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ON LOCAL AND NONLOCAL MEASURES OF EFFICIENCY

By WILBERT C. M. KALLENBERG AND TERESA LEDWINA
Twente University of Technology and Technical University of Wroclaw

General results on the limiting equivalence of local and nonlocal mea-
sures of efficiency are obtained. Why equivalence occurs in so many testing
and estimation problems is clarified. Uniformity of the convergence is a key
point. The concepts of Fréchet- and Hadamard-type differentiability, which
imply uniformity, play an important role. The theory is applied to tests
based on linear rank statistics, showing equivalence of the local limit of exact
Bahadur efficiency and Pitman efficiency. As a second application, the rela-
tion between the inaccuracy rate and the asymptotic variance of L-estima-
tors is investigated.

1. Introduction. Both in testing theory and in estimation theory asymp-
totic comparison of competitive procedures can be made in a local and a nonlocal
way. In testing theory the most familiar measures are Pitman efficiency and
Bahadur efficiency, while their counterparts in estimation theory are based on
asymptotic variances and inaccuracy rates. In typical cases the local limit of the
Bahadur efficiency equals the limiting Pitman efficiency, where in the latter case
the limit is taken with respect to levels of significance tending to zero. A similar
phenomenon appears in estimation theory: In typical cases the local limit of the
inaccuracy rate equals (202)!, where o2 denotes the asymptotic variance. In
Juredkova and Kallenberg (1987) it is shown that both issues are strongly
related.

Under mild conditions, Wieand (1976) has shown that the limiting approxi-
mate Bahadur efficiency equals the limiting Pitman efficiency. Approximate
Bahadur efficiency, however, is in itself of little value as a measure of perfor-
mance of tests since monotone transformations of a test statistic may lead to
entirely different approximate Bahadur slopes [cf. Groeneboom and Oosterhoff
(1977)]. Following the same line of argument in estimation theory as Wieand did
in testing theory, it is shown in Jurekova and Kallenberg (1987) that the local
limit of the approximate inaccuracy rate trivially equals (202%) 1.

It seems to be more natural to consider exact Bahadur efficiency and exact
inaccuracy rates, because they are meaningful measures of nonlocal performance
by itself. Coincidence of the limits of exact Bahadur efficiency and Pitman
efficiency requires an inversion in the order of taking limits (cf. Section 2). This is
permitted when we have uniform convergence. (With approximate measures of
comparison, one effectively ignores this problem by changing the original defini-
tion of the nonlocal measure.) The phenomenon of equivalence in the limit of the
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exact nonlocal and the local measure has been mentioned by several authors and
is established in a lot of special cases. However, no general results are available,
specifying what is meant by “typical” cases and clarifying why the equivalence
occurs in so many testing and estimation problems. It is the purpose of this
paper to present a general theory to give more insight into the nature of the
problem.

Here we consider estimators and test statistics of the form T, = T(P,), where
T is a fixed functional and P is the empirical probability measure based on n
observations. The concepts of Fréchet- and Hadamard-type differentiability of
T, which imply uniformity, play an important role. It has to be emphasized that
statistics, which are locally very close to each other, may be very different in
their nonlocal behaviour. A typical example is given by Basu (1955) [cf. also
Jureckova and Kallenberg (1987), Section 5(a)]. Therefore, local properties (like
Fréchet- and Hadamard-type differentiability) have to be used after having
obtained the required large deviation probabilities. By doing that, the com-
plicated large deviation result is approximated by a large deviation result
corresponding to a sum of i.i.d. random variables [cf. also Remarks 2.1 and 2.4].
Restriction to fixed functionals and uniformity in the differentiability concepts
are the two elements by which the inversion in order of taking limits is obtained.

In view of the preceding we use the following approach: First we invoke a
general large deviation theorem for statistical functionals and then we use the
local properties of our statistical functional in order to reduce the complicated
expression obtained from the large deviation theorem to a manageable quantity.

The equivalence of local and nonlocal measures is described in detail in terms
of estimation theory. The analogous results on exact Bahadur and Pitman
efficiency in testing theory can be obtained in a similar way.

In Section 2 the main results are presented and in Section 3 the theory is
applied both on testing and on estimation problems. The local behaviour of the
exact Bahadur slope of linear rank tests is obtained; this, e.g., generalizes results
of Kremer (1981). As a second application, the inaccuracy rate of L-estimators is
investigated. Previous results of Fu (1980) are clarified and generalized. The
proofs are given in Section 4.

2. Main results. Let S be a Hausdorff space and let # be the o-field of
Borel sets in S. The set of all probability measures on % is denoted by A. Let
X,, X, ..., be a sequence of i.i.d. random variables taking values in S according
to a probablhty measure P e A. For each positive 1nteger n, the empirical
probability measure based on X,,..., X, is denoted by P So P(B) is the
fraction of X;’s, 1 < i < n, with values in the set B € 4. Cons1der a real valued
functional T: A — R. The statistic 7|, = T( ﬁn) is applied as an estimator of the
unknown parameter T(P) = 6, say, that has to be estimated. Denote by

(21) a,(e,T) = P(|T, - T(P) > ¢}

the probability dispersion of the estimator outside an e-neighbourhood of T(P).
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The inaccuracy rate of {T,} at P is defined to be

e(e,T) = — lim n~'log P{|T, — T(P)| > ¢}

(2.2)
= — lim n"Moga,(e, T),

provided that the limit exists. If {7, } is asymptotically normal, i.e.,
(2.3) £(nV¥T, — T(P)}|P) - N(0, a*(P)),
then for each ¢ > 0,

lim a,(n V%, T) = 20(—co"}(P)),

n-—oo
where ® denotes the standard normal distribution function. Hence, we obtain
under (2.3),

(2.4) — lim lim ¢ %loga,(n"?,T) = {202(P)}_1.
C—>00 n—oo

Noting that n~/2c — 0 for fixed ¢ > 0 as n — oo, the argument of a,(-,T) in
(2.4) tends to zero, while the factor before the logarithm is kept fixed as n — oo.
More or less inverting the order of taking limits on the left-hand side of (2.4)
yields

lim lLim (ne?) 'loga,(e, T),

e—0 n—oo
where the argument of a (-, T') is kept fixed and the factor before the logarithm
tends to zero when taking the first limit. In typical cases, indeed, we have

(2.5) ~ lim lim (ne?) Moga,(e, T) = {26%(P)} .
e n— oo

To prove (2.5) rigourously, we first consider for fixed ¢ > 0 the large deviation
probability (2.2). A very general large deviation theorem for statistical function-
als is presented in Groeneboom, Oosterhoff and Ruymgaart (1979). To formulate
this basic theorem we introduce the 7-topology on A. This topology 7 of
convergence on all Borel sets is the coarsest topology for which the map
Q — Q(B), @ € A, is continuous for all B € %. In this topology a sequence of
probability measures {Q,} in A converges to a probability measure @ € A iff
lim, , [sfdQ, = [sfdQ for each bounded #-measurable function f: S — R.
For more details about the choice of this topology on A, we refer to Groeneboom,
Oosterhoff and Ruymgaart (1979).

Further, we need the concept of the Kullback—Leibler information number
K(Q, P), which is defined by

dQ .
(2.6) K(Q,P) = {quogﬁ(X), ifQ <« P,
0, otherwise.
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If Q is a subset of A and P € A, we define
(2.7) K(Q, P) = inf K(Q, P).
Qe

The inaccuracy rate can now be given in terms of Kullback—Leibler numbers.

PROPOSITION 2.1 (Groeneboom, Oosterhoff and Ruymgaart). Let P € A and
let T: A > R be a functional which is r-continuous at each @ €T = {R € A:
K(R, P) < 0}. Define

(2.8) 2, = {Q A |T(Q) - T(P) = ¢}
Then, if the function t - K(Q,, P), t € R, is continuous from the right at t = ¢

and if {u,} is a sequence of real numbers such that lim,_, ,u, = 0,
(2.9) — lim n~'og P{|T(B,) - T(P)| 2 ¢ + u,} = K(Q,, P).
n—oo

In view of the preceding proposition, to obtain (2.5), we need general condi-
tions ensuring

(2.10) K(Q,, P) = (20%(P)} "¢ + o(e?) ase— 0.

Such a result is given in the following theorem and its corollary.
THEOREM 2.2. Let  be a function satisfying

(2.11) fe""‘x) dP(x) < o forsomer > 0 and Ep({ — Epy)’ > 0.

Letg(e)=c¢+ o(e)ase—>0,i=1,23. Then

inf{ K(Q, P): [4(x) d@(x) ~ [4(x) dP(x) > )]

(2.12)
= {2EP(\[/ - pr[/)2} ey o(e?) ase— 0.
Hence, if
inf{K(Q, P): T(Q) — T(P) = gy(¢)}
(2.13)

- i K(Q, P): [4(x)dQ(x) = [4(x) dP(x) = &,(¢)),
with Y satisfying (2.11), then '
inf(K(Q, P): T(Q) ~ T(P) > g,(c))
(2.14) gy —1
= {2Ex(¢ — Ep)’} ¢+ 0(e?) ase 0.

COROLLARY 2.3. Letg/(c) =¢+ o(e) as e > 0, i = 1,2. Suppose that
inf{K(Q, P): |IT(Q) — T(P)| = g,(¢)}

(2.15) _ inf{K(Q, P): | [4(x) d@Q(x) — [4(x) dP(x)| 2g2(e)}
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with ¢ satisfying

e™ ™ dP(x) < oo,
(2.16)

fe"“’(x) dP(x) < oo for somer > 0 and Ep(y — Epy)® > 0.
Then
(217)  K(%0 P) = (2Eo(¥ — Epp)?} ¢*+ 0(?) ase 0.
In particular, if g,(¢) = € and (2.15) and (2.16) hold, then
(218)  K(2,P) = (2B, — Epp)’} e*+0(s?) ase 0.

REMARK 2.1. Note that the right-hand sides of (2.13) and (2.15) correspond
to large deviation probabilities of X7 ,¢(X;) (cf. also Remark 2.4).

REMARK 2.2. It is seen from Lemma 4.1 that under (2.11), K(Q, P) = oo for
all @ for which [ d@ does not exist. Therefore, in (2.12), (2.13) and (2.15) we
may or may not include, in the set of @’s-over which the infimum has to be
taken, those @’s for which [y d@ does not exist.

The general ideal behind Theorem 2.2 and Corollary 2.3 is that if T is
differentiable in a suitable way with influence curve .p, then T(Q) — T(P) =
[ dQ — f ¥ dP, implying (2.13) and (2.15). Moreover, in that case, the asymp-
totic variance of T(P,) will be Ex(¢ — Epy)? and, hence, (2.18) then yields
(2.10).

Next we consider two forms of differentiability, Fréchet- and Hadamard-type
differentiability, to make the preceding ideas more precise. Fréchet-type differen-
tiability is used, e.g., by Boos (1979). Let V be the set of signed measures A on %,
which are absolutely continuous with respect to P and satisfy A(S) = 0. With
the usual addition and scalar multiplication of measures, V is a real linear space.

Defining || - ||: V = [0, ) by ||A]| = |A|(S) for A € V, where |A| denotes total
variation, it is easily seen that || || is a norm on V. Associating f € W= {f €
LS, %, P): [fdP = 0}, with A € V by
(2.19) ME) = f fdP,

vE

we obtain a norm-isomorphism between V and W. Using the Hahn-Banach
extension theorem and the correspondence between the conjugate space of L,
and L_, it is seen by this identification that a continuous linear functional 7" on
V can be represented by a bounded function ¢, i.e.,

(2.20) T'(\) =ff\de= f¢ d\, AeV.

Now we consider the first form of differentiability which will be discussed. A
functional T: A —» R is called Fréchet-type differentiable at P € A if there
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exists a continuous linear functional Tg: V — R or, equivalently, a bounded
function ¢, such that

T(Q) - T(P) - T§@~P) __

(2.21) o B, Q- P|
022 i T@-T(P) - d@-P)

IQ—Pl—0 1Q — P ’

uniformly for @ {Q eN Q< Py.

As a second notion of differentiability we consider Hadamard-type differentia-
bility. A functional T: A — R is called Hadamard-type differentiable at P € A
if there exists a continuous linear functional Tj: V — R or, equivalently, a
bounded function y such that for any compact subset C of V

. T(Q) - T(P) - T(Q — P)
(223) uQPlg}—»o Q — P -0

or

_T(Q)-T(P)- [4d(Q-P)
(224) o Q=P -0

uniformly for @ € {(Q € A: @ < P,(Q — P)/||Q — P|| € C}.
The following result shows that a slightly weaker condition than Fréchet-type
differentiability (¢ may be unbounded) yields the required expansions.

THEOREM 2.4. Suppose that
7(Q) — T(P) — [y d(Q - P)
2.25 li =0
(2.25) 19— Pl~0 IQ = P

uniformly for @ € {Q € A: Q < P, [|Y|dQ < o} for some { satisfying (2.16).
Then (2.14), (2.17) and (2.18) hold for each

g(e)=e¢+o(e) ase—>0,i=1,2.

If T is Fréchet-type differentiable, then { is bounded and, hence, ¢ satisfies
(2.16) unless ¢ is P-a.e. constant.

COROLLARY 2.5. If T is Fréchet-type differentiable with nonconstant in-
fluence curve Y[ P], then (2.14), (2.17) and (2.18) hold for each

gi(e)=e+o(e) ase—0,i=1,2.
Hadamard-type differentiability is not quite enough to obtain the required

expansions. We need some small extra conditions (cf. also Remark 2.3). Again the
influence curve may be unbounded.
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THEOREM 2.6. Suppose that for some compact subset C, of V, independent
of &, we have

inf{K(Q, P): T(Q) — T(P) = ¢}
(2.26) = inf{K(Q, P): (@ - P)/IIQ — Pj € C,,
T(Q) — T(P) = e}(1 + o(1))
and for some compact subset C, of V, independent of e,
inf(K(Q, P): T(Q) — T(P) < —¢)
(2.27) = inf{K(Q, P): (Q — P)/IIQ — P|| € Gy,
T(Q) - T(P) < —&}(1 + o(1))
as ¢ = 0. Further, suppose that for all compact subsets C of V,
. T(Q)-T(P) - [yd(Q - P)
(2.28) 1 P 1Q — P -0

uniformly for Q € (Q € A: Q < P, (Q — P)/||Q — P||€ C, [|Y|dQ < oo} for
some  satisfying (2.16). Then (2.14), (2.17) and (2.18) hold for each g,(¢) = ¢ +
o(e)ase > 0,i=1,2.

COROLLARY 2.7. If T is Hadamard-type differentiable with nonconstant
influence curve Y[ P] and if (2.26) and (2.27) are satisfied, then (2.14), (2.17) and
(2.18) hold for each g,(¢) = ¢+ o(e) as ¢ = 0, i = 1,2.

Theorems 2.4, 2.6 and Corollaries 2.5 and 2.7 state that for a large class of
statistics, the complicated expression K({2,, P) behaves locally for ¢ —» 0 as
{20%(P)} " 'e®. As mentioned earlier, uniformity is essential here, since we are
dealing with exact measures of performance. Therefore, the concepts of Fréchet-
type and Hadamard-type differentiability [or the conditions (2.25) and (2.28)],
which imply uniformity, are very natural in this context.

REMARK 2.3. Suppose that the first infimum in (2.26) is attained by some
probability measure @, for 0 < & < ¢,. [This may be shown in many cases by
applying Lemma 3.2 of Groeneboom, Oosterhoff and Ruymgaart (1979).] Further
suppose that ||(@, — P)/||Q, — P|| — Ayll = 0 as € — 0 for some A, € V. Then,
condition (2.26) may be omitted, which can be seen by a slight modification
of the proof of Theorem 2.6 (cf. Remark 4.4). Usually in this case the set C, =
{Ao} U {(Q, — P)/||Q, — P|: 0 <& < g} is compact and then Theorem 2.6 can
be applied directly. Of course a similar statement holds w.r.t. (2.27).

REMARK 2.4. In local theory one usually has the following approach. A
statistical functional is approximated by a linear statistical functional leading,
when applied to the empirical probability measure, to a sum of ii.d. random
variables. Then it is shown that the remainder terms are small (in probability)
and, hence, the distribution function of the statistic is approximated by the
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distribution function of a sum of i.i.d. random variables, which can be handled.
In large deviation theory such an approach fails, since the remainder terms have
to be shown to be exponentially small [c.f. the example in Section 5(a) of
Jureckova and Kallenberg (1987)]. However, the same idea as in local theory can
be used here. The large deviation probability of the statistic (and not the
statistic itself) is approximated locally by the large deviation probability of a
sum of i.i.d. random variables y( X;), which can be handled [cf. also (2.13), (2.15)
and Remark 2.1].

3. Examples and applications. In this section, we present some direct
applications of the theory developed in Section 2. It is not our aim in this paper
to give the most general formulations for those applications or to give an
exhaustive overview of the applicability of the theory. We only show that some
results previously obtained by rather hard calculus now easily follow using the
differential approach.

Thus far the theory is described in an estimation framework. As mentioned
before, analogous results hold in testing theory. To show this, we start this
section with an application of our results in testing theory, obtaining the local
behaviour of the exact Bahadur slopes of linear rank statistics [cf. Woodworth
(1970)].

Let R,,..., R, be the ranks of n random variables Z,,..., Z,. Consider the
null hypothesis that (R, ..., R,) is equally likely to be any of the n! permuta-
tions of (1,..., n). A linear rank statistic is one of the form

n
(3.1) T,= Y a,(R/(n+1),i/(n+1)),

i=1

where a,(u, v) is a function on the unit square. Let
(3.2) H= {h: h>0, fh(u, v)du=1= fh(u, v) dv}

be the set of all bivariate densities on the unit square with uniform marginals. It
will be assumed that the sequence {a,} determining T, in (3.1) satisfies
Woodworth’s (1970) property A, i.e.,

(i) for each n, a, is constant over the rectangles {i-1l<nu<i j—1<
no<jl,1<i, j<m
(ii) there exists a function a over the unit square such that

| e = rn

Without loss of generality we assume

(3.3) ffa(u, v) dudv = 0.

-0 asn— oo.

ProposiTION 3.1 (Woodworth). Let {T,} be a sequence of linear rank
statistics satisfying property A and let {¢,} be a sequence of real numbers with
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lim e =c¢. Then

n—oo"’n

(34) lim —n~'log P{T, > ne,} = I(e,a), 0<e<ela),
where
e(a) = sup{ffah: h e%”}

and for 0 < ¢ < &(a),
(3.5) I(s,a)=inf{ffhlogh: f/ahzs,heéf}.

The main point in evaluating the local behaviour of the exact Bahadur slope
of {T,} is to investigate I(¢, @) as £]0. In the following theorem the local
behaviour of I(e, a) is established.

THEOREM 3.2. Let
a(u,0) = a(u,0) - [a(u, y) dy - [a(x,0) dx + [[a(x, y) dxdy
and let

(3.6) c= f/d2(u, v) dudo.
Suppose that

(3.7) ffe’d(""’) dudv < o0 forsomer > 0 andc > 0.
Then
(3.8) I(e,a) = L2 /c + o(e?) aselO.

The proof of Theorem 3.2, which is based on Theorem 2.2, is in Section 4.
Woodworth [(1970), pages 261-262] stated a sufficient condition for the validity
of (3.8). However, this condition is rather impracticable. For the independence
problem, which is a special case of the preceding setup, Kremer (1981) proved
(3.8) under conditions which exclude, e.g., unbounded score-generating functions.
It is obvious that condition (3.7) holds for all bounded functions; moreover, it
also holds, for instance, for a(u, v) = ®,(u)® !(v) corresponding to the nor-
mal-scores correlation coefficient. To illustrate more explicitly how Theorem 3.2
can be used in deriving the local behaviour of the exact Bahadur slope, we
consider the following example.

ExampLE 3.1. Let (X,,Y)),...,(X,,Y,) beiid. random vectors each distrib-
uted as H(x, y), where H is a continuous distribution function with marginals F
and G, respectively. For every n, let (R,,..., R,,) and (S,;,...,S,,) be the
ranks in (X,,..., X,) and (Y;,...,Y,), respectively. The testing problem is
H(x, y) = F(x)G(y) for all x, y against H(x, y) > F(x)G(y) for all x, y with at
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least one inequality strict. Consider the rank statistic

n
(3'9) Tn = Z Bln(Rni)B2n(Sni)’
i=1
where B, (1 + [nu]) = b,,(u) and [(b,, — b,)*du — 0, i = 1,2. ([x] denotes the
largest integer less than or equal to x.) Moreover, [b,du =0, [b?du =1 and
[/exp{rb,b,} dudv < oo for some r > 0. Let H,(x, y) be a sequence of alterna-
tives tending to the null hypothesis in the sense that

sup|H;(x, y) = Ho(x, y)] = 0 as j— oo
x’y

for some Hy(x, y) = F(x)Gy(y) in the null hypothesis. Since for each fixed j, as
n— o,

To/n = g, [ [,(F(2))b(G( 7)) dH(x, y) = ;. say,

where F; and G; are the marginals of H,, it follows that the exact Bahadur slope
of T, at H; equals 21(e;, a) with a = b,b,. Application of Theorem 3.2 now
yields that the exact Bahadur slope 21(¢;, a) satisfies

(3.10) 2I(e;, a) = { f fbl(ﬁ}(x))bz(Gj( y)) dHj(x, y)}2+o(83) as j = o0.

For instance, if H; is the distribution function of a bivariate normal random
variable with correlation coefficient p; tending to zero if j — oo, then the exact
Bahadur slope of T, satisfies

21(¢;, a) = {pjffbl(u)bz(v)d)‘l(u)(I)“(u) dudu}2 + o(p?)

as j — oo. Hence, the limit of the exact Bahadur slope of 7, divided by pf. equals
the Pitman efficacy of T,, implying local equivalence of both concepts of
efficiency. Similar results can be obtained for general linear rank tests of the
one-sample symmetry problem and the k-sample problem.

For a second class of applications, we return to estimation theory, especially
to L-estimators. Let X,, X,,... be real valued ii.d. random variables with
distribution function F. For a distribution function G, its inverse G ! is defined
in the usual way by G~'(s) = inf{x € R: G(x) > s}. Suppose J: [0,1] > R is a
Lebesgue-integrable function, i.e., '

f1|J(s)|ds < 0.
0
We consider linear combinations of order statistics of the form T, = T(ﬁn) with

(3.11) Q) = [ 'J(s)G(s) ds,

where G denotes the distribution function corresponding to . The influence
function of T is derived in Huber (1981), for example. For these statistics, the
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following large deviation result is obtained by a slight modification of Theorem
6.1 in Groeneboom, Oosterhoff and Ruymgaart (1979).

ProPosITION 3.3 (Groeneboom, OQosterhoff and Ruymgaart). Let P be a
probability measure with continuous distribution function F and let J € L,[0,1]
have support in [a,1 — a] for some a > 0. Further assume that J > 0 on an
interval (v, 8) and [}J(s) ds > 0. Then for each & > 0,

(3.12) e(e,T) = K(Q,, P),
where
(3.13) Q,={Qe A:|T(Q) — T(P)| = ¢}.

To obtain Fréchet-type differentiability of T w.r.t. the uniform topology and,
hence, also w.r.t. the total variation metric, we apply Theorem 1 in Boos (1979).

PROPOSITION 3.4 (Boos). Let P be a probability measure on R with distri-
bution function F. Suppose J has support in [a,1 — a] for some a > 0. Further
assume that J is bounded and continuous a.e. Lebesgue and a.e. F~'. Then T is
Fréchet-type differentiable at P w.r.t. the uniform topology with differential

(3.19) TH@~P) = = [ {G(x) - F(x))J(F(x)) ds,

where G denotes the distribution function of Q. Hence, (2.25) holds with
(15) ()= [ JEGNdy - [ (1= FGNIF))
which is a bounded function.

Combination of Theorem 2.4, Proposition 3.3 and Proposition 3.4 now yields

THEOREM 3.5. Let P be a probability measure with a continuous distribution
function F. Let J have support in [a,1 — a] for some a > 0. Further assume
that J is bounded and continuous a.e. Lebesgue and a.e. F~' and thatJ > 0 on
an interval (v, 6) and ffJ(s) ds > 0. Then (2.5) holds, i.e.,

(3.16) — lim lim (ne?) 'oga,(e, T) = {202(P)}_1,

e—0 n—ooo

where

0%(P) = Ep(y — Ep)’
with ¢ given by (3.15).

This result generalizes Fu’s (1980) Theorem 4.2. Moreover, the proof presented
here is much shorter and places the result in a more general context.

ExaMmpLE 3.2. The a-trimmed mean for 0 < a < ; is an L-estimator with
J(s) = (1 — 2a) ! for s € (a,1 — @) and J(s) = 0 elsewhere. If the distribution
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function F' is continuous and has unique quantiles F~'(a) and F~' (1 — a), then

writing X;) < --+ < X, for the order statistics,
1 n—[an] _F! s
—lim lim (ne?) 'log P{|————~ Y} Xy~ fl a—(—)-ds > ¢
e>0 no o n — 2[an] i=[an]+1 P 1 - 2a

with
2
62 = EP("P - EP‘P) ’
where { denotes the influence curve of the a-trimmed mean.
Similar applications can be made, for instance, for M-estimators. Some results

on Fréchet-type differentials of M-estimators are given in Boos and Serfling
(1980).

4. Proofs. Before starting the proofs of the main results of Section 2 and
Theorem 3.2, we present the following lemma, which may be of independent

interest.

LEMMA 4.1. Let ¢ be a function satisfying

(4.1) fe"“x) dP(x) < oo for somer > 0.
Then
(4.2) [¥(x)d(x) = = K(Q P)=o,

where y*(x) = max(0, y(x)).

Proor. Since K(Q, P) = oo if @ is not absolutely continuous w.r.t. P, we
may assume @ < P. Noting that for r > 0,

eV < TVT®) < eV | 1,

hence,
[er@dP(x) <0 [ev"® dP(x) < oo.
Writing f(x) = dQ/dP (x), we have by (4.1) for some r > 0,

o0 > /e"V'(x) dP(x) > f e dP = er|p+—logfdQ
f>0 f>0

zf (1+rx[/+—logf)dQ=f(1+rxp+—logf)dQ.
f>0
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Therefore,

[vd@x) = = [-logfd@=-K(Q P)= . O
As an immediate consequence of Lemma 4.1 we obtain Corollary 4.2.

COROLLARY 4.2. Let y be a function satisfying
fe"“x) dP(x) < oo and fe"‘“") dP(x) < oo for somer > 0.

Then

Jw(x)1dQ(x) =0 = K(Q P)=c.

PrOOF OF THEOREM 2.2. Let g,(¢) = ¢ + o(¢) as ¢ = 0 and let ¢ satisfy
(2.11). Without loss of generality assume [y dP = 0. By Theorem 4.2 in Bahadur
(1971) and Lemma 4.1, we have

(4.3) inf{K(Q, P): [4(x) dQ(x) zgl(s)> — —loginf(s,(¢): ¢ > 0},
where

(4.4) $.(t) = Epexp(t{y — g,(¢)})

and inf{K(Q, P): @ € @} = oo. Writing B = sup{¢: ¢(¢) < o}, (2.11) implies
(45) O0<r=<B<oo, ¢(0+)=Ep(y-ge)) = -&(e) <0

for sufficiently small ¢ > 0, and for all 0 < b < 3,

(4.6) $:(0) = ¢(0 +) + b’ (§,,.) = —&i(e) + boy'(45,.)

for some 0 < £, . < b. By the dominated convergence theorem,

(4.7) 11?3 ¢/(t)=Epy?>0 ift, |0ase]O.
Hence, by (4.6) and (4.7),

(4.8) ¢(2{Em?} 'e) > 0

for sufficiently small ¢ > 0. In view of (4.5) and (4.8), the standard conditions of
Bahadur [(1971), pages 3-4] are satisfied for sufficiently small ¢ > 0, implying

(4.9) inf{¢,(t): t >0} = ¢(7,),

where 7, is defined as the unique solution of ¢/(7,) = 0. By (4.6) and (4.7), we
obtain

(4.10) r,=e{En?) " +o(e) ase— 0.
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Hence, for some 0 < §, <7,

¢(7.) = ¢,0) + 74/(0 +) + 3726/ (£,)
(4.11)

=1- 532{EP¢2}_1 + o(€?)
and, therefore, by (4.3), (4.9) and (4.11),

int{K(Q, P): [4(x) dQ(x) > &(2)] = 4e2(E?) " + o(e?)
ase— 0.0

REMARK 4.1. It is seen in the preceding proof that for sufficiently small
¢ > 0 the infimum in (2.12) is attained by the probability measure

exp(r{¢(x) - Epy — g(¢)}) dP(x)
Epexp(r{¢ — Epy - £(¢)})

where 7, is the unique solution of

(4.13) Ep[{¥ — Ept — g1(e)}exp(r{¥ — Ept — £1(e)})] = 0

[cf. also Hoeffding (1965), Lemma 1, and Csiszar (1975), Theorem 3.1]. Further-
more, it is seen in (4.10) that

(4.12) dQ(x) =

T, = s{EP\pz}_l +o(e) ase— 0,

a result which may be of independent interest.

ProOF oF COROLLARY 2.3. By (2.7), (2.8) and (2.15) we have

> g2(8)}

K(Q,., P) = inf{K(Q, P): \ﬁp dQ - [yap
= min[inf{K(Q, P): f¢ dQ - f¢ dP > gz(s)},

int(K(Q. P): [(-4)d@ - [(~9) aP = g0))|
Application of (2.12) now yields the result. O

PROOF OF THEOREM 2.4. Let T satisfy (2.25) for some ¢ satisfying (2.16).
Without loss of generality, assume [y dP = 0. We will first prove (2.14). Let
8o(g) = ¢ + 0o(¢) as ¢ —» 0. Define

£x(e) = &(s) - inf|7(Q) — T(P) - [y de:
(4.14)
[1414Q < o0 and @ ~ P < 26 Ep?) ).
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Since the convergence in (2.25) is required to be uniform, it follows that
gi(e) =e+o(e) ase— 0.
Define the measure @, by
dQ.(x) = exp(r{¥(x) — g(e)}) dP(x)/Epexp(r (¥ - g(e)}),

where 7, is the unique solution of

(4.15) Ep{y — gs(e) }exp(r{y '~ gi(e)}) = 0.
It is seen from the proof of Theorem 2.2 that @, exists for sufficiently small
e > 0 (cf. also Remark 4.1). Moreover,

(4.16) K(Q,, P) = 2} Ep?) " +o(s?) ase— 0.

Using the inequality

(4.17) IQ - PIl < {2K(Q, P)}"*

[cf., e.g., Kemperman (1969)], it follows that for sufficiently small & > 0,
(4.18) 1Q, - Pll < 2¢(Epy?) 7

and, hence, by (4.14) and (4.15),

T(Q,) - T(P) = [¢dQ, + g,(e) — gs(e) = ga(e).
Therefore [cf.(4.16)],
(419) inf{K(Q, P): T(Q) — T(P) = gy(¢)} < 1e*{Ew?} ' + o(e?)

as ¢ = 0. .
Next we consider measures @, such that

T(Q.) — T(P) = gy()
and

(4200 °< K(Q., P) — inf{K(Q, P): T(Q) — T(P) = gy(¢)} < o(e?)

ase — 0.
By (4.17) and (4.19), we have for sufficiently small ¢ > 0,

1Q, - Pll < 2¢{Epy?} .
Moreover, [|y]| d('éE < o0 by Corollary 4.2. Hence, writing

£.(e) = &i(e) + inf| [¥ dQ - 7(Q) + T(P);
(4.21)

[141 < o0 and 1@ - P < 26(Ep?) %),

we have for sufficiently small ¢ > 0,

f‘l/ dQe > g4(e).
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Since the convergence in (2.25) is required to be uniform and g,(e) = € + o(e), it
follows that

ge)=e+o(e) ase— 0.
By (2.12) we obtain

(4.22) K(Q,, P) > 1{Ew?®) "+ o(¢?) ase— 0.

Combination of (4.19), (4.20) and (4.22) yields (2.14).
Let g,(e) = & + o(e). If (2.25) holds for (T, ¢), it also holds for (— T, —) with
¢ or —y satisfying (2.16). Hence,

inf(K(Q, P): T(Q) - T(P) < —g(e)} = {2Ep(y — Epp)?} ¢+ o(e?)

as ¢ — 0. Since
K(24,), P) = min[inf{K(Q, P): T(Q) — T(P) > g,(¢)},

inf{K(Q, P): T(Q) — T(P) < —g,(¢)}],
(2.17) and (2.18) are easily obtained. O

PrOOF OF THEOREM 2.6. Let T satisfy (2.28) for some y satisfying (2.16).
Without loss of generality assume [ dP = 0. Let g,(¢) = ¢ + o(e) as ¢ > 0. We
will first prove

(4:23) lim sup e 2inf{K(Q, P): T(Q) — T(P) > gy(e)} < L(Epm?) .

Choose & > 0. Define for sufficiently small & > 0 the probability measure @, by

dQ(x) = exp((1 + 8)ey(x)/Epd?) dP(x) /1(e),
with

v(e) = [exp((1 + 8)ey(x)/Epd?) dP(x).

Note that this can be done because (2.16) holds. Define the signed measure
A eV by

d\ = $(Eply|) " dP.
By dominated convergence, we have

lim Y(E)—Z_l = %(1 +8)X(Ep?) ",

e—0 €

im L8P sy B (Bet) !

e—0 €
and

(Q - P)

lim |~———r —
Q. — P

e—0

}\H=O.
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Therefore, for sufficiently small ¢, > 0, the set

(Q. - P)
Q. — Pl

is a compact subset of V. Again by dominated convergence we have

aqQ, da,
dp °%74p

(4.24) C={>\}u{ :O<£S80}

i “2K(Q., P) = lim ¢ 2
m ¢ (Q., P) e_r)rz)s f(

e—0

)dP

1 -1
5(1 +8%)(Epy?) .
Application of (2.28) yields

7(Q,) - T(P) = [y dQ, + o(|Q, - PI)
=(1+48)e+ o(e) = gy(¢)

for sufficiently small ¢ > 0. Hence,
limsup ¢ *inf{ K(Q, P):T(Q) — T(P) > g,(e)}

e—0

(4.25) , .
< lim ¢ K (Q,, P) = §(1 + 8)(Epy®) .

Since & > 0 is arbitrarily chosen, (4.23) follows from (4.25). Similarly we obtain,
replacing (T’ '4/) by (_ T, _‘P),

(4.26) limsup e %inf{K(Q, P): T(Q) — T(P) < —g,(¢)} < %(Epllﬂ)_l'

e—0

Now suppose that T also satisfies (2.26) for some compact subset C; of V. We
have lim, _, ,g,(¢) = 0 and, hence,

i PHE(Q, P): T(Q) — T(P) = £3(e). (R - P)IQ - Pl € C} _
e—=0 inf{(K(Q, P): T(Q) — T(P) > g,(¢)}
Consider measures @, such that
(Q.- P)/1Q. - Pl € C,,
7(Q.) - T(P) = gy(e)

and .
0 < K(Q,, P) — inf{K(Q, P): T(Q) — T(P) = gy(¢)} < o(¢?)

as ¢ = 0. Following the same line of argument as in the proof of Theorem 2.4,
with (4.21) replaced by

24(e) = () + inf{ [ dQ — T(Q) + T(P): [141dQ < o,

1Q — Pl < 2¢(Epy?) *and (Q - P)/|IQ - P|| € cl},
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we obtain

liminf ¢ %inf{ K(Q, P): T(Q) — T(P) > g,(¢)}

e—0

(4.27) N .
> limiglfe‘zK(Qe, P) > Y(Em?) .

Combination of (4.23) and (4.27) yields (2.14).
Assuming that T also satisfies (2.27) for some compact subset C, of V, it
similarly follows that

(4.28) liminf e *inf(K(Q, P): T(Q) — T(P) < —&y(e)} = HEN?) .
Combination of (4.25)—(4.28) now yields (2.17) and (2.18). O

REMARK 4.2. It is seen in the preceding proof that for proving (4.25) and
(4.26) we only need condition (2.28). This can be used, e.g., if Ep(¢ — Epy)?
equals the Fisher-information, in which case the inequalities (4.27) and (4.28)
may be obtained by optimality considerations [cf. Bahadur (1960)] and, hence,
conditions (2.26) and (2.27) can be skipped.

REMARK 4.3. Note that we need (2.28) only for the following compact
subsets of V: C as defined in (4.24), C, and C,.

REMARK 4.4. Suppose that the first infimum in (2.26) is attained by some
probability measure @, for 0 < ¢ < ¢, and that

I(Q. — P)/NQ. — Pll = Aol >0 ase—0
for some A, € V. To obtain (4.27), we now only need to show [} d@, — T(Q,) +
T(P) =o(e) as ¢ = 0. This is established by application of (2.28) with
C= {2}V {(Q., —P)Q., — P|} for a suitable sequence {¢,} with ¢, — 0 as
n — oo.
Proor or THEOREM 3.2. Without loss of generality, assume

(4.29) fa(u,v)du=0= fa(u, v) dv, ffa2(u,v) dudv = 1.

By (2.12) we have, writing P for the uniform distribution on the unit square,

I(e, a) =inf{f/hlogh: f/ahZe, heéf}

(4.30) zinf{ffhlogh:f/ah2£,h20,/fh=1}

=inf{K(Q, p): /fadQZE} =1le+o0(e?) aselO.

In view of Remark 4.1, inf{ K(Q, P): [fadQ > ¢} is attained by the probability
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measure @, with density

q.(u,v) = exp[r{a(u,v) - s}]/ffexp['re{a(u,v) —¢}] dudv,
where 7, is the unique solution of
Ep|(a — e)exp{7(a —¢)}] = 0.
By (4.10), we have
T, = e{EPa2}_1 +o(e) =e+o(e) aselO,
and, hence,
(4.31) g, =1+ ea(u,v).

This implies that at least approximately g, € # and, therefore, in (4.30) equality
is obtained in the limit as ¢ 0. To make this argument more precise, let § > 0
and define

h(u,0) =1+ ea(u,v)(1+38),
where

au,v) = aX(u,0) = [ar(u,y)dy~ [ar(x,0)dx+ [[aX(x,y)dxdy

and

a(u,v), if |a(u,v)| < m,
a*(u,v) =
0, if |a(u,v) > m

Then we have h €, |h,— 1| <1 since |a¥|e(l +8) < and |a}| < |al.
Hence,

Jlax(w, y)dy < fla(u, y)idy < {fa2(u, ¥) dy}
and, therefore,
a’(u,v) <4a*(u,v) + 4fa2(u, y)dy + 4fa2(x, v) dx + 4,

which is integrable. Application of the dominated convergence theorem yields

leifg/fahs=(1+8)leiir(}ffaae=1+8>1,

€
implying [/ah, > e for ¢ sufficiently small. Since |2, — 1| < 1 and, hence,
hjlogh,— (h, — 1) ‘ (h,—1)°

< sup

2 2
€ € |x] <1

(1 +x)log(1 +x) —x

x2

I
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it follows again by dominated convergence that

hlogh hlogh — (h -1 1
m // e2g e=hm /[ 5 g 82 ( € )=—(1+8)2
el0 £ el0 £ 2 .

and, therefore,
(4.32) I(e,a) < 1(1 + 8)% + o(e?) aselO.

Since 6 > 0 was arbitrarily chosen, combination of (4.30) and (4.32) yields the
result. O
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