ < 1. By (28), (VA e) Q(A cl) = k(cl)c*¥, where
p(A) = Za EA}\ (A). By (27), Q(A,cl) = ky(cl)"! is constant over A EM
Hence, ,u(A) is constant over A € /. But ¢/ contains all singletons, so u({6;}) =
is constant over j. Thus for A € &,

A=p(4)z X A({6)) = X wu({8}) =NAl,

6,€A fcA

so |A| = 1. This shows that ./ consists of exactly the singletons, so r(A) =0
when |A| > 1. By 27), (V p € %) R(A,p) =0 when |A| > 1, ie, R(-,p)
is Bayesian. (14) follows from (28). (R5), (27) and (28) imply R({6;},p) @
Q({6;}, p) x p}, giving (13). O

PROOF OF PROPOSITION. (a) Z 1Q({0} T) = k('r)Zle'rj)‘ > 1 for any com-
monality function . Hence,

N
Q({6.},7) = k(7)7} = 7 /‘j‘ = Q({6;}, 7).

Also, for [A] > 1, Q(A, 1) = 0 = Q,(A4, ).
(b) For any commonality function @,

1> max{Q({6},7):1</< N} = k('r)max{vj": 1<j< N}.
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Hence, whenever A + ¢,
Q(A, ) <min{Q({#},7): 0 € A} = k(7)min{r}: 6, € A}
< min{r}: §, € A} /max{r}: 1 <j < N} = Q.A,1). O

PROOF OF THEOREM 3. Suppose that the assumptions hold. Then (13) and
(14) hold by Theorem 2. From Corollary 5, using (A8), there are sets A, A
such that Q@(A,1) = s™! when A € &/* and Q(A, 1) = 0 otherwise, where 2+
contains all nonempty subsets of each A ;- Using (14), A,,..., A, form a parti-
tion.

Let A be any member of «/* that contains at least two points and let 7 be in
& . By relabelling the points 6, we can assume that A = {0,,90,,..., 6;}, where
T <7< -+ <. Then QC, 1) = Q(C,1) = s™! for any nonempty C C A,
using (A7). Hence, using (A9), Q(C, 7;1,) is constant over all nonempty C C A
and zero otherwise. Using (1), m(A, 714) = Q(A, 11,) = 1. Hence,

1=Q(4,5L) < Q({8}. 51,) < Q({4}, L),
using (R6) for the last inequality. Thus Q({0;}, 1I,) = 1, giving m(C, vI,) = 0
unless 6, € C. Writing B = {6,,0,,..., 0,_.}, it follows that Q(B,rl,) =
Q(A, t1,). Applying (A9) again, Q(B, 1) = Q(A, 7). Repeating this argument
J — 1 times and using (14), we see that

Q(A,7) =Q({0,),7) =k(1)r) = k('r)min{'rf: 6, A}.

This also holds when A is a singleton, by (14).
To obtain the formula for k(t), apply the identities (3) and

> (-1)"“"*'min{q;: 6, € A} = max{q;: 6,€ A},
¢$ACAI-

with q;, = Q({ot}’ 7)9 glVing

1= ) max{q;:0,€ A} =k(r) ) max {7} 6, € Aj}.
j=1 j=1
This establishes (17).
Conversely, suppose R and @ are defined by (13) and (17). Use (2) to show
that the probability assignment corresponding to @ is

m(B, 1) = min{Q({6,},7): 6, € B} - max{Q({Hi}, 7): 6, € A - B}

when this is positive and B C A;, m(B,t) =0 otherwise. Since m(-, 1) is
nonnegative, @(-,7) is a commonality function and (A1) holds. (A7) holds
because k(ct) = ¢ k(7). (A8) follows from Corollary 5. (R6) holds since k(7) is
nonincreasing in each 7. The other axioms and conditions are easily verified. O

Acknowledgments. This work developed from seminars organized by Terry
Fine at Cornell University in spring 1977. I am grateful to Terry Fine, Mike
West and Marco Wolfenson for comments on earlier drafts and to several
referees and an Associate Editor.



BELIEF FUNCTION REPRESENTATIONS 1465

REFERENCES

DEMPSTER, A. P. (1966). New methods for reasoning towards posterior distributions based on sample
data. Ann. Math. Statist. 37 355-374.

DEMPSTER, A. P. (1968). A generalization of Bayesian inference (with discussion). J Roy. Statist.
Soc. Ser. B 30 205-247.

KAHNEMAN, D., SLovic, P. and TVERSKY, A., eds. (1982). Judgment under Uncertainty: Heuristics
and Biases. Cambridge Univ. Press, London.

KRANTZ, D. H. and M1YAMOTO, J. (1983). Priors and likelihood ratios as evidence. J. Amer. Statist.
Assoc. 78 418-423.

Lap, F. (1978). Embedding Bayes’ theorem in general learning rules: Connections between idealized
behaviour and empirical research on learning. British J. Math. Statist. Psych. 31
113-125.

SHAFER, G. (1976a). A Mathematical Theory of Evidence. Princeton Univ. Press, Princeton, N.J.

SHAFER, G. (1976b). A theory of statistical evidence (with discussion). In Foundations of Probability
Theory, Statistical Inference, and Statistical Theories of Science (W. L. Harper and C. A.
Hooker, eds.) 2 365-436. Reidel, Dordrecht.

SHAFER, G. (1981). Constructive probability. Synthese 48 1-60.

SHAFER, G. (1982). Belief functions and parametric models (with discussion). J. Roy. Statist. Soc.
Ser. B 44 322-352.

WALLEY, P. (1987). Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London.

WEST, M. (1985). Generalized linear models: Scale parameters, outlier accommodation and prior
distributions. In Bayesian Statistics 2 (J. M. Bernardo, M. H. DeGroot, D. V. Lindley and
A. F. M. Smith, eds.) 531-558. North-Holland, Amsterdam.

WiLLiAMS, P. M. (1978). On a new theory of epistemic probability. British J. Philos. Sci. 29
375-387.

WOLFENSON, M. and FINE, T. L. (1982). Bayes-like decision making with upper and lower probabili-
ties. J. Amer. Statist. Assoc. 77 80-88.

ScHooL oF ELECTRICAL ENGINEERING
CORNELL UNIVERSITY
ITHACA, NEW YORK 14853-5401



