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IDENTIFYING THE CLOSEST SYMMETRIC DISTRIBUTION OR
DENSITY FUNCTION

BY EUGENE F. SCHUSTER

The University of Texas at El Paso

The problem addressed is that of finding the “closest” symmetric distri-
bution (density) to a given theoretical or empirical distribution (density)
function. Measures of “closeness” considered include: weighted sup norm,
weighted L, norm and Hellinger distance. Explicit formulas are given for the
closest symmetric distribution function to the empirical distribution function
in both sup norm and integrated square error.

1. Introduction and motivation. The problem of finding the “closest”
symmetric distribution or density is of interest in:

(1) quantifying the asymmetry of a distribution;

(2) estimating the distribution or density function of a symmetric distribution;
and

(3) using (symmetric) bootstrap procedures when the underlying distribution is
assumed symmetric.

Measures of “closeness” considered are: weighted sup norm, weighted L,
norm, weighted Cramér-von Mises and Hellinger distance. We became interested
in finding the closest symmetric distribution to the empiric in related work in
using the bootstrap in testing the nonparametric hypothesis of symmetry versus
asymmetry, i.e., in testing:

H,: F (unknown) is symmetric about some center § (unknown)
against
H,: F is asymmetric.

One natural way of testing this hypothesis is to estimate 8 by 6, and then use
6, in a nonparametric test for symmetry about a known . For example, one
might use an estimate of # in the so-called Butler (1969) statistic [see also Orlov
(1972), Smirnov (1947), Schuster and Narvarte (1973) and Koziol (1983)]

(1.1) h,(8) = sup|F,(x) — 1 + E,((20 — x) —)]|,
or the Cramér-von Mises statistic
(1.2) h,(6) = f°° (F(x) — 1+ F,((20 - x) —)}* dx,
—©
where F, is the usual empirical cumulative distribution function (cdf).
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The problem with this approach is that the resulting tests are not distribu-
tion-free. Hence, one cannot compute critical values and/or p-values, e.g., see
Boos (1982) for a study of a test for asymmetry associated with A,(6) of (1.2)
with 0 estimated by the Hodges-Lehmann estimator of (2.3). One can sidestep
this problem by using the bootstrap to estimate the critical and/or p-values.
However, under the null hypothesis F' is symmetric, so one should not bootstrap
from F, but from the “closest” symmetric distribution. Results of these simula-
tion studies have been encouraging and are reported in Schuster and Barker
(1987).

A second approach to testing the general hypothesis of symmetry might be to
use a test statistic that measures asymmetry by the distance from F, to the
closest symmetric distribution. If the distance measure is sup norm or integrated
square error, and 6, is the natural estimator of § obtained by minimizing (1.1) or
(1.2), then Theorems 1 and 2 indicate that these two approaches are identical in
the corresponding cases.

In Section 2, we identify the “closest” symmetric cdf. We give explicit
formulas for the closest symmetric cdf to the empirical cdf in sup norm and in
integrated square error. In Section 3, we identify the closest symmetric pdf to an
arbitrary fixed pdf for weighted distance measures.

2. The “closest” symmetric cdf. Let X,,..., X, be the order statistics of a
random sample from a cdf F and let F, be the corresponding empirical cdf.
Suppose the distribution F from which we are sampling is symmetric with center
of symmetry 6. Then natural estimates of § are given by estimators 6, minimiz-
ing (1.1) or (1.2).

Schuster and Narvarte (1973) have shown that (1.1) is minimized over all 6 by
any
(2.1) 6, € [m(L), M(L)],
where for £ = 0,1,..., n — 1 ([x] is the greatest integer < x),

m(k) =max{(X,+ X;)/2:1<i<[(n-k+1)/2], j=n—-k+1- i},
M(k) =min{(X,+ X;)/2:k+1<i<[(n+k+1)/2],j=n+k+1-i},
and

L = min{k: m(k) < M(k)}.
The natural unbiased estimator of § in this case is the SN (Schuster and
Narvarte) estimator,
(2.2) 6,=[m(L)+ M(L)]/2.

As noted by Boos (1982) and Knusel (1969), one can use the argument in the
two-sample location problem given in Fine (1966) to see that the Cramér-
von Mises statistic (1.2) is minimized over all § by the HL (Hodges-Lehmann)
estimator

(2.3) 6, = median{ (X, + X;)/2,1 < i, j < n}.
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If 6, is a good estimator of § and F is symmetric about 6, then a natural
symmetric nonparametric estimator G, of F is obtained from the empirical cdf
F, by reflecting the data about 6, i.e.,

(2.4) G.(x) = G(x;6,) = {F(x) + 1 - F((26, — x) )} /2

is the empirical cdf of the 2n data points X, ..., X,,26, — X,,...,26, — X, [see
also Schuster (1975) and Hinkley (1976)]. The following two theorems indicate
that the “closest” symmetric distribution to the empiric F, in sup norm (in-
tegrated square error) is the estimator G,(-; 6,), where 6, is the SN estimator
(HL estimator). These are the only two cases where we can solve explicitly for
the closest symmetric distribution function to the empiric.

Let G be the class of all symmetric distribution functions. Then:

THEOREM 1. Let h,(0) be defined by (1.1). Then
h,(8,)/2 = sup|F,(x) = G,(x; 6,)]

= min{supIFn(x) -G(x)|:Ge G},
where 8, is the SN estimator of (2.2).

THEOREM 2. Let h,(8) be defined by (1.2). Then

ha(8)/2 = [ [F(x) = G(x;6,)] dx
- min{/oo [F(x) - G(x)]>dx: G € G},
where 0, is the HL estimator of (2.3).

Proor oF THEOREM 1. Let
G,(x;0) = (F(x) +1-F((20 —x) -)}/2
= {F.(x) + F/(x)} /2,

and let G be a cdf that is symmetric about 0. Take G4(x) = G(x — 6). Then the
cdf G, has center of symmetry 6 and, for any symmetric G and 6, we see that

(2'5) IFn(x)—Gn(x10)|=|{Fn(x)_Fn(x)}/2|

< {|F(x) = Go(x)| +|Gy(x) - Ff(x)|} /2.

Since F, and G, are right continuous and G, is symmetric about 6, it follows
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that
sup |[F!(x) — Gy(x)]

sup [1 = F,((26 — x) =) — Gy(x)|
Stipan((M —x) =) = Go((260 — x) -)|

sup | F,(x =) — Go(x —)]|

(2.6)

sup| F,(x) — Gy(x)|.

Using (2.5) and (2.6), we see that for any G and 0
sup | F(x) — G,(x,0)|

(2.7) < {sup|E.(x) = Gy(x)| + sup|FY(x) - G(x)] 2

= sup|F,(x) - Gy(x)].

Taking the infimum over all G and @ of both sides of (2.7), we have
inf sup | F,(x) — Gy(x; 0)| < inf sup|F,(x) = Gy(x)|
’ x

X

(2.8) ~ int{sup| (x) — H(x)|: H € G),

where G is the class of all symmetric distributions.
Schuster and Narvarte (1973) have shown that

h,(0) = sup|F,(x) — F}(x)]
= 2sup |F,(x) — G,(x; )|

is minimized over all § at any 6, satisfying (2.1) and hence at 8, of (2.2) and the
validity of Theorem 1 follows. O

ProoF oF THEOREM 2. In the following, all integrals are assumed to have
limits of integration from — oo to oo. Using the same notation as in the proof of
Theorem 1, we can add and subtract G,(x) and then use Minkowski’s inequality
to see that

W) = [l - eux o @)
- { (=) - E) 20 dx}w
([ - awyas]”
[ - ar a7 f2

(2.9)
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Now
JIE @) = Go(x)])* dx = [[1 - F((26 - x) =) ~ Gy(x)]* dx

= [[F((26 = x) =) = Gy((26 - x) -)] dx
(2.10)

= [[Fx =) = Gy(x -)]*dx

= [[F(x) = Go(2)]’ dx.

But then (2.9) and (2.10) imply that for any G symmetric about 0 and any 6

@) W) < { [ - G )

Taking the infimum with respect to G and 6 over both sides of (2.11), we can
proceed as in the proof of Theorem 1 using the observations in Knusel (1969) or
Boos (1982) to arrive at the conclusion in Theorem 2. O

We now examine the proofs of Theorems 1 and 2 to find the key conditions to
generalize these theorems to the problem of identifying the closest cdf to a given
cdf in a weighted distance measure. In this direction, let F be the class of all
cumulative distribution functions (cdf’s), G be the subset of F consisting of all
symmetric cdf’s and let w be a nonnegative weight function, which is a function
of two real arguments. For fixed a, we will use w, to denote the weight function
w(-; a) and G, to denote a symmetric cdf with center of symmetry a. For F € F,
F, denotes the cdf defined by F,(x) = 1 — F((2a — x) — ) for all x.

For fixed cdf F € F, weight function w and distance measure p, we define an
associated minimization problem as follows:

minimize
(2.12) h(a) = h(a; F,p,w) = p(F, F,; w,)
over all a.

We say that 6 is a solution to the associated minimization problem if

(2.13) h(6) = mink(a).

DEFINITION. We say that a symmetric cdf G, is the closest symmetric cdf to
a cdf F in distance measure p using weight function w if

(2.14) o(F,Gy; wy) = min{p(F,G,; w,): G, € G}.

We assume that the distance measure p depends on the weight function w in
such a manner that for fixed @ and any F, H,G € F, G, € G with center of
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symmetry a, the following hold:
(i) 0 <p(F, H; w,) < p(F,G; w,) + p(G, H; w,),
(ii) p(aF,aH; w,) = ap(H, F; w,), foranya >0,
(2.15) (iii) po(F, H; w,) = ®(F — H|; w,), for some function @,
(iv) o(F, G, w,) = p(F,, G wa),
(v) the associated minimization problem has a solution.
In addition, most interesting weighted distance measures would also satisfy:
(vi) o(F, F; w,) =0,
(vii) p(F, F,; w,) = 0 implies F € G.

We have found (v) the most difficult condition to verify.

Examples of weighted distance measures satisfying these conditions when F' is
continuous or F' = F, (the empirical cdf) are p(F, H; w,) =

(i) sup,|[F(x) — H(x)]w(x; a)| (weighted sup norm) with
w(x; @) = [F*(x)(1 — F*(x))] (x; a), where F* is defin-
ed in (2.17) and I(-; @) is the indicator function of {x: 0 <
(2.16) Fxx) <1)
(i) {f°, |F(x) = H(x) Pd[w(x; a)]}'/? (weighted L, dis-

tance, p > 1), with w(-; a) = F*.

Weight functions w used with (2.16) (i) [(ii)] would normally require that w(-; a)
be symmetric about the line x = a [a point (a, C), some fixed C].

Our next theorem identifies the closest symmetric cdf in a weighted distance
measure to a given theoretical or empirical cdf F. The proof of this theorem
closely parallels the proofs of Theorems 1 and 2 and is omitted.

THEOREM 3. Suppose p with weight function w satisfies conditions (i)—(v) of
(2.15) for a fixed cdf F. Let 6 be a solution to the associated minimization
problem of (2.12). Then

p(F, Fy*; wy) = min{p(F,G,; w,): G, € G},
where
(2.17) Fp*(x) = {F(x) +1—-F((260 — x) =)} /2, allx.
REMARK 1. p(F, Fg*; wy) would be a natural measure of the asymmetry of F.
REMARK 2. Symmetry of a cdf corresponds to symmetry of a function about

a point (8, C), where 8 is the center of symmetry and C = }. Properties of a cdf
are not critical in Theorems 1-3 and these theorems can easily be modified to
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identify the closest symmetric [about some point (8, C)] function to an arbitrary
right- (or left-) continuous function R. For example, if C is known and finite
minimizes

h(a) = sup|R(x) + R((2a —x) —) — C|

over all a, then
Rj(x) = {R(x) + C - R((26 - x) —)} /2

is a closest function in sup norm to R in the class of right-continuous functions
symmetric about a point (a, C), some a.

REMARK 3. Theorems 1 and 2 give explicit formulas for the closest symmet-
ric cdf to the empiric in sup norm and integrated square error, respectively. As
indicated in Theorem 3, the main practical problem with finding the closest
symmetric cdf to a given cdf F is the problem of finding the center § minimizing
(2.12). In general, the minimizing # must be found by numerical methods.
However, there are cases where one can solve explicitly for the center. For
example, if F(x) =1 — exp(—x/fB), x > 0, is the exponential cdf, then one can
show that the center of the closest symmetric cdf in sup norm to F is

§ = —BIn(2"2 - 1).

In Section 3, we establish the corresponding version of Theorem 3 for
probability density functions.

3. The *“closest” symmetric pdf. Let f be the class of all pdf’s, g be the
subset of f consisting of all symmetric cdf’s and let the nonnegative weight
function w be a function of two real arguments. For fixed a, we use w, to denote
the weight function w(-; a), g, € g to denote a symmetric pdf with center of
symmetry a, and for f € f, f, denotes the pdf defined by

(3.1) fo(x) = f(2a — x),
for all x.

For fixed pdf f € f, weight function w and distance measure p, we replace F
by £, F by f, F, by f,, G by g, G, by g, and G, by g, in (2.12)—(2.14) to define
the closest symmetric pdf to the pdf f in distance measure p using weight
function w. Here, we assume that the distance measure p depends on the weight
function w in such a manner that (i)—(v) of (2.15) hold for the fixed pdf f when
the cdf’s are replaced by the corresponding pdf’s. Our next theorem identifies the
closest symmetric pdf to a given theoretical or empirical based pdf f. The proof
of this theorem closely parallels the proofs in Section 2 and is omitted.

THEOREM 4. Let 0 be a solution to the associated minimization problem of
(2.12) stated in terms of the pdf f, i.e., § minimizes h(a) = p(f, f,; w,) over all
a. Then

o(f, fo*; wy) = min{p(f, g,; wa): &4 € 8},
where fg*(x) = {f(x) + {(20 — x)} /2.
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REMARK 4. Symmetry of a pdf corresponds to symmetry about a line, say
x = 0, where 6 is the center of symmetry. Theorem 4 can easily be modified to
identify the closest symmetric (about a line) function to a given arbitrary
function. For example, if the function r is given and finite § minimizes

h(a) = sup|r(x) — r(2a — x)]|

over all a, then
ref(x) = [r(x) + r(20 — x)] /2

is a closest symmetric (about a line) function in sup norm to r.

The Hellinger distance between two densities f and g is [see Beran (1977) and
(1978)]

(32) o(1,8)= ([ [13x) - g2 )

However, this distance measure does not satisfy condition (iii) of (2.15) in the
class of densities and so Theorem 4 does not apply. As mentioned in Remark 4,
the closest symmetric function to f!/2 in integrated square error distance is the
function v}/? defined by

o/ %(x) = {f%(x) + {1/2(20 - x)} /2,

where 6 minimizes A(a) = p(f, f,) over all a. Thus v, is the closest symmetric
function to f in Hellinger distance. However, v, is not, in general, a pdf. Let
Sg = vg/c?, where the constant ¢ = c(#) is chosen to make s, a pdf. Then

THEOREM 5. s, is a closest symmetric pdf to f in Hellinger distance
[p defined in (3.2)].

ProoF. For fixed a and f, let f, be asin (3.1) and ¢ = ¢(a, f) > 0 be that
constant that makes h, =[(f + f1/?)/2c]? a pdf. Let g be a pdf that is
symmetric about zero and let g, be defined by g, (x) = g(x — a), ie., g, is
symmetric about a. Then

(3.3) oi(f,8.) =2 —2[f /%Y
and
(3.4) P*(for 8a) =2 - 2ffa1/zg¢1/2-

Noting the equality of the left sides of (3.3) and (3.4), we see that
20°(f,84) = 4= 2 [&2(f1/2 + 117%) = 4 - 4c(a) [/ R/,

Thus, for fixed a and f, the symmetric pdf g, which minimizes p( f, g,) is the
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symmetric pdf g, which maximizes [gl/?h!/?%. But since
0 < p*(g, ha) = 2 - 28R/,
we see that
0< fg},/f‘h},/2 <1

Hence the maximum of [gl/?h!/? is attained at g, = h,, i.e., for fixed a

(35) ‘ min{p(f,&,): & € 8o} = [2 — 2¢(a)]"”,

where g, is the class of densities which are symmetric about 0.
Now

4ck(a) = [(1Y+ 127)°

-9+ 2/f1/2fa1/2

—4- (2 - 2ff 1/2f;/2)
=4 - p*(f, fa)-

Thus the value of a which minimizes the right side of (3.5) is the value of «a
which minimizes p( f, f,). Since

min{p( f, g): & € g}

min{p(f,&,): & € Bo, —0 <@ < 0}
= minmin{p(f, £): & € &0},

the validity of the theorem follows. O

REMARK 5. There are no cases where we can solve explicitly for the center 6,
of the closest symmetric density to an empirical based density estimator. Beran
(1978) gives an algorithm for finding 6, for Hellinger distance and studies
properties of 6,.
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