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APPROXIMATING THE DISTRIBUTION OF THE MAXIMUM
LIKELIHOOD ESTIMATE OF THE CHANGE-POINT IN A
SEQUENCE OF INDEPENDENT RANDOM VARIABLES

By YQ'I-CHING Yao

Colorado State University

The problem of estimating the change-point in a sequence of indepen-
dent random variables is considered. As the sample sizes before and after the
change-point tend to infinity, Hinkley (1970) showed that the maximum
likelihood estimate of the change-point converges in distribution to that of
the change-point based on an infinite sample. Letting the amount of change
in distribution approach 0, it is shown that the distribution, suitably normal-
ized, of the maximum likelihood estimate based on an infinite sample con-
verges to a simple one which is related to the location of the maximum for a
two-sided Wiener process. Numerical results show that this simple distribu-
tion provides a good approximation to the exact distribution (with an infinite
sample) in the normal case. However, it is unclear whether the approximation
is good for general nonnormal cases.

1. Introduction and main results. In industrial engineering, it is often
observed that, over a period of time, the quality of products deteriorates due to
system failures. A simple model for this situation is that X;, i = ..., -1,0,1,...,
are independent observations of the quality of products at different time points,
X; having probability density function f(-, 6,) if i < v and f(-,0, + A)if i > 7.
Here 6, is the target value, but after an unknown time point 7, it is changed by
an amount A # 0. It is desired to estimate this unknown parameter 7, which is
usually called a change-point.

In this paper, we assume that (1) 6, and A are known and A is
nonzero, (2) 7 = 7, is the true (fixed) value of 7, and (3) the random variables
log f(X;, 6,) — log f(X,, 8, + A), i = 7, and 7, + 1, are continuous. Let 7y, be the
maximum likelihood estimate of 7, based on a sample of size N

{X;:i=-[(N-1)/2],...,-1,0,1,...,[N/2]};
that is, 7y is that value of » which maximizes V, subject to —[(N — 1)/2] < r <
[N /2], where
0 r= 09

b
3
U, r=12,...,

V.={ i=1
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and U, = log f(X;, 6,) — log f(X, 0, + A), i € Z (the set of all integers). Let 7
be the maximum likelihood estimate of 7, based on an infinite sample {X;:
i € Z}; that is, 7 is that value of » which maximizes V, over Z. The distribution
of 7y — 7,dependson 6, and A aswellason[(N — 1)/2] + 1, + land [N/2] — =,
(the sample sizes before and after the change-point) while that of 7, — 7,
depends only on 6, and A. Note that since |fy| < |f,| and A%(%, — 7,) is
bounded in probability for small A (see Theorem 2), A*(7y — 7,) is bounded in
probability for small A and for all N. The following theorem provides an upper
bound for Pr(fy # 7,) which implies that the distribution of 7y — 7, can be
approximated by that of 7, — 7, if A is small and A’min([((N — 1)/2] + 7, + 1,
[N/2] = 7, + 1) is large.

THEOREM 1. Suppose that (i) the Fisher information
I(OO) = _jazlog f(x9 00)/802 f(x’ 00) dx > 0,

(i) E(U,)=1(6,)4/2+0(A*) = —E(U, ,,) and (ii)) var(U;)=I(6,)A + o(A?),
i=1 and 7,+ 1. Then for sufficiently small A+ 0 and for all N with
~(N -1)/2] <7 <[N/2},

Pr(fy # %,) < 191" Y(0,)A 2 ([N/2] = 7, + 1)

+([(N=-1)/2] + 7+ 1)}

It should be remarked that the assumption of 6, and A # 0 known is crucial
for Theorem 1. When 6, and A are unknown and have to be estimated from the
data, the upper bound of Theorem 1 is no longer valid in general.

The distribution of 7, — 7, does not seem to have a closed-form expression.
Hinkley (1970) developed a numerical scheme to compute this distribution and
he noticed that the numerical computation is difficult to handle for small A since
the distribution becomes rather dispersive. When A is small, it is naturally
expected that the distribution of 7, — 7, can be approximated by its limiting
distribution as A — 0. Theorem 2 below gives this limiting distribution which is
related to the location of the maximum for a two-sided Wiener process.

THEOREM 2. Suppose that the three conditions of Theorem 1 are satisfied
and that E(|U,|?**) = o(A?), i = 7, and 1, + 1, for some ¢ > 0. Then, as A — 0,
A%I(6,)(%,, — 7,) converges in distribution to a random variable having cumula-
tive distribution function F defined by F(a) = 1 — F(—a) and for a > 0,

F(a) =1+ (20) ?a'/2e~2/8
-27Ya + 5)®(—a'/?/2) + 8- 27 %*®(-3 - 27 a'/?),

where ®(-) is the standard normal distribution.
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From Theorems 1 and 2, it follows that the distribution of A2I(,)(y — 7,)
can be approximated by F if A is small and A?min([(N — 1)/2] + 7, + 1,
[N/2] — 7, + 1) is large. The proofs of the two theorems are given in the next
section. In Section 3, some numerical results are presented to compare the
distribution of 7, — 7, with an approximation based on the limiting distribution
F. It appears that this approximation is good in the normal case, but it is still
unclear whether it is good for general nonnormal cases.

2. Proofs of Theorems 1 and 2.

PRrROOF OF THEOREM 1. It is clear that
Pr(é\N * TAoo) = Pr(foo > [N/2]) + Pr(’?oo <= [(N_ 1)/2])

sPr( sup V., .,— V. 20)

(1) r>[N/2]—fo( " )

+Pr( sup (V,o+r - V,o) > 0).
r<—[N-1)/2]-7

Using the Hajek—Rényi inequality [Hajek and Rényi (1955)] and letting p =
E(Ur0+1)’ 02 = Var(U.,0+1),

Pr( sup 3r 'Y (U, ,i—n)/o> 1)
r>[N/2]-7 i=1

(2) < 90‘2{([N/2] —n+1)7 4 Y i-2}

i>[N/2]-7+2
<186 %([N/2] -7, +1) 7",

which is bounded from above by 19/{1(6,)A*[ N /2] — 7, + 1)} for small A, since
A~%2% > I(6,) as A — 0. Now, since A~%u — —1(6,)/2 as A — 0, it is clear that
for small A, p + 62/3 < 0 and so the first term on the right-hand side of the
inequality (1) is bounded from above by the left-hand side of (2). Similarly, it can
be shown that the second term on the right-hand side of (1) is bounded by
19/{I(6,)A*([(N — 1)/2] + 7, + 1)} for small A, completing the proof. O

To prove Theorem 2, we need a few lemmas. Since the distribution of 7, — 7,
does not depend on 7,, we assume 7, = 0 for the remainder of this section. Note
that {(V,=0,V,,...} and {V;, =0,V_,,...} are two independent random walks
with negative drift. Define {Sy(£): —o0 < ¢ < o0} by

(3) S\(A1(8)r)=V,, r=..,-1,0,1,...

and linear interpolations. The following lemma is a consequence of Theorem 3.1
of Prokhorov (1956).
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LEMMA 1. Forevery T > 0, {Sy(¢): —T < t < T} converges in distribution to
{(W(t) — |t|/2: —T < t< T} if the probability density functions f(-,8) satisfy
the conditions of Theorem 2, where {W(t): —oo < t< 0} is a two-sided
standard Wiener process with W(0) = 0.

Let R\(T) be that value of ¢ which maximizes S\(¢) over —T <t < T.
Clearly, A%I(8,)7, = Ry(0) and |R,(T)| is increasing in 7. We first find the
limiting distribution of R,(T') as A — 0. For every continuous function x(-) €
C[-T,T], let m(x) = max{x(¢): —T <t < T}, m(x) = max{x(¢): 0 < ¢t < T},
l(x) =inf(t: x(t) =m(x), —T<t<T} and I(x)=inf(t: x(¢) = m(x),
0<t<T} Let X(¢)=W()—|t|/2, —T<t<T. The mapping /(x) from
C[—T, T] to the real line is. continuous with respect_to the sup-norm at x where
the maximum of x is uniquely attained. But from Shepp (1979), the maximum of
X(t), —T <t < T, is uniquely attained with probability 1 and it follows from
Lemma 1 and the continuous mapping theorem [Billingsley (1968), page 30] that
R\(T) converges in distribution to I(X), the location of the maximum for
{X(¢): —T < t < T}. Using the result of Shepp (1979) and the independence of
{X(¢):0<t<T}and {X(¢): —T < ¢ < 0}, I(X) has probability density func-
tion

(4) g2(a) = [“hrllal, L)H (b)db, -Tsas<T,

where for0 <a < T, b > 0,

hr(a,d) = wa3/2(Tb— a)a/z f_boo(b - u)

(5) 2

is the joint density of /,(X) and m,(X) and
b (T

(6) Hp(b) = Pr(my(X) < b) = f f hp(a, b’) dadb’.
070

We have obtained

LEMMA 2. As A - 0, Ry(T) converges in distribution to a random variable
having probability density function g.

The following lemma is an immediate corollary of Theorem 1.
- LEMMA 3.

T_)gl’nA_)OPr(RA(T) = Ry(c0)) = 1.
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ProOF OF THEOREM 2. From Lemmas 2 and 3 and Fatou’s lemma, for
—o<u<v<oo,

liin_)if)lfPr(u < Ry(w0) <v) = liﬁigf lilAn_)iglfPr(u < R\(T) <)
= liminf fu "gr(a) da
@) > Lp[ﬁTnl)igng(a)] da
> fu [ fo w{liﬁigth(mL b)Hy (b)) db] da.

From (5) and using integration by parts, for a > 0, b > 0,

hp(a, bd) =
T(a ) Wa3/2(T _ a)3/2

bsz}
X

(T—a)exp{—%—a—g
T—a b2 (b-u) u T
T f_we"p{‘%‘z(T—a)‘E'E du.

On the right-hand side, the first term tends to 0 as T' = oo, and the second term
equals, using » = {u + (T — a)/2 — b}(T — a)™'/3,

(2m) a2 [T exp( ~v2/2 - b%/(2a) — a/8 ~ b/2} dv,
— 00

which converges to (27)~%a~%2bexp{—(a + 2b)?/(8a)}. So, we have shown
that hr(|a|, b) converges, as T' — o, to

8) ho(lal, b) = (27) " %lal¥2b exp{ - (la| + 2b)°/(8al)}.
Also, from (6) and (8) and Fatou’s lemma, for b > 0,

.. b [® , ,
(9) lim inf Hp(5) > fofo ho(a,b’) dadb’.

We claim that
(10) [“ho(a,b)da=e.
. 0
To prove (10), write
[ “h(a, b)da = f2bh°°(a, b)da+ [ “h(a, b) da.
0 0 2b
Using a’ = 4b%/a,
[ “ho(a,b)da = [ “(27) V%27 (a’) "V ?exp{ - (a’ + 2b)*/(8a’)} da’.
0 2b
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So,
jo “h(a,b)da
= e‘bj;:(2w)_l/2(a‘3}2b + a‘1/2/2)exp{ —(a- 2b)2/(8a)} da,
which equals, using a’ = (a — 2b)(4a) "2,
e“bj;w(2w)_1/22exp{ —(a’)2/2} da’ = e "
From (7), (8), (9) and (10), we have
liminfPr(u < R,(4) <) = f:{[:hwqau b)(1—e?) db} da
u

{B/2)e!@(~3lal"/%/2)

-®(-lal'/?/2)/2} da.

But, the inequality can be replaced by an equality if it can be shown that the
term inside the parentheses is a probability density function; that is, its total
integral over the real line equals 1. This is indeed true since

dF(a)/da = (3/2)e"®(~3|a]*/2) — ®(~|a|"/2/2) /2
and F(o0) — F( —o0) = 1, completing the proof. O

REMARK 1. We note that dF(a)/da has a unique mode at a = 0. Asa— 00,
F(a) behaves like 1 — (27)~'/%(256,/9)a % %xp(—a/8). That is, the limiting
distribution has exponential tails.

3. Numerical results. Applying Theorem 2 with continuity correction, we
approximate Pr(7, — 7, < k) by

(11) F(A1(6,)(k + 0.5)),

where % is an integer. When f(-, ) is the normal density with mean § and
variance o2, the distribution of 7, — 7, depends only on (A%I(6,))/2 = |A| /.
Without loss of generality, we assume that o = 1. In Table 1, the approximation
using (11) is compared with Hinkley’s results. The numbers in parentheses are
taken from Table 3.3 of Hinkley (1970), which may be regarded as the exact
Pr(7, — 1, < k). It should be remarked that Hinkley’s A is one-half of our A.
This table shows that the limiting distribution provides a good approximation.
In particular, it approximates the tail probabilities very accurately. This is
important in estimating significance levels (in hypothesis testing) and confidence
levels (in interval estimation).

REMARK 2. In the normal case with o = 1, the distribution of A%(%, — 7,) is
equal to that of the (random) value of r which maximizes W(r) — |r|/2 over
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TABLE 1
Approximation by the limiting distribution ¢

A
k 1.0 12 14 16 18 2.0 24 3.0
0 0.627(0.640) 0.662(0.680) 0.696(0.719) 0.729(0.756) 0.760(0.790) 0.788(0.820) 0.838(0.873) 0.895(0.928)
1 0.750(0.754) 0.799(0.804) 0.840(0.847) 0.875(0.882) 0.904(0.911) 0.927(0.933) 0.959(0.965) 0.984(0.988)
2 0.819(0.821) 0.867(0.870) 0.905(0.908) 0.933(0.936) 0.954(0.957) 0.969(0.971) 0.987(0.988) 0.997(0.997)
3 0.864(0.865) 0.908(0.910) 0.940(0.941) 0.962(0.963) 0.976(0.977) 0.986(0.987) 0.995(0.996)
4 0.895(0.896) 0.935(0.936) 0.961(0.962) 0.977(0.978) 0.987(0.988) 0.993(0.993)
5 0.918(0.919) 0.952(0.953) 0.974(0.974) 0.986(0.986) 0.993(0.993) 0.997(0.997)
6 0.935(0.935) 0.965(0.965) 0.982(0.982) 0.991(0.991) 0.996(0.996)
7 0.948(0.948) 0.974(0.974) 0.988(0.988) 0.994(0.995)
8 0.958(0.958) 0.980(0.981) 0.991(0.991) 0.996(0.996) :
9 0.966(0.966) 0.985(0.985) 0.994(0.994)

10 0.9720.973) 0.989(0.989) 0.996(0.996)
12 0.981(0.982) 0.993(0.993)

14 0.987(0.987) 0.996(0.996)

16 0.991(0.991)

18 0.994(0.994)

20 0.996(0.996)

“The numbers in parentheses are taken from Table 3.3 of Hinkley (1970).

TABLE 2
Contaminated normal cases, A = 1.5¢

€0
0.05,2 0.05,3 0.05,5 0.10,3 0.20,3 0.30,3 0.40,3 0.50,3

ol

0.701(0.725) 0.698(0.725) 0.698(0.717) 0.686(0.712) 0.664(0.690) 0.644(0.659) 0.625(0.636) 0.606(0.614)
0.846(0.844) 0.842(0.842) 0.843(0.849) 0.828(0.830) 0.801(0.804) 0.774(0.776) 0.746(0.747) 0.717(0.719)
0.910(0.907) 0.907(0.905) 0.907(0.906) 0.894(0.895) 0.870(0.871) 0.843(0.838) 0.815(0.808) 0.784(0.782)
0.944(0.942) 0.941(0.940) 0.942(0.940) 0.931(0.932) 0.910(0.916) 0.887(0.878) 0.860(0.847) 0.830(0.825)
0.964(0.963) 0.962(0.960) 0.962(0.960) 0.954(0.953) 0.936(0.941) 0.916(0.910) 0.892(0.883) 0.864(0.858)
0.976(0.975) 0.975(0.973) 0.975(0.971) 0.968(0.967) 0.954(0.956) 0.936(0.933) 0.915(0.905) 0.889(0.883)
0.984(0.984) 0.983(0.982) 0.983(0.980) 0.978(0.976) 0.966(0.968) 0.951(0.947) 0.932(0.921) 0.908(0.901)
0.989(0.989) 0.988(0.987) 0.988(0.986) 0.984(0.982) 0.975(0.976) 0.962(0.961) 0.946(0.937) 0.924(0.916)
0.992(0.993) 0.992(0.992) 0.992(0.989) 0.989(0.988) 0.981(0.983) 0.971(0.967) 0.956(0.948) 0.937(0.930)
0.995(0.995) 0.994(0.994) 0.994(0.993) 0.992(0.991) 0.986(0.986) 0.977(0.972) 0.964(0.958) 0.947(0.940)
10 0.996(0.997) 0.996(0.996) 0.996(0.995) 0.994(0.995) 0.989(0.990) 0.982(0.975) 0.971(0.965) 0.955(0.952)
12 0.997(0.997) 0.994(0.995) 0.988(0.987) 0.980(0.977) 0.967(0.966)
14 0.996(0.997) 0.992(0.991) 0.986(0.986) 0.976(0.974)
16 ‘ 0.995(0.995) 0.990(0.991) 0.982(0.982)
18 0.997(0.996) 0.993(0.992) 0.987(0.986)
20 0.995(0.994) 0.990(0.991)

WO U W=D

?The numbers in parentheses are based on a simulation study with 2000 replications for each case.
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(kA% k= ...,-1,0,1,...}, which explains why the approximation (11) is good
even for A not too small. To see how a departure from normality affects the
accuracy of the approximation, we considered eight contaminated normal distri-
butions, f(-,8) = (1 — &)N(0,1),+ eN(8,6%) with (e o) = (0.05,2), (0.05,3),
(0.05,5), (0.1,3), (0.2,3), (0.3,3), (0.4,3) and (0.5,3). A simulation study was
carried out with A = 1.5 and 2000 replications for each case. The simulation
results (with standard deviations less than one-half of 1%) are given in parenthe-
ses in Table 2. Except for 2 = 0, the approximation is better in the first five cases
than in the last three. This indicates that the approximation may not be as good
if the density f(-, 0) is far from normality.
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