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QUALITATIVE ROBUSTNESS FOR STOCHASTIC PROCESSES
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and Universidad de Buenos Aires and CEMA.

In this paper we generalize Hampel’s concept of qualitative robustness of
a sequence of estimators to the case of stochastic processes with non-ii.d.
observations, defining appropriate metrics between samples. We also present
a different approach to qualitative robustness which formalizes the notion of
resistance. We give two definitions based on this approach: strong and weak
resistance. We show that for estimating a finite dimensional real parameter,
m-robustness is equivalent to weak resistance and, in the i.i.d. case, is also
equivalent to strong resistance. Finally, we prove the strong resistance of a
class of estimators which includes common GM-estimates for linear models
and autoregressive processes.

1. Introduction. Hampel (1971) introduced a definition of qualitative
robustness of a sequence of estimators for the case of independent and identi-
cally distributed (i.i.d.) observations. This definition states that a sequence of
estimators 7), is robust at a given distribution p on the sample space X, if for
any distribution » close to p in the Prohorov metric, the laws of 7,, under p and
v are close in the Prohorov metric, uniformly in the sample size.

The use of the Prohorov distance reflects the intuitive meaning of robustness
as insensitivity of the estimator to

(a) small errors in all the observations (e.g., round-off errors),
(b) a small fraction of large observations (outliers).

Hampel also defines the more restrictive concept of #-robustness which also
requires insensitivity to “small” non-i.i.d. deviations from a nominal i.i.d. model.

The generalization of these definitions to the case of stochastic processes with
dependent observations requires defining appropriate distances between distribu-
tions on X™ in the case of 7-robustness and between distributions on X* in the
case of robustness. There is no unique natural way of doing this, and so several
definitions of qualitative robustness based on different metrics between probabil-
ity measures on X*® have been given. See, for example, Papantoni-Kazakos and
Gray (1979) and Cox (1981).

Cox’s (1981) proposal is not completely general, since it only makes sense for
estimators which depend only on finite dimensional marginal empirical distribu-
tions. Many estimates, such as the usual least-squares estimates for the parame-
ters of moving-average processes, do not satisfy this requirement.
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A shortcoming of the “rho-bar” metric, proposed by Papantoni-Kazakos and
Gray (1979), which was mentioned by Cox (1981), is that this metric is not
invariant with respect to equivalent metrics d on the sample X. Moreover, the
definition of robustness based *on the “rho-bar” metric only has a natural
intuitive meaning when d is bounded. In fact, Cox (1981) shows that when d is
the usual metric on R, the sample mean is robust with respect to the
Papantoni-Kazakos and Gray definition.

We will give two simple examples of time series parametric models which
show the relevance of a suitable definition of qualitative robustness and the
special problems arising when the observations have a time dependence struc-
ture.

Stationary autoregressive process of order 1 (AR(1)). Let x,,...,xp be
observations satisfying x,= ¢x,_, + u,, 1 <t < T, where |¢| <1 and the u,’s
are ii.d. random variables with symmetric distribution F. If F is normal the
least squares (LS) estimate is asymptotically optimal, i.e., its asymptotic vari-
ance attains the Cramér—Rao bound. The LS-estimate, denoted here by ¢, is
defined by minimizing Z _ouZ(¢), where u,(q)) =x,—.¢x,_, and is given by
brs = TiogX X, 1 /T gxi 1.

It is easy to show that just one outlier may produce a large change in 4)13, eg.,
if x, = oo while all the other x, are fixed, then ¢,g — 0. [Similar results hold for
the general AR(p) case.] Therefore, the LS-estimate does not satisfy criterion
(b) of the intuitive notion of robustness given earlier.

The class of M-estimates for autoregression is defined similarly as for regres-
sion [Huber (1973)]. Given an even and nondecreasmg function p, the AR(1)
M-estimate is defined by the value ¢M which minimizes ¥T_,p(u,(¢)). Let
¥ = p/, then ¢, satisfies X7_,¥(u,($))x,_, = 0. For the special case of location,
M-estimates based on bounded y-functions are qualitatively robust [see Huber
(1981), Chapter 3, page 52]. For perfectly observed autoregression M-estimates
may be designed to have high efficiency robustness, even when the distribution F
of the u, has “heavy” tails which give rise to innovation outliers [see Denby and
Martin (1979) and Martin (1982)]. However, it is easy to check that if p is convex
and, therefore, Y(x) is nondecreasing, we will have again that, with x,,..., x7
fixed, lim, _, w‘PM 0. Autoregression M-estimates are not at all robust toward
general changes in the true model other than the rather special change in the
innovations distribution F only.

In order to obtain robustness, Denby and Martin (1979), Martin (1982) and
Bustos (1982) proposed using the class of generalized M-estimates (GM-esti-
mates) for autoregressive models. See also Kiinsch (1984). These estimates, often
called bounded influence estimates, were first proposed by Hampel (1975) and
Mallows (1976) for regression. In the case of the AR(1) model, a GM-estimate is
defined as a solution of the equation ):,zzn(u,(q)), x,_;) =0, where n: R? > R is
“a bounded and continuous function which is odd in each argument. Two
interesting subclasses of 7 functions are the Hampel type, where n(u,v) =
Y(u - v), and the Mallows type, where 1(u, v) = ¢;(u){¥,(v). We will show in
Section 5 that under general regularity conditions GM-estimates satisfy a
suitable definition of qualitative robustness.
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Moving average process of order 1 (MA(1)). Set x,= —0u,_, + u,, where
|8] <1 and the u,’s are i.i.d. random variables with symmetric distribution F.
The M-estimates are defined by minimizing X7_,p(u,(6)) with u,(0) = x, +
Ox,_, + -+ +0"x,.

If p(u) = u® we have the LS-estimate which is asymptotically efficient when
F is normal. Differentiating the M-estimate loss function gives the following
equation for the M-estimate 0, XT_,y(u,(0))a,_,(6) = 0, where a,(0) = x, +
20x, ,+ -+ +t0" x,.

As in the AR(1) model, it is easy to show that if p is convex, we have
limx‘_,wBAM = 0, all other x, being fixed, and, therefore, §M does not satisfy
criterion (b) of the heuristic notion of robustness.

By analogy with the GM-estimates for the AR(1) model, we define a GM-
estimate for the MA(1) model as a solution of the equation X7_,m(u,(9), a,_(0))
= 0. It is possible to show that even if 7 is bounded and also odd and monotone
in each variable then lim, _, ;i\ = 0 and, therefore, 0 may not be considered
robust either. This fact, which is in striking contrast to the AR(1) case, may be
explained by the fact that although each term n(u,(0), a,_,(8)) is bounded, a
large change in x, will produce a large change in all the residuals u,(6). In the
AR(1) model a change in one observation will produce changes in only two
residuals.

A robust estimate for the MA(1) model will be introduced in Section 5, based
on residuals that depend on a finite dimensional marginal empirical distribution.

In Section 2 we propose a new metric 7, on X". We compare this metric with
those used by Hampel (1971).

In Section 3 we give a general definition of qualitative robustness which
covers the case of dependent observations. We show that in the i.i.d. case our
definition of robustness using the metric 7, is equivalent to Hampel’s 7-robust-
ness concept.

In Section 4 we propose a different approach to qualitative robustness based
on the concept of resistance, see Mosteller and Tukey (1977). The basic idea is to
require that the estimate change only by a small amount when the sample is
changed by replacing a small fraction of the sample by arbitrary large outliers or
by perturbing all the observations of the sample with small errors (round-off
errors). We give two definitions which formalize the resistance concept in
probabilistic terms, calling them weak and strong resistance. The advantage of
this approach is that we may require as a condition for resistance that the
estimator itself as well as its distribution be insensitive to outliers or round-off
errors. Moreover, the two definitions of resistance are based on much more
elementary mathematical concepts than those used in the definition of qualita-
tive robustness and, therefore, they are more likely to be easily grasped by
applied scientists. In this regard we note that Donoho (1982) and Donoho and
Huber (1983) have recently stressed finite sample breakdown points of estimates
for similar reasons (i.e., transparency and simplicity of concept).

We shall show that weak resistance, which may be considered a generalization
of Condition B given by Hampel (1971), is equivalent to robustness based on the
proposed metric 7, if the parameter space is a subset of R*. 1t is also shown
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that strong and weak resistance are equivalent in an i.i.d. model. We conjecture
that this equivalence should hold even for more general stationary and ergodic
processes. Asymptotic versions of both qualitative resistance definitions are
given and these will be usually easier to verify for estimates implicitly defined by
a system of equations.

In Section 5 it is noted that the continuity condition given in Papantoni-
Kazakos and Gray (1979) is sufficient for asymptotic resistance. There we also
establish asymptotic strong robustness for a large class of estimates which
includes the GM-estimates used by Denby and Martin (1979), Martin (1982) and
Bustos (1982). We also state a similar result for a class of estimates which are
defined similarly to the class of scale estimates for regression proposed by
Rousseeuw and Yohai (1984).

2. Distances between probabilities. Let X be the sample space and d be
a distance on X. We shall assume throughout this paper that (X, d) is a
complete and separable metric space (polish space). Let X” and X be the
cartesian product of copies of X, respectively. # will denote the Borel o-field on
X and # " and #* the corresponding product o-fields on X” and X*. For
any measurable space (2, &), let 2(Q) be the class of all probabilities on <. If p
and » are in 2(Q), P(u,r) denotes the class of all the probabilities P on
(2 X Q, 9 X &) with marginals p and ».

If (X, d) is a metric space, then the Prohorov distance =, between p and »,
where p and » € #(X), is defined by

7y(p, v) = inf{e: p(A) <»(7(A,e,d)) +¢ VAEF},

where ¥'(A, ¢, d) = {x € X: d(x, A) < ¢&}.
Strassen (1965) establishes that if (X, d) is a polish space, then =, is given by

74(v, p) = inf{e: 3 P € P(p, ») satisfying P({(x, x'): d(x,x’) > ¢}) < ¢}.
Given x” = (x4,...,%,) € X" and k < n, the kth empirical marginal distri-
bution induced by x" is denoted by p,[x"] and is defined.as the element of

#(X") which assigns mass 1/(n — & + 1) to each sample (x;, 1, X;,2,..-, %j4 ),
O0<j=<n - k.

Metrics on X" and X". Given (X, d) we will consider the following metric
on X™
(2.1) d,(x", y") = inf{e: #{i: d(x;, ;) > €} /n < ¢}.

. Let now X" be the space X" modulo the permutation of coordinates. Hampel
(1971) defines the following distance on X", which we denote by d,,:

(2.2) d (2", ) = 7(p[2"], m[5"]).
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REMARK 2.1. Two points of X" are close in the metric d, if all the
coordinates except a small fraction are close. Therefore, this notion of closeness
corresponds to the type of errors which are considered in the intuitive notion of
robustness or resistance. The followjng lemma gives the relationship between d,,
and d,,.

LEMMA 2.1. Let &, be the set of all permutations of the first n positive
integers. Given x™ and y™ in X", if p is in 2,, we denote Y, = (Ypays- -+ s Yp(n)*
Then we have

(2.3) d(x", y") = min d, (=", 37).

ProoF. It is enough to show that for any & > 0,

(2.4) d,(x", y") < 8 = my(p,[x"], m[y"]) <6
and
(25) Wd(l"'l[xn]’ I"l[yn]) < 8 = 3 p € gn: dn(xn’ y;) < 8

Suppose that d,(x", y*) < 8. Then if S = {i: d(x,, ;) <8} we have that
#S/n > 1 — 8. Let R be the distribution on X X X which assigns probability
1/n to each pair (x;, 3;), 1 <i < n. Then R € #(p,[x"], p,[y"]). We also have
that R(d(x, y) <8) = #S/n>1— 4. Then, by Strassen’s theorem (1965),
ma(pal™], p [ ¥"]) < 8 and (2.4) holds.

For any p in #,, define h(p) = #{i: d(x;, Yp(;y) < 8} and ¢ = max, . 5 h(p).

We have to show that ¢ > n(1 — &) whenever 7,(p,[x"], p,[y"]) < d. Con-
sider the map f: {1,2,...,2n} — X defined by f(i) = x; if i <n, f(i) =¥,_, if
i > n and put d(i, j) = d(f@), f()))

By the definition of the Prohorov distance, we have

(2.6) Wd(n"’l[xn], Pll[yn]) = m3(v1,v3),

where », and », are the empirical distributions induced by (1,...,7n) and
(n + 1,...,2n), respectively. From Strassen’s theorem (1965), it follows that the
right-hand side of (2.6) is equal to inf{e: there exists a doubly stochastic matrix
(p;;) such that Xp;;I ., yyze) S ne}. Since by Birkhoff’s theorem (1946) every
doubly stochastic matrix is a convex combination of permutation matrices, the
lemma follows. O

3. Generalization of Hampel’s definition of robustness. Let T: X" - A
for n > n, be a sequence of estimators taking values in a polish space (A, ).
Given p, € #(X™), we denote by & (T, u,,) the distribution of T, under p.,.

The following definition given by Bustos (1981) generalizes Hampel’s concept
of .7-robustness.

DEFINITION. Let p € #(X) and let p, be a pseudometric on #(X") for all
n > n,. Then the sequence (T,), . ,, is p,-robust at p if given & > 0, there exists
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8 > 0 such that
1, € P(X") An2ng Ay, v,) <8 = m(L(T,, 1), £(T,s 7)) <&,
where p, is the nth order margipal of p.

In the case of p an i.i.d. process and (T},), , ,, invariant under permutation of
coordinates, we get Hampel’s definition taking as p, the pseudometric p, defined
by p, (1, 7, ) 73(fk,, 7,), where fi, and 7, are the probabilities induced by g,

and », on X,.

REMARK 3.1. Papantoni-Kazakos and Gray (1981) and Cox (1981) gave
definitions which are generalizations of Hampel’s concept of robustness instead
of 7-robustness. We consider that these definitions, are not adequate for depen-
dent observations (where the estimate may not be invariant under permutations
of coordinates) since according to Papantoni-Kazakos and Gray and Cox, esti-
mates which depend on a fixed finite set of coordinates may be robust and this
contradicts the intuitive notion of robustness: A small proportion of observations
should not affect the estimator too much [consider, for example, T,: X" —» X
defined by T, (x,,...,x,) = %,]. In Boente, Fraiman and Yohai (1982) may be
found a discussion on why the relevant concept of Hampel to be generalized for
dependent observations is #-robustness and not robustness.

The following theorem shows that 7, -robustness is a natural generalization of
Hampel’s definition.

THEOREM 3.1. Let p be an i.i.d. process and (T,),., @ sequence of
estimates invariant by permutations of the coordinates. Then Hampel’s defini-
tion of m-robustness (p,-robustness) is equivalent to m, -robustness.

ProOF. By Lemma 2.1 we have that 7,(p,,7,) < & implies p,(p,, ,) < 8.
Thus, p,-robustness implies 7, -robustness.

Assume now that (7,,), ,, i 74 -robust at p. We have to show that given
e > 0, there exists 8 > 0 such ‘that V' n > ngy, we have

(31) v, P(X") and 7y, 5,) <8 = m(L(T,, n), L(T,, 7)) <.
Since (T,),, » », is 74 -robust we can find §, > 0 such that V n > n,,
(3:2) (B va) < 8= m(L(T,, p), £(T,, 7)) < &
We will show that (3.1) holds with 8 = §,. Let », be such that =;(i,, 7,) < §,.
Then, by Strassen s theorem, there exists R, € #(ji,, #,) such that
(3.3) ({(x”, 57) € X" x X" d (%", ) <80})21—80

Let S: X™ > X" be the canonical projection. By Lemma 2.1 we can define a
function &n=(8n1 8n2) & X" x X»—> X" x X", such that

(a) S,(8,, (%", 7)) = &,
(b) n(gn,2(x ’ yn)) = yn,
(c) d (£, 5") = d, (8, (E", 7"), &, (2", 57)).
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It is easy to show that g, may be chosen to be measurable. Let R, be the
probability induced by g, on X” X X" when X" x X" is endowed w1th the
probability R Then as p is an ii.d. process, (a) and (b) entail that the first
marginal of R is p,,. If »* denoteg the second marginal of R, we have 7} = 7,.
Finally, (c) and 3.3) entail
(3.4) R, ({(x", y") € X" X X" d, (2", y") < 8}) 21 = &

Using Strassen’s theorem we have ,(u,,»,) < 8, and, therefore, by (3.2),

a\(L(T,, n), Z(T,, v¥)) < e Since T, is 1nva.r1ant by permutatlon of coordinates
L(T,, v,;") = .?(T v,) and then (3. 1) holds. O

REMARK 3.2. Papantoni-Kazakos and Gray (1979) define a concept of
robustness using the Vassershtein distance p} , on 2(X™"). It is possible to show
[see Boente, Fraiman and Yohai (1982)] that 7, -robustness implies pj ,-robust-
ness and if d is bounded, both concepts are equivalent. A shortcormng of the
notion of robustness based on p} , is the lack of invariance with respect to
equivalent d metrics.

4. Qualitative resistance. Here, we propose a different approach to quali-
tative robustness, based on the concept of resistance [Tukey (1976)] which seems
to capture better its intuitive meaning. Instead of considering the insensitivity of
the estimates with respect to small changes in the distribution of the process, we
look at how insensitive they are at a given sample point x € X*, when

(a) all the observations have small changes,
(b) a small fraction of observations suffer large changes.

Consider x™ € X" and let ¥'(x", 8, d,)) be the open sphere of center x™ and
radius & corresponding to the metric d,. Define
S,(8, x™) = sup{M(T,(y"), T,(z")): y", 2" € ¥(x",8,d,)}.
According to Lemma 4.1(i), S,(8, -) is lower semicontinuous and, therefore,
measurable.

DEFINITION 1. Let x € X*° and x™ be the first n coordinates of x.
Then (T,),. ,, is resistant at x if given e > 0, there exists § > 0 such that
S,(8, x(”))<e,\7’n2n0

We will now give two definitions which formalize the concept of resistance at
a given probability p € #(X*).

DEFINITION 2. Let p € #(X*); then (T,),. ,, is strongly resistant at p. if
p({x € X*: T, is resistant at x}) = 1.

‘DEFINITION 3. Let p € #(X*); then (T,),. ,, is weakly resistant at p if
given ¢ > 0, there exists § > 0 such that

p({x"€ X" S,(8,2") <e})>1—-¢ Vnzx=n,.
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REMARK 4.1. According to what has been seen in Section 1, the M-estimates
with convex p for the AR(1) model are not weakly or strongly resistant. The
same occurs with the GM-estimates for the MA(1) model with n(u, v) monotone
in both variables. .

The advantage of these definitions is that they require that the estimator
itself be insensitive to errors of type (a) and (b) mentioned earlier, while the
other definitions only require insensitivity of the law of the estimators. However,
we will show later the equivalence of weak resistance with =, -robustness. We
also show that at least in the i.i.d. case strong and weak resistance are equiv-
alent.

The following elementary proposition, which we give without proof [see
Boente, Fraiman and Yohai (1982)], gives a characterization of strong resistance.

PROPOSITION 4.1. (a) (T},),,» », I8 strongly resistant at p. if given ¢ > 0, there
exists 8§ > 0 such that

(4.1) “( N {xe X: 8,(5,2™) < e}) >1—e
nxn, ' '
(b) Then strong resistance of (T,), », at p. implies weak resistance at p.

Similar to Papantoni-Kazakos and Gray (1979), we give asymptotic versions
of Definitions 1, 2 and 3.

DEFINITION 4. Let x € X*; then (T,,),. ,, is asymptotically resistant (AR)

at x if given & > 0, there exist § > 0 and n, = n,(¢, x) such that
S,(8,xM)<e Vnx=n,.

DEFINITION 5. Let p € #(X%); then (T,),.,, is asymptotically strongly

resistant (ASR) at p if
p({x € X*: T,isARat x}) = 1.

DEFINITION 6. Let p € #(X*); then (T,),.,, is asymptotically weakly
resistant (AWR) at p if given & > 0, there exist § > 0 and n, = n,(¢) such that
p({x"€ X" S,(8,x") <e})=1—-¢ Vnxn,.

As a direct consequence of these definitions we have the following proposition
that we give without proof and which extends analogous results obtained by
Hampel (1971) and Papantoni-Kazakos and Gray (1979).

PROPOSITION 4.2. (T,),,. ,, is strongly (weakly) resistant at p. if and only if

(i) T, is asymptotically strong (weak) resistant at u;
(ii) T, is a continuous function of x", for each n.
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The following theorem shows that for the i.i.d. case, strong and weak resistance
definitions are equivalent.

THEOREM 4.1. Let pe #(X *) correspond to an i.i.d. process and let
(T)1. » n, be invariant under permutations of coordinates and weakly resistant at
p. Then (T,), ., », is also strongly resistant at p.

PRroOOF. Let & > 0. We are going to show that there exists 8 > 0 such that
(4.1) holds. Since (T,),,, ,, is weakly resistant, we can find §* such that
(42) pa(x™ S,(6%,27) <)) > 1 -

We will show by applying a suitable form of the law of large numbers that an
even stronger inequality holds, namely,

(4.3) pa({x": S, (8*/2,2") <e}) =21 —ab® Vnzn,
for suitable @ > 0,0 < b < 1 and n,. Then, let
B, =X* — {x: 5,(8*/2,x™) < eV n>m}.
Since
#(B,) < X pa({x™: S(8*/2,x") > ¢}) < ab™/(1 - b),

nzm

there exists n, > max(n,, n,) such that
(4.4) u( N {x: 8,(8*/2,2™) < e}) >1-—¢/2.
nxn,

Finally, we can find § > §*/2 such that
(45) p({x:8,(8,x™) <e}) 21 —-¢/(2(ny— 1)) Vng<n<n,.

Then (4.1) may be derived from (4.4) and (4.5).
In order to prove (4.3), note that since X is a polish space, there exists a
compact K such that

(4.6) p(K)>1-8/8.

We can find a partition K,,..., K, of K such that each K;, 1 <i < h, has
diameter < §*/2. Let K be the complement of K and m; = p.l(Ki), 0<i<h.

Given x" = (xy,..., x,), define M, (x™) = X7_,1 x(x;)/n, i ,h.Bya
well known form of the strong law of the large numbers for Bernoulh vanables,
there exist @ > 0 and 0 < b < 1 such that if R, =N (x™ | M, (x") —m| <
0*/(8h)}, then

(4.7) po(R,) =1—ab™ Vn.

Now, look at a fixed x** € R, and let P, be the set of all points obtained by
permutation of the coordinates of x*”. We will show that

(4.8) R,c ¥ (P, 8*/2,d,).
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Let y” € R,; then |M, (x*") — M, (y™)| < 8" /(4h). Define ;= {j: ¥ €
K.}, 0 < i < h. Then there exist sets @}, 0 < i < h, such that

(4.9) #QF = nM,(x*"), 0<i<h,
and '
(4.10) #(Q*aQ;) < nd*/(4h).

By (4.9) there exists a point X = (%,,..., %,) € P,, such that if j € @}, then
¥;€K,;,0< i < h. Since the diameter of K;, 1 < i < h, is smaller than §* /2, we
have that {i: |%; — 3| = 8*/2) € (UL(Q} 2Q;)) U Q. Then (4.6), (4.9) and
(4.10) imply that

#{i: |X; — | = 8*/2) < né*/4 + #QF < nd*/4+ né*/4 < né*/2.
Therefore, d (X", y") < 8*/2 and (4.8) is true. .

From (4.2) and (4.7) we can find n, > n, and x*” in R, N {S(8* x") < ¢}
V n > n,. Since {S,(8*, x™) < ¢} are invariant under permutation of coordinates,
we have
(4.11) P, C {S,(8*, x") <¢}.

On the other hand, it is clear that
(4.12)  {x™: S,(8*/2,x") < &} > ¥ ({x™: S,(8*,x") <¢},8%/2, d,).

Combining the last two equations with (4.7) and (4.8) we get (4.3). O

REMARK 4.2. Proposition 4.1(b) and Theorem 4.1 also hold if strong and
weak resistance are replaced by asymptotically strong and weak resistance.

THEOREM 4.2. Let p € P(X*).

@) If (T,) 5 n, is weakly resistant at , then it is m, -robust at .
@) If (T)psn, s asymptotically m, -robust and consistent at p., then it is also
asymptotically weakly resistant at p.

To prove Theorem 4.2 we need the following lemma.

LeEMMA 4.1. Let (A, p) and (A, \) be two polish spaces and T: A — Aa
measurable function with respect to the Borel o-field. For any a € A, 8>0let
Sy(a) = sup{MT(b), T(c)): b, c € ¥'(a, ¥, p)}. Then we have:

(i) S, is lower semicontinuous and, therefore, measurable.

(ii) For any & > 0 there exist measurable functions U;: A - A, j=1,2, such
that for all a (a) Ufa) € ¥(a,28, p), j = 1,2, and (b) MT(Uy(@)), T(Uxa))) 2
Ss(a)/2.

The proof may be found in Boente, Fraiman and Yohai (1982).
PROOF OF THEOREM 4.2. (i) Given & > 0, choose 8, > 0 verifying p,(B) >

1 — e/2 with B = {x™ S, (8,,x") < ¢} and let 8 = min(8,, ¢/2). By Strassen’s
theorem we have that for any », € (X ™) such that 7,(p,, »,) < 8, there exists
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R € #(u,,, v,) such that R(A) > 1 — 8, where A = {(x", y*): d(x", y") < 8}.
Therefore, we have R(A N (B X X")) > 1 — ¢, which implies

WA("?(TM P‘n)’ g(Tn’ Vn)) <&
(ii) Since (7,),, » n, i 74 -robust at i, given ¢ > 0, there exists §, > 0 such that
'”d,,(f"‘n’ Vn) <8, = 7"A("?(Tn’ P‘n)’ ,?(Tn, Vn)) <e/4.

By Lemma 4.1 (ii) we can find for § = §,/2 and for any n > n, a pair of
measurable functions U,, W,: X" — X", such that

(4.13) d,(U(x"),x") <28,  d,(W,(x"),x") <28
and
MT,; (x7), T (x)) = S,(8, x7)/2,

where T, = T,oU, and T,} = T, W,
Denote p, = LUy(x™),p,) and p} =L (W (x™),p,). By (4.13) we have
Mg (s Bn) < 8 and my(p7, p,) < 89, which implies

W,‘(.Z’(Tn, ”’n)’ .?(T: ’ "'n)) = '”A(g(Tn’ ”‘n)’ ‘y(Tm P‘;)) <e/4
and
"A(g(Tn’ I“n)’ .,?(Tn_, Mn)) = WA(.Z’(Tn, I"’n)’ ,?(Tn, M;)) <e/4.

Finally, the consistency of T, to T, at u implies that there exists n, > n, such
that .

m(L(TH, 1), ) <e/2 and m\(L(T;,p,),8z,)<e/2 Vnxn,

where 8, is the one point mass at T, Therefore, p{\T,,T,)>¢€} <e
Vnxn,.0

5. Applications. A standard argument shows that the generalization of
Hampel’s (1971) continuity condition given by Papantoni-Kazakos and Gray
(1979), Cox (1981) and Bustos (1981) implies ASR for stationary and ergodic
processes [see Boente, Fraiman and Yohai (1982)]. However, in this section, we
will prove the ASR property directly from the definition. We will give sufficient
conditions for the ASR of a class of estimates, called GM-estimates, which
include the proposals given by Denby and Martin (1979), Martin (1982) and
Bustos (1982) for autoregressive models and by Krasker (1980), Maronna and
Yohai (1981) and Krasker and Welsch (1982) for regression models.

From now on (X, d) will be an Euclidean space, which we assume to be either
(a) X = R?*1 or (b) X = R when we are interested in estimating the parameters
of a linear model or an autoregressive model of order p, respectively, from a
sample obtained from a distribution in the neighborhood of the ideal model.

The parameters to be estimated will be a = (8, 6), where 8 € O is an open set
in R? and ¢ > 0 is a scale parameter for the errors. Then A = ® X R* endowed
with the Euclidean distance.

Let us define the scaled residual map as the function

rrRPXRXRPXR*-> R, r(z90,0)=(y-02)/o.
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Let ¢: R? X R —» R, x: [0, + ) > R be real functions and ¢: RP*!1 X A —
R?*! be such that

o(w,a) = (¢(Az,1(z, y,0,0))Az, x(r(2, y,0,0))),

where w = (y, 2’), z € RP, y € R and A is a nonsingular matrix.

Let x = (x,,...,x,_,) for h < t and % be a fixed integer which will be 0 or p
for cases (a) or (b), respectively.

For x” € X™ and a € A we define

gn(xn, Ol) = Z q’(xt’ )/(n - k)

t=k+1

The GM-estimate of « is defined as a solution of ‘
(5’1) gn(xn’ Tn) =0.

More generally, if there is no solution of (5.1) we will consider any sequence of
estimates (T},), > 5. such that

(5.2) lim sup ||g,(x", T,)| = in(x")] =0

xteX"”

where ln(xn) = infaeAlgn(xn, a)l'

The matrix 3 = AA’ is a well chosen scatter matrix of the vector Z,, where Z,
corresponds to the last p coordinates of the vector x¥, i.e., a scatter matrix of the
regression or autoregression variables, respectively. Krasker (1980), Krasker and
Welsch (1982), Ronchetti and Rousseeuw (1982) and Samarov (1983) give opti-
mal A matrices and ¢ functions for the linear model under different criteria.

In the case of autoregression [see Kiinsch (1984)], the matrix A depends on a.
For example, in a Gaussian AR(l) process, A(a) = (1 — 62)/2/6. However, in
this case the equatlon E ((p(x, , @)) = 0 will typically have an additional degen-
erate solution, e.g., in the AR(1) case 0% = 1. Therefore, the consmtency and
resistance of the estimates will depend also on how the estimate is chosen among
the set of solutions of (5.1). This degenerate solution may be avoided by

multiplying the function ¢ by the matrix (A(;l (1’) In this case an analogous

statement to Theorem 5.1 should be obtained.

Another possible solution will be to replace A by any consistent and ASR
sequence A,. For the sake of simplicity, in this section we will study only the
case of a fixed A matrix.

If we replace A by a sequence A, the results in this section still hold provided
the function ¢ verifies condition E2 of Bustos (1982) instead of E2(ii) which
follows.

. We will need the following assumptions:

El. For each z € R?, u — ¢(z, u) is odd, uniformly continuous and ¢(z, u) > 0
for u > 0.
E2. () (2, u) = ¢(z, u) is bounded.
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(ii) There exists a constant K* such that
|¢(21, u)2; — ¢(2,, u)2y| < K*|2, — 2,| /min(jz,], |2,]),
I$(2, u;)z — ¢(z, uz.)z| < K*|u; — u,|/min(|u,|, |u,)).
E3. For each z, u - ¢(z, u)/u is nonincreasing and there exists u, such that
(2, uy)/uy > 0 for all z..
E4. x is bounded, continuous, even and increasing on {x: —c, < x(x) < ¢,},
where ¢, = sup x(x) and —c; = x(0), 0 < ¢, ¢,.

x is differentiable with x — xx’(x) continuous and bounded. Also, x(|u,|) > 0.

H1. x,,...,x,,... is a stationary and ergodic stochastic process with probability
measure g € P(X*®).

H2. p(a’z, = 0) = 0 for all @ € R?.

H3. u((1, —a)xk=0)=0.

H4. There exists a unique a, such that g(a,) = E,@(x}, a,) = 0.

As noted by Bustos (1982), Theorem 5 of Maronna and Yohai (1981) shows
that E1-E4 are sufficient conditions for H4. Moreover, if the observations are
from the ideal model and the residuals have a symmetric distribution, H4 holds
for the true value of the parameters.

Two examples of such GM-estimates are:

(i) Mallows type estimates are defined by ¢(y, u) = ¢;(w)¥(|¥])/|y|, where
Y;: R - R, i =1,2. In order to obtain E1-E4 it is sufficient to assume ;(¢) > 0
for u > 0; ¢, is odd, bounded, continuously differentiable with uyi(ux) < y,(u)
for i =1,2; also, ¢, is uniformly continuous and there exists u, such that
¥1(uo) > 0.

(ii) Hampel-Krasker type estimates are defined by ¢(y, ) = ¥(|y|u)/|y|. In
order to obtain E1-E4 it suffices to require that ¢ be odd, bounded and
nondecreasing in [0, + c0) with {(u,) > 0, uniformly continuous, continuously
differentiable and uy’(u) < Y(u) for all u.

The following proposition shows that the function g,(x" &) is uniformly
equicontinuous with respect to the metric d,,.

PROPOSITION 5.1. Assume E2, E4 and H1-H3. Then there exist N, c X*®
and p(N,) = 0, verifying that for any x € N, and ¢ > 0, there exist § > 0 and
no such that for n > ny, y* € X™ and d(x'™, y™) < 8 implies

g, (x™,a) — g, (y",a) <e, Va€A.
n

The proof may be found in the Appendix.

REMARK 5.1. In Bustos (1982) for autoregression and in Maronna and Yohai
(1981) for regression, it is shown that under E2-E4 and H1-H3 there exists a
compact set K C A such that
(5.3) lim inf ing(lgn(x(”), a)] >0 as.(p).

&

n—-o a
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THEOREM 5.1. Suppose that (T),), . , satisfies (5.2); then H1-H4 together
with (5.3) and the conclusion of Proposition 5.1 imply that (T),), ., is ASR at p.

ProOF. The ergodic theoremsimplies
(5.4) nlijr:ogn(x("), a,) =0 as.

Therefore, by (5.2) we have
(5.5) lim g,(x™, T,(x™)) =0 as.
n— oo

As in the proof of Theorem 2 of Huber (1967) but using the ergodic theorem
instead of the law of the large numbers it may be proved that for all ¢ > 0 and
each compact set K C A,

lim inf inf  |g,(x™,a) >0 as.,

n—o (la—ay|=e)NK
which implies
(5.6) liminf inf |g,(x™,a) >0 as.
n—oo |a—ag|=e

Let Ny € X* be the set where (5.3)—(5.6) hold, and N; = N; U N,. Given
x & N, and ¢ > 0 by (5.4) and (5.6) there exist n, € N and 7 > 0 such that
(5.7) Vnzn,, inf  |g(x™, @)l >0, Ig, (™, @) <n/4.

la—ag| 2€/2

Therefore, by (5.5) there exists n; such that

(5.8) |T,(x™) — ap| <e/2 Vn=n,.

As x & N,, Proposition 5.1 implies that there exist n, > max(n,, n,) and
§ > 0 such that

(5.9) Y n=n,, d,(x™, y") < 8= su;j)\[gn(x(”), a) — g,(y", a)| < n/4.
ae

From (5.7) and (5.9) we have that for all n > n,, d,(x™, y*) < 8§ implies that
infla—ay > ¢ 2|8 Y™ @)| > 31/4 and |g,(y", a¢)| < n/2. Therefore, by (5.2) there
exists ny > n, such that

Vnzng, o d(x™, ") <8=|T,(y") = al <e/2,
which together with (5.8) implies the desired result. O

REMARK 5.2. H1-H4 together with (5.3) imply the strong consistency of
(T,), - as is shown by (5.8).

When we consider redescending ¢ functions, H4 does not hold. In this case
(5.1) will have solutions which are essentially different. In order to study the
" properties of the estimate, we should specify which solution we are considering.
In this paper we will consider the solution of (5.1) which is closest to an initial
consistent and ASR estimate. In Theorem 5.2 we show that these estimators are
ASR when the parameter space A C R.
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Let n: R?2 X A — R be a real function. For x” € R” and a € A define

g.(x", a) = En‘,zn(x}, a)/(n—k), gla)= Ep(n(x}, a)).

.

We will need the following assumption.

H5. (i) 5 is bounded, continuous and satisfies E2.
(ii) There exists a;, € A such that g(a,) = 0 and g(a) is strictly monotone
in a neighborhood of a,.

For each ¢ > 0 we define
Ne={x€R*:3ny8>0:n>nyand

d (2™, y*) <8 = g,(y", @) = 0 forsome a € [ay — &, g + e]}.
LEmMMA 5.1. Assume H1, H5 and H2 and H3 with p = 1. Then u(N,) = 0.

Proor. Without loss of generality we may suppose that & < ¢, and that
&(a) is strictly increasing in (a, — &,, @, + &,). Then the ergodic theorem implies

(5.10) lim g,(x™,ay+¢) =g(ag+e) =a>0 as.
n— o

and

(5.11) lim g,(x™, ay—¢) =g(ag—e) =b<0 as.
n— o

Let N° be the set where (5.10) and (5.11) hold and M = N U N, with N,
defined in Proposition 5.1. If x & M, Proposition 5.1, (5.10) and (5.11) imply that
there exist n, and § > 0 such that

g,,(y”, ay + e) >a/2,

(n) n 8
V n = ’Iil’ dn(x ) y ) < = {gn(yn’ ao _ 8) < b/2.

Since g, is continuous, we have x € N°. O

Let (T;),- be an initial sequence of strongly consistent estimates of a,
which is ASR at p and A, = {x" € R™ 3 a: g,(x", a) = 0}. We define T(x") as
the solution of g,(x", &) = 0 closest to T)¥(x"), when x* € A, and T, (x") =
T} (x"), otherwise.

THEOREM 5.2. Under H1, H5 and H2 and H3 with p = 1, we have:

@) lim,_, T ,(x™) = a, a.s.
(i) (T,),> 1 is ASR at p.

ProorF. (i) follows immediately from (5.10), (5.11) and the definition of 7,.

(i) Let N =UL,N,,;, where N, is previously defined, N*¢= {x €
R*/T¥x"™) - ay and (T}),, is resistant at x} and M = N U N*. Given
e>0 and x &€ M there exist §, >0 and n; such that for all n > n, and
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d(x, y*) < 8, the equation g,(y", &) = 0 has a root in [ay — £/2, ay + £/2].
On the other hand, since x € N*, there exist n, > n, and 8, < 8, such that
d (x™, y*) < 8, and n > n, imply |T*(y™) — ay| < &/2. Therefore, according
to the definition of T, we get (ii). O

Another example of ASR estimates is given by the extension to ARMA
models of the S-estimates introduced by Rousseeuw and Yohai (1984) and
developed in Boente, Fraiman and Yohai (1985). We will describe them briefly.
Let r: R**! X ® - R be a continuous function and x: R — R be a function
verifying E4. Define o(#) as the unique solution of

f(6,0(0)) = E(x(r(x%,8)/0(8))) = 0.
Let ’

fx"0,06)=n"t ¥ x(r(xk8)/0) =g,(x",0).
t=k+1
Then 0,(6, x") is defined as the unique solution of g,(x", 6,(8, x™)) = 0.
We define the S-estimate as the value 6,(x™) such that

an(xn) = on(on(xn)’xn) = n;inan(o’ x™).

Under some regularity conditions, described in Boente, Fraiman and Yohai
(1985), it may be shown that the S-estimator is strongly consistent and ASR
at p.

In particular, if we choose

r(xk, ) =x,— P21, )

where £{"(x?7, ) is the best linear predictor of x, based on x,_,,...,, ,
when the parameter is 6, and x, is a Gaussian MA(1) process, the value §, which
minimizes o(f) is the true parameter. Therefore, this proposal provides con-
sistent and ASR estimates for 6,.

A class of estimates for AR(p) models which does not depend on any finite
dimensional marginal empirical distribution are the RA-estimates considered by
Bustos and Yohai (1986), Bustos, Fraiman and Yohai (1984) and Martin and
Yohai (1985). It may be shown that under mild conditions these estimates are
ASR. The proof is quite similar to the one given above for the GM-estimates.

APPENDIX

The following lemma follows easily from H2 and the ergodic theorem.

LEMMA A.l. Assume H1 and H2; then given ¢ > 0, there exists 8 > 0 such
that

n
limsup sup Y I(la’z| <8)/n<¢e a.s.

n—>oo |a|=1¢=1
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LEMMA A2. Under H1l, H2 and H3, given ¢ > 0, there exists 6 > 0 such
that

n
limsup sup Y. I(jy,— a’z| <8)/n<e a.s.

n—o a€R? t=1
ProoF. By Lemma A.1 we can find 8, such that

(A1) limsup sup ). I(ja’z,| < 28,)/n < &/2.
n—oo |a|=1¢=1

There exists £ > 1 such that

(A2) p(yl = k8,) < e/2.

From H3 and the ergodic theorem we obtain

n
(A.3) limsup sup Y. I(jy,— @'z} < 8,)/n<¢ as.
n—oo |a|<kit=1
Take 8 = min(8,, §,). Then by (A.3) it will be enough to prove
n

(A4) limsup sup Y. I(ly,— a'z)| <8)/n<e.
n—oo |a|=k t=1

Since %k > 1, we have

Y I(y,—a'z) <8)/n< Y I(y,— a'z) < k8)/n
t=1

t=1
n n
< X I(y) > k8)/n+ ¥ I(a'z/k < 28)/n.
t=1 t=1
Therefore, by (A.2), the ergodic theorem and (A.1) we have

limsup sup Y, I(y,— @’z <8)/n

n—ooo |a|=kit=1

n n
< limsup sup Y. I(ja’z) < 28)/n + limsup }_ I(ly,| > 8k)/n<e. O

n—oo |a|=1¢t=1 n—ooo t=1

LEMMA A.3. Assume E2 and E4. Then given d, >0, dy>0 and ¢ >0
there exists 8 > 0 such that for all z,, z, € RP, y,, ¥, € R and 0 € R? satisfy-
ing

|21 — 25| <8, lyr — %l <8, d, < |z| <dy,
Iyl < ds, 16°2,1 /10| > d;, Iy, — 02| > d,

we have
(i) |e(Azy, r(2y, 01,9, 0))Az, — o(Azy, r(23, %, 0, 0))Az,y| <e,
(ll) |X(r(zl’ yl’ 0, a)) - X(r(22, y2’ 0’ 0))' < g,

for all ¢ > 0.
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Proor. Denote by r; = r(z;, ¥, 0, 0), i = 1,2. Then straightforward calcula-
tions show that under the stated conditions given ¢ > 0 there exists a § > 0 such
that

Ir = 1ol /Ar, + (1= A)ry <, forallo >0, A€ [0,1].
Then the desired result follows from E2, E4 and the mean value theorem. O

' PROOF OF PROPOSITION 5.1. Let N°C X*® be the set where Lemmas A.1
and A2 hold for all ¢ >0 and C;= {(2,y) € R® X R: j~' < |2| <, |y| <Jj}.
For any j > 1, the ergodic theorem implies

(A5) lim éll({xt eC))/n=n(G) as.

Me¢ c X will denote the set where (A.5) is satisfied forall j > 1,and N, = N U M.
Then p(N,) = 0 and in order to prove the proposition it suffices to show that N,
is the required set.

For any ¢ > 0, there exists j, such that p(C;)>1— ¢/6D, where D =
sup|p(x, )|. Given x & N, there exist §, <1/ \/}—7 Jo and n, such that

(A6) sup Y I(ja'z,| < ypd,)/n<¢e/6D Vnzn,
la|=1¢=1
n
(A7) sup Y I(y,— a'z| <8,)/n<e/6D Vnx=n,.
a€RP =1

Since x & M, there exists n, > n, such that
n
(A.8) Y I({x,€C,})/n>1-¢/6D Vn=n,
t=1

For a € R? and §, define
E,={t:1<t<n,laz|/la| 28, |y,— a'’z) 28, x,€C,}".

From (A.6), (A.7) and (A.8) we obtain #E,/n < 4¢/6D for all n > n,.

Consider §, < /6 as in Lemma A.3 with d, = §,, d, = j, and ¢ = ¢/6. Take
w" € X" such that d,(x™, w™) < §,. Define F, = {t: 1 < t < n: |w, — x,| < §};
therefore, #F,/n > 1 — §,> 1 — ¢/6. Denote J = F,, N Ej; then we have

8,27, 0) = g,(w", ) < [ L lo0 @) = 9l )

ted

+ Z lp(x,, @) — o(w,, )|
teFy;

+ Y lo(x,, @) —q>(w,,a)|)/n.

teE,
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According to the definition of é,, for ¢ € J we have |p(x,, @) — ¢p(w,, a)| < ¢/6.
Then we get that

18 (x™,a) — g (W™, a) <e Vnx>n,. O

L]
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