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AVERAGE RUN LENGTHS OF AN OPTIMAL METHOD OF
DETECTING A CHANGE IN DISTRIBUTION!

BY MosHE PoLLAK

Hebrew University of Jerusalem

Suppose one is able to observe sequentially a series of independent

observations X;, X,,..., such that X, X,,..., X, ; are ii.d. with known
density f, and X,, X,,,... are ii.d. with density f; where » is unknown.
Define

It is known that rules, which call for stopping and raising an alarm the first
time n that R(n, ) or a mixture thereof exceeds a prespecified level A, are
optimal methods of detecting that the density of the observations is not f,
any more.

Practical applications of such stopping rules require knowledge of their
operating characteristics, whose exact evaluation is difficult. Here are pre-
sented asymptotic (A — oo) expressions for the expected stopping times of
such stopping rules (a) when » = oo and (b) when » = 1. We assume that the
densities f, form an exponential family and that the distribution of
log( f.(X,)/fo(X})) is (strongly) nonlattice.

Monte Carlo studies indicate that the asymptotic expressions are very
good approximations, even when the expected sample sizes are small.

1. Introduction. Suppose one accumulates independent observations from a
certain process. Initially, the process is at state 0. At some unknown point in
time something occurs (e.g., a “breakdown”) which puts the process in state 1,
and consequently, the stochastic behavior of the observations changes. It is of
interest to declare that a change took place (to “raise an alarm”) as soon as
possible after its occurrence, subject to a restriction on the rate of false detec-
tions. It is assumed that the aforementioned observations are the only informa-
tion one has about the process, and the problem is to construct a good detection
scheme.

Practical examples of this problem arise in areas such as health, quality
control, ecological monitoring, etc. For instance, consider surveillance for con-
genital malformations in newborn infants. Under normal circumstances, the
percentage of babies born with a certain type of malformation has a known value
Do- Should something occur (such as an environmental change, the introduction
of a new drug to the market, etc.) the percentage may increase (e.g., the
thalidomide episode of the 1960s). One would want to raise an alarm as quickly
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750 M. POLLAK

as possible after a change takes place, subject to an acceptable rate of false
alarms. Generally, the problem arises wherever surveillance is being done.

A solution to the problem depends on what is known in advance about the
distributions of the observations. Let f, denote the density of observations with
respect to a o-finite measure p when the process is in state 0, let f, denote the
density of observations with respect to p when the process is in state 1 and let »
denote the unknown point in time when the first observation from state 1 is
made. Thus, one has a sequence of independent observations X,, X,,..., such
that X, X,,..., X,_, are iid. with density f, and X, X, ,,... are ii.d. with
density f,, where 1 < » < 00 is unknown. It will be assumed here that f,, f,
belong to an exponential family of distributions and that f, is known.

Solutions for the problem that are in current use are known as CUSUM
procedures. For a survey, see, for instance, Johnson and Leone (1962, 1963, 1964).
Lorden (1971) proved a first-order asymptotic optimality property of a certain
class of procedures for reacting to a change in distribution. When f, is known,
this class includes most of the standard appropriate CUSUM techniques as
special cases. When f, is unknown, Lorden (1971) suggests a first-order asymp-
totically optimal procedure. [Asymptotic operating characteristics of this and
related procedures are given in Pollak and Siegmund (1975). Further refinements
can be obtained using results of Lai and Siegmund (1977).]

Shiryayev (1963, 1978) solved the problem in a Bayesian framework in the
case that f, is known. He also proposed a solution in a certain classical setting.

A solution that is second-order asymptotically optimal in a classical frame-
work is presented in Pollak (1985). The statistic underlying this solution for the
case that f, is known was considered by Shiryayev (1963) and Roberts (1966).
Asymptotic operating characteristics of this and related procedures are the
subject under study here.

Without loss of generality, let the assumed exponential family be defined by

fy(x) = ¥ ¥, yeQ,

where () is an interval on the real line, 0 = {/(0) = ¢’(0). Let F be a probability
measure on { with F({0}) = 0. Let 0 < A < 0. Define

R(n,y) = i l_nl fy(?; = kZ:‘,lexp y gn‘,kXi —(n—-Ek+1y(y)|,

k=1i=k fo( i =

R(n,F) = [R(n, y) dF(y),
N(A, y) = min{n|R(n, y) = A},
N(A, F) = min{n|R(n, F) > A}.

Raising an alarm at time N(A, ) is a procedure with optimality properties when
the value 6 (of the parameter of the distribution after a change occurred) is
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known and raising an alarm at time N(A, F') has optimality properties when 6§ is
unknown (Pollak, 1985).

In order to evaluate and compare between procedures, one needs to formalize
a restriction on false detections as well as to formalize an expression for the
speed of detection of a change after its occurrence. The restriction on false
detections is usually formalized as a requirement that the expected number
of observations until a false alarm (assuming that » = o0) exceed a prespecified
value B. This suggests a need for evaluating E{N(A, y)lr = «},
E{N(A, F)|v = w}. The quality of a procedure with regard to the speed of
detection of a change after its occurrence is often measured by the supremum (or
essential supremum) of the expected number of observations that it takes to
detect a change after its occurrence, given that no false alarms have previously
been raised [see Lorden (1971) and Pollak and Siegmund (1975)]. This suggests a
need for evaluating E(N(A,8) — v|v =1,60), E(N(A, F) — vlv = 1,0). These
operating characteristics are difficult to compute. [For simulations see Roberts
(1966).]

In this article, asymptotic expressions (A — oo0) for these operating character-
istics are presented. Monte Carlo studies indicate that these expressions are very
good approximations, even when the expected sample sizes are small.

2. The average run length when v = . Denote by P?, E} the probabil-
ity, expectation, respectively, when 1 <» < o0, X,,..., X,_; are iid. with
density f, and are independent of X, X, ,,,..., which are i.i.d. with density f,.
Let P, E_ denote probability, expectation, respectively, when » = co. Let F be
a probability measure on @ with F({0}) = 0. Denote

(XD
o X,)
1(0) = E{Z,

Zy = log yX; = ¥(y),

n
M(B, y) = min{n| Yz > B}, M(B, y) = 0, if no such n exists,
i=1

M(B, y)
v(y) =1/ lim Elyexp{— Y Z’-B
— 00

i=1

} =1/131211MBPw{M(B,y) < oo},

V(F) =1/ fan() dF ().

The computations of y(y) and y(F') are applications of renewal theory and have
been calculated in other contexts. [See Feller (1971), Siegmund (1975) and (1985),
Lai and Siegmund (1977) and Theorem 6.2 of Woodroofe (1982).]

THEOREM 1. (i) E_,N(A, y) > A for all y € Q. If I(y) < oo, then
E_N(A, y) = O(A), where O(A)/A is bounded as A — .
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(i) If y € Q, I(y) < o and the P?-distribution of Z} is nonlattice, then
E_.N(A,y)=Ay(y)(1 + (1)),

where 0(1) > 0 as A - 0.

THEOREM 2. Suppose that the Py-distribution of X, is strongly nonlattice
[see Stone (1965)] for all y € Q. Then

(i) E,N(A,F)=>A. If F{y|I(y) < o}) =1, then E_N(A, F)= 0(A),
where O(A)/A is bounded as A — .
(1) If F({y|I(y) < 00}) = 1, then

E N(A,F)=Ay(F)1 + 0(1)),

where 0o(1) > 0 as A > o0.

3. Proof of Theorem 1. For simplicity’s sake, we will denote Z, = Z?,
R(n) = R(n, y) and N, = N(A, y) throughout this section.

The idea of the proof of Theorem 1 can be described as follows. Note that
under P,, R(n)— n is a martingale with zero expectation with respect to
F(X,,..., X,). Consequently, by the optional sampling theorem, E_N, =
E_ R(N,) = AE_R(N,)/A. Therefore, the proof becomes an analysis of the
asymptotic behavior of E_R(N,)/A as A - .

Note that R(n + 1) = [1 + R(n)lexp{Z,,,} and so

n+r r—1
(1) logR(n+r)= Y Z +logR(n)+ Y log[l+1/R(n+i)].
i=n+1 i=0

When R(n) is large, log[1 + 1/R(n)] is small, so the increments of log(R(n)
begin to act like i.i.d. random variables (with negative drift under P, );
n+r
logR(n+r)= ) Z +log R(n)d=er(n, r)
i=n+1

for small values of r. Note that ¥*7 ,Z; can be regarded as the log-likelihood
ratio of the observations following X, for H,: § = 0 versus H;: 6§ = y. Let C > 0
be a (large) constant, and consider (1) for n = N, ,c. Since Z; has negative drift
(under P, ) the process U(N, 0 7), T =1,2,..., will either exceed log A “soon”
or not at all. If it does, then log R(N,) — log A = sup, , ,U(N, ¢, r) — log A can
be handled in the usual way, as the excess over the boundary of the log-likeli-
hood ratio statistic defining a power one test of H,: § = 0 versus H,: § = y [as
suggested by the approach of Lorden and Eisenberger (1973) and Siegmund
(1975); see also Pollak (1985)]. If it doesn’t, wait until the next time R(n) crosses
A/C, and reapply the same rationale. The behavior of R(n) here will be almost
independent of its behavior in the vicinity of the previous crossing of A/C.
Continue this until the first time R(n) crosses A/C and “soon” there-
after crosses A. This will account for Theorem 1. The formal details are now
spelled out.
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PrOOF OF THEOREM 1(i). Denote I1, = min{n|max, _, . exp{X]_;Z;} = A}.
It is well known that E_II, < co. Since Ny <II,, 1<k <n E, N, < oo.
Hence E_[ R(N,) — N,] exists. Since |R(n)| < A on {N, > n} it is easy to see
that liminf, , [y, > |R(n) — nldP, = 0. Therefore, the martingale optional
sampling theorem [cf. Chow, Robbins and Siegmund (1971), Theorem 2.3] applies
to yield E_(R(N,) — N,) = 0. Hence, E_N, = E_R(N,) > A.

For the second part of Theorem 1(i), let S, = 0 and define S; recursively by

S, = min{n|n >8,_ 1, X Z;#(0,log A)}

J=8_1+1
Let

d= min{i % Z; € [log A,log(2A)]}.

J=8_,+1

Clearly, I1, < T2 ,S;. By Wald’s lemma,

S
E, <E.S, / Pw{ Y Z < [log A,log(2A)]}.

J=1

Now

Pw{ Ezje [log A,log(2A)]}

J=1

o0
Yy / folxy,.enr x,) dulxy, ..., x,)
n=1"{S=n,d=1}

v

[/l X [ (%0 %,) dp(xys . 2,)
© T as1(Si=n, d=1)

S
= [1/(2A)]P1y{ Z Z; € [log A,log(2A)]}.

J=1

:

As A - oo, limsup E_S, < oo, and, by the renewal theorem,

Si
lim inf P{{ Y. Z < [log A,log(2A)]} >0,

=1

from which Theorem 1(i) now follows. O
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ProoOF oF THEOREM 1(ii). Let A > C > 1. Define L, = 0. For j=1,2,...
define

n

L= min{n|n >Li,, X exp{ Yy Zi} > A/C},

k=L;_,+1 i=k
n
Q(J,n) = Y exp{ZZi}, forn>1L; ,,
k=L;_,+1 i=k
=0, for other n,
. exp{ > Z,}Q(j, L), ifn>L,
V(j,n) = i=L;j+1

min{nln >L;,V(j,n) > A} ,
= o0, if nosuch n exists,
M, = H/ A Lj+1’

J

J = min{j|V(j, M;) > A},

H.

J

M(B, y) = min{n| Y zy > B}, = o0, if nosuch n exists,
i=1

F(n)=%(X,,...,X,),

Z(-) = the indicator function of the set (-).

LEMMA 1. Let 0 < n < 1. There exist A’ and C" such that if A > C > C{V
and A > A, then

(1 - )[E.Q(J, L;) /A /¥(¥) < P{H, < 0}
< (1+9)[E.Q(j, L;)/Al /().
Proor.
P{H; < w} = E,P{H; < 0#(L;)}
= EP,(M(log[4/Q(J, L;)], ¥) < wlF(L,)}.

By virtue of Theorem 1(i), C can be chosen to be large enough so as to make
P{Q(J, L) >A/ VC) arbitrarily small, independently of A. If C is large
enough and Q(j, L;)) < A/ VC, then by the definition of v(y)

P, {M(log[ A/Q(j, L))}, ¥) < wI#(L;)}
= {[Q(4, L,)/A] /7()} (1 + 0,(1)),

where 0,(1) »p 0 as C - co. Lemma 1 now follows. O
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LEMMA 2. Let 0 < < 1. There exist A? and C® such thatif A > C > C{?
and A > A®, then

(1 - n)Ay(y) < E{V(J, H)H; < o} < (1+n)Ay(y).

Proor. E_{V(j, H;); H; < o} = E_Q(J, L;), so that
E{V(j, H)H; < 00} = E,Q(J, L;)/Po(H; < ).

Lemma 1 now accounts for Lemma 2. O

LEMMA 3. Let 0 < < 1. There exist A®, and C® such that if C > C® is
fixed and A > A®_, then

n, 0

(1 = )AY(y) < E{V(J, M)IV(j, M;) = A} < (1 + n)Ay(y).

Proor. Clearly,

E {V(Jj, M;)|V(j, M;) > A}
_ E{V(j, M); V(j, M) = 4}
(2) P{V(j, M,) = A}
=E°°{V(f’Mj)?Hj<°°} E{V(J, M,); Ly, < H;< )
Poo{I-Ij<O°} oo{ j+l<H <°°} .

When C is fixed, P,{x < H;— L; < w0} =, _,,, 0 uniformly in A > C. Therefore,
by Theorem 1(i), as A — o0

P{Lj<Hj<w}<PflogA<L,~Lj<H~-L <o)
+P{L;,,~L;<logA<H,— L;< o}
+P(L;,, - Ly < H;~ L, < log A)
<2P(logA<H—L;j<ow}+ P{L;,,—L;<logA)
(3) =o(1)P {H;< o} + P, (L, <log A)
log A

<o(1)P{H;< o} + ¥ P{R(n)=2A/C}

< o(1)P{H; < o} + (log A)’C/A
= o(l)Pw{Hj < o}.
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Also, when C is fixed, as A - o

E{V(j,M;); L;;, <H;< o} < AP,(L;,, < H; < »)
= AP, (H; < »)o(1)
“ = AP(H; < L,,)o()
<E{V(j,M;); H; < 0 }o(1)
Since

BL{V(j, M); H, < o)
=E(V(J,H); Hj< o} — E{V(Jj, H;) - V(j, M;); M; < H; < o}
=E{V(j,H); H < »},

(2), (3), (4) and Lemma 2 account for Lemma 3. O
LEMMA 4. Let 0 < n < 1. There exist A and C{® such that if C > C® is
fixed and A > AY,, then
1-9<EV(J,M,;)/[Ay(y)] <1+
ProoF. Denote V(0, M) = V(—1, M_,) = 0. Note that V,_, is independent
of #(M,).
E_V(J, M,)

0

V(j, M) dP,
jgl’/:l=j ( j)

o0
=X V(i M)dP,
(5) =17V, M))<A, i=0,..., j—1; V(j, M;)= A}
o0
-3/ V(j, M;) dP,
=17V, M)<A, i==1,0,..., j—2; V(j, M) 2 A}
o]
- f | _ V(j, M;) dP,.
j=2"{V(i,M)<A,i=0,..., J=2; V(j—1,M;_)=2A, V(j, M;)=A}

The remainder of the proof will be an analysis of the two expressions on the
right side of (5). We will first show the latter expression to be asymptotically
negligible. It is enough to show that it is O(A/C), since C can be arbitrarily
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large and obviously E_V(J, M,;) > A. So

o0

V(j, M) dP,,

j=2 ’/;V(i,M,-)<A, i=0,...,j-2; V(J-1,M;_)2A, V(J, M;)2 A}

j=2 -/{V(i,M,)<A, i=0,..., j—2; V(j—1,M;_,)2 A}
x{[@(J, L;) - @(J, M;_,)] + Q(j, M;_,)} dP,
<X

j=2 -/{V(i, M) <A, i=0,..., j—2 V(j—1,M,_)>A)

X[E.Q(1, L,) + Q(Jj, M,_,)] dP,,
(6) < EooQ(l’ Ll)

o0

+ Z Q(j7ll4j—l)dpoo

= EooQ(l’ Ll)

[}

+ X Q(j, M;_,) dP,

<E_Q(1,L,) +/ Q(2, M,) dP.
bl (V(1, M) = A) *
X POO{V(i,Mi)<A9i=0’-"’j_3}

Jj=2

<E_Q(,L,) +f Q(2,M,)dP_[1+E_J].
* (vVa, My)=A) *

We will first show that [y u,)>4@2, M) dP, = O(log A). Let 7. =

M(log C, y). By the proof of Lemma 2 and by Lemma 3 of Pollak and Siegmund
(1975), for any n > 0, there exists A > 0 such that for £ =1,2,... and A > 1

P{|X, - ()| > n/1yl} < exp{—Ak},
(7) P {IX:| > n/Iy1} < exp{—Ak},
P, < (log A)/[21(¥)]} < exp{—Alog A}.
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Now forC>1, B>1
E {R(7.); R(7.— 1) <B, 1, < m}
n

Ty Ew[exp{ ¥ z,.y}z{fc =n, R(n-1) < B}:

i=k

- }§ y E,,,[exp{ 5 zg}z{fc= n, R(n—1) < B}:

n=1k=1 i=k
(8) m m m ]
= Y E_|exp{ Y Z} E{r.=n, R(n—1) < B}
k=1 i=k ) n=k |
=Y Ew[exp{ Y Z{V}E{k <t.<m, R(r,— 1) < B}
k=1 i=k
= Y E . P{k<1,<m,R(1,— 1) <BiF(k—1)}.
k=1
Consequently,

E_{R(7.); R(r,— 1) <B, 1, < o}
— Y E_P{k<n, R(r,— 1) < BF(k - 1)).
k=1

Let 0 < n < min{y(y), I(y)}/2. Denote Z;" =Y/_,Z?/j. For
k> (41og B)/[¥(y) — 0] + 1,
by virtue of (7),
E Pk <7, R(1,—1) <B|Z(k-1)}
(9) = E{P{k <7, R(r. = 1) < BF(k = 1) }; |X,_1| > n/Iyl}
+ E{P{k <1, R(r,— 1) < BF (k= 1)}; 1X,_s| <n/Dyl}
w - P {1 X1l > /171

T.—1

+ Pk’{ Y Zy<logBlk<7,Z}_ = —¥(y) + n}
i=k

< exp{—A(k - 1)}

+ PZ{ g_k Zy <logB,7.— (k= 1) >[logC+ (k= 1)(¥(3) —n)]/

Ik <7, Z}_ = —¥(y) + n}
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+ PY1,— (k—1) <[logC + (k - 1)(¥(y) — )] /[21(y)]|k < =,,

ZIZ—l = —y(y) + 71}
< exp{—A(k —1)}

+ Pz{ Tf_ikziy/[n —1- k] <I(3)/2, 7, - (k—1)
>[logC + (& — 1)(¥(y) — )]/
Ik < s 2, = —4(3) + n}

+ exp{ —AflogC + (k = 1)(¥(y) - 7)]}

< exp{-A(k - 1)} + )y exp{ —A}
(11) J=log C+ (k= 1Y¥(») - m/I21()]

+ exp{—Aflog C + (k= )(¥(y) — )]}
It follows that
E{R(7.); R(1,— 1) < B, 7, < oo} < (4log B)/[¥(y) — u] + D(C),
where D(C) < o0, D(C) is decreasing in C. Therefore,

Q(2,M1) dPoo Q(2’H1) dPoo

<

/(H,<oo,Q(2, H,—1)<A/C)
< [41og(4/C)]/[¥(y) — ] + D(1).

Next, we will deal with the [1 + E_J] term on the right side of (6). Note

that V(j + 1, M;,,) is not independent of V(j, M), but is independent of
V(J — 1, M;_,). To exploit this independence denote

Joaq = min{n|n odd, V(n, M,)) > A},
dJ

even

(12) -/;V(l,M,)zA

(13)

= min{n|n even, V(n, M,) > A}.

Note that }oJ,,., and 3(J 44 + 1) are geometrically distributed random variables.

even

Since J = min{J_ 44, Joven} < Joga +

even’

EooJ < EooJodd + Euo"’even‘s 4/P00{V(1’ Ml) > A}

<4/[P(H, < ©) — P (L, < H, < )].

Therefore, by (3), Lemma 1 and Theorem 1(i), there exists C* such that if one
fixes C > C¥#, then for large enough A

(15) E.J <5v(y)A/E.Q(1, L,) = CO(1),

where O(1) is bounded as A — 0. Now (6), (12), (15) and Theorem 1(i) prove
that the last expression on the right side of (5) is O(A /C).

(14)
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To complete the proof of Lemma 4, it remains to analyze the first expression
on the right side of (5). So
o0
) V(Jj, M;) dP,
Jo1 V3L, M) <A, i=-1,0,..., j=2; V(j, M;)> A}

- T VU, M)V, M) > 4)

xP (V(i,M)<A,i=—1,0,...,j - 2; V(j,M,) > A
00 J

16
(16) =E_{V(1, M))|V(1, M,) > A}
X111+ Z Puo{V(lyMz) <A,i=-10,...,j -2
Jj=2
V(ji-1,M_,) 2 A, V(j, M) > A)
and

0
22Pw{V(i,Mi) <A,i=-1,0,...,j -2, V(j—1,M,_,) > A, V(j, M;) > A}
/2
o0
<Al Z/
Jj=2{V(i, M,)<A,i=-1,0,...,j-2; V(j—-1, M, )2 A, V(j, M;> A)
Clog A 1
= + —l0(1),
|22 + g |ow

by virtue of (6), (12), (15) and Theorem 1(i). Now (16) and Lemma 3 complete the
proof of Lemma 4. O

v(J, M;) dP,

LEMMA 5. Let 0 <7 < 1. There exist C® and A®, such that if C > C® is
fixed and A = AD,, then

E Q(J+1, Mj) = O(log A),
where O(log A) /(log A) is bounded as A — o« [and Q(J + 1, M) is understood
to be zero if M, = L,].

PrOOF. Let J 44 and o,
E_Q(J +1,M;)
<E Q(dga+1,M; )+ EQ(Jpen + 1, M, )

be as in (13). Then

<2

/ Q(2, H,) dP,./[Po(H, < ) = P{L, < H, < }]
{L,<H;<o0} -

< {[41og(A/C)]/[¥(y) — n] + D(1)}(1 = 7) ¥(¥)C,
where the last inequality follows from (12), (3) and Lemma 1. O
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LEMMA 6. Let A > 0. There exist C\® and AP such that if one fixes
C = C®, then for any A > AP,

0<E_R(M,) — E_V(J, M,) < AA.

Proor. Clearly,
J-1
(17) R(M;) = V(J, M;) + Q(J + 1, M;) + ¥ V(j, M,).
j=1
Therefore, because of Lemma 5, it suffices to show that E_ E W, M) =
o(A) for appropriately chosen C. Let J,4; and oJ, ., be as in (13) ’I‘hen

even

J-1
E, Y V(j,M,;)= ZEw{V(J,MJ) j<d -1}
J=1 J=1
©
= YE(V(,M); j<dJ -1}
Jj=1
J-1
=E, ) V(M)
Jj=1
J—-1 J—-1
=E, Y V(M) +E, ¥ V(j, M)
(18) j=1 j=2
odd j even jJ
Joda — 2 Joven — 2
<E Z V(.],MJ)+E Z V(.], )
J=1 j=2
odd j even j

= E{V(Q, M) V(1, M) < A}
X E {(doaa = 1)/2 + (Joyen — 2)/2}
< E (V(1, M)IV(1, M,) < A}[E,_dyq + Eyen]/2
< 2E{V(1, My)|V(1, M) < A} /P {V(1, M,) > A},
Now
E{V(1, M,); V(1, M;) < A}
= E,V(1,M,) - E_(V(1,H,); H, < )
+E{V(1, H,); H, < o) — E_{V(1, M,); V(1, M) > A)
(19) =E,R(L,) - E,R(L,) + E{V(1,H,); H, < )
E_{V(, M,); V(1, M,) > A)
E_{V(1,H,); H, < )}
= [EooR(Ll)]O(l),

where o(1) > 0 as A — o because of considerations as in the proof of Lemma 3.
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For large enough C, P_{V(1, M,) < A} is arbitrarily close to 1. Also, for large
enough C and A, by (3) and by Lemma 1, P_{V(1, M,) > A} > [2Cy(y)] L It
therefore follows from (18) and (19) that for such C

J-1
(20) Eoo Z V(]1 MJ) =< AO(l),

j=1
which completes the proof of Lemma 6. O

ProOF OF THEOREM 1(ii) (continued). Since R(M,) > V(J,M,) > A, it
follows that M, > N, and so E_,N, < E,M; = E_R(M,). Hence, by Lemmas 4
and 6

limsupE _N,/A < y(y).
A—- o0
It therefore only remains to be shown that liminf, , E_N,/A > y(y).
Denote

J* =max{j|L,= Nyand V(j - 1,L;) <A, or L; < N,}.

Now
J*—1

(21) R(N,) = V(J*,Ny) + Q(J* +1,N,) + Y V(j, Ny).
j=1

Since V(j, M;) < A for j < J* — 1, it follows that J* < J. Also, since

J*—1 J*—1
E,| X V('J'aNA)§MJ>NA) =Eoo( Z V(J, M;); M, > N, |,

Jj=1 J=1
it follows that
J*—1 J*—1 J-1
Eoo Z V(]’ NA) = Eoo Z V(.]’ MJ) < Eoo Z V(], MJ);
j=1 j=1 j=1

which by (20) is Ao(1). Also,
EQ(J*+1,N,) =E {Q(J*+1,Ny); Ny <M}
+Eoo{Q(J* +1, NA); N, = MJ};

note that

E {Q(J*+1,N,); Ny,<M,;} <A/C
and

Eoo{Q(J* + 11 NA); NA = MJ},= Eoo{Q(J + 1’ MJ); NA = MJ}
<E Q(J+1,M,),

which is O(log A) as in Lemma 5. Therefore, for a proper (large) choice of C and
all large enough A, it follows from (21) that

(22) E,[R(N,) - V(J*, N,)] <24/C.

Let ¢ = 2/(CA\). Since by (21) R(N,) — V(J*, N,) > 0, it follows from (22)
that P _{R(N,) — V(J*, Ny) > AA} <2/(AC) = ¢, and so
(23) P{V(J*,Ny)>(1-N)A} =21 -
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Let Ng_,,4 denote the stopping time of the type M, when A is replaced by
(1 — M)A and C is replaced by (1 — A)C. Thus, (23) implies that P {Ni_»a <
N,} =1 — &. Therefore,

E N, =E/(Ny N, > Ni_aa) + E(Ny; Ny < N na)
2 Eoo(lv(ik—}\)A; Ny 2 N(i“—A)A) + E(Ny; Ny < N(i"—A)A)
(24) = Eoolv(ik—)\)A - Eoo(N(f—A)A — Ny; Ny < N(f—A)A)
2 E, Ni sa — B, [Q(I, L) + Ny
>(1- 2£)E°°N(i"_)\)A.
Since E,,Nif_5)4 = E,R(Ng_,,4), it follows from (24) and Lemmas 6 and 4 that

liminf, , _E N,/A > (1 — 2e)(1 — A)y(y). By choosing C to be large enough,
one can get & and A to be arbitrarily small, completing the proof of Theorem 1. O

4. Proof of Theorem 2. The idea of the proof of Theorem 2 is similar to
that of Theorem 1. It is technically more difficult: R(n, F) is not a Markov
process and there is no simple analog to (1). Nevertheless, the idea of the proof of
Theorem 1 can be salvaged. Under P,, R(n,F)— n is a zero expectation
martingale, so again

E,N(A,F)=E_R(N(A,F),F)=AE_R(N(A,F),F)/A,
and again the proof becomes an analysis of the asymptotic behavior of
E_R(N(A, F), F)/A as A - . Instead of (1) regard

n+r

R(n+r,F)= fexp{ .=Z 1Z{}R(n, y) dF(y)

(25)
n+r n+r
+f Y exp{ Yy Z,-y} dF(y).
k=n+1 i=k
Here too when R(n, F) is large, the second expression on the right side of (25) is
relatively small for low values of r. Therefore,

n+r
R(n+1r,F) = foxp| T 22|R(n, ) dF() S0 (n, 1),
i=n+1

for low values of r. Since Z? have negative drift (under P,), the process
U*(N(A/C,F),r), r=1,2,..., will either exceed A “soon” or not at all. So
again, one can approximate N(A, F) by the first time that R(n, F) crosses A/C
and “soon” thereafter crosses A.

Let N be a stopping time. Denote doy(y) = R(N, y) dF(y)/R(N, F). Note
that

N+r

(26) U*(N,r)=R(N,F)/exp{ z ziy}dmN(y).

i=N+1

The integral on the right side of (26) can be regarded as a ¢,-mixture statistic of
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a power one test of Hy: 8 = 0 versus H;: § # 0, which stops and rejects H, as
soon as this mixture crosses a level A = A/R(N, F'). Let N + T denote the first
time this mixture crosses A. If T < o0 and N= N(A/C,F), then N+ T =
N(A, F). Since [exp{XN*.,Z?}dpn(y) is a P,_-martingale with unit expecta-
tion,

E_.R(N(A,F),F)=E_{U*(N,T)T < o}

= EW{R(N, F)fexp{ . %HZ;‘“} don ()T < oo}
_ E{R(N,F)[exp{EXHW. 127} don(y); T < )
(27) B P (T < o)
E_R(N,F)
T P(T<w)
E_N
T P(T<w)"

Now P (T < wo|#(X,,..., Xy)} is the significance level of the aforemen-
tioned test [conditional on #(X,,..., Xy)]. By Lai and Siegmund (1979) [see
also Pollak (1986)], letting y(-) be as in Section 2, if A is large

P (T < ) =EP{T < o|#(X,,..., Xy)}
= E(1/8)1/[v(ey)](1 + o(1))

= E(1/8) [[1/%(5)] don()
(28) = E(1/4) [[1/4(»)]R(N, y) dF()
= (1/4) [[1/¥()| ER(N, y) dF(y)

= (1/A)E, N [[1/7(»)] dF ()

= (1/A)E N(1/[v(F))).
Putting (27) and (28) together yields E,_ R(N(A, F), F)/A = y(F), which is the
heart of Theorem 2. The formal details are now given.

Proor oF THEOREM 2(i). The proof of the first part of Theorem 2(i) is
analogous to the proof of the first part of Theorem 1(i) with II, replaced by

, pax nfexp{ Zn‘, Z,-y} dF(y) > A}.

Inf = min{n
..... =

To prove the second part of Theorem 2(i), choose 0 # w,, w, in the interior of
{2 and in the support of F, so that F([w,, w,]) > 0 and I(w,) < o0, I(w,) < .
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Note that

1<k<n

N(A,F) < rnin{n

max fw ‘:2exp{ ékzg} dF(y) < A}.

Denote

I, = min{n

Y Zn<Oor exp{ Yy ij} dF(y) > A},

J=T_,+1 “1 J=T_+1

Y= min{i

Fi
f2exp{‘ Yy ij}dF(y)zA}.

Wy

Clearly, N(A, F) < XY_T.. Hence,

(29) EOOR(N(A, F),F)=E_N(A,F)<E,T\EY.
Now
n
(30) E_T < Eoomin{n Z Zr < O} < 0.
j=1

In a manner similar to Theorem 1 of Pollak (1986), one can show that

n

(81) AP (Y=1)>,_, j;wz[l/‘y(y)]PfV( ZZ{‘?‘ >0,n= 1,2,...) dF(y).

i=1

Therefore, for given A, there exists a constant A = A(A,, F') such that if
A > A, then

(32) P (Y=1)>A/A.
Note that
(33) E Y=1/P (Y=1).

Now (29), (30), (31), (32) and (33) compete the proof of Theorem 2(i). O

Note that if ® C Q is a compact set bounded away from zero and interior to
2, then the bound in (30) and the convergence in (31) can be made to hold
uniformly for all F with support contained in ©, so that there exists a constant
x (dependent on ©) such that

(34) E_N(A,F)<xA, forall A > 1,uniformlyin F € {G|supp(G) c 6}.

PROOF OF THEOREM 2(ii). In order to emphasize the analogy to the proof of
Theorem 1(ii), we will redefine the notation of Section 3 into terms of the
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mixture analog. Let A > C > 1. Define L, = 0. For j = 1,2,... define

L= min{n|n >L; ,, / Zn: exp{ Zn: Z;‘“} dF(y) > A/C},
k i=k

=L, ,+1

Qim=f ¥ exp{)n:zz}dF(y), forn>L; ,,

k=L;_,+1 i=k
=0, for other n,

' n L,

V(jin) = [ exp{ > Z,-y}exp Y Z7)dF(y), ifn> L,
i=L,+1 k=L;_,+1

- Q(j, L,), itn =L,

H; = min{n|n >L;,V(j,n)= A}, = o0, if nosuch n exists,

M= H AL,

J = min{j|V(j, M;) = A},

T(B,F) = min{nlfexp{ f Z,.y} dF(y) > B},

i=1

= o0, if no such n exists,

L L;
dF(y)= X exp{ )y Zi’} dF(y)/Q(J, L;).
k=L;_,+1 i=k

By Theorem 1 of Pollak (1986), BP, {T(B, F') < o0} = g_ . 1/Y(F).

Until further notice, we will assume that the support of F is contained in a set
® =[a;, b;] U [a,, b,] where —o0 < a; < b, <0 <a, <b, < o and a,, b, are
in the interior of €. Thus (34) holds.

LEMMA 1*. Let 0 < n < 1. There exist A}, and C} such that if A > C = C,
and A > A}, then

(1 - )| E.Q(4, L;)/A] /¥(F) < P{H; < o}
< (1 +n)[E,Q(J, L;)/A] /v(F).
PrOOF.
P (H; < ) = E,P,{H; < w|#(L,))
=E.P{T(A/Q(), L)), F) < w|#(L,)}.

By virtue of (34), C can be chosen to be large enough so as to make
P(Q(j,L)>A/ YC} arbitrarily small. If C is large enough and Q(J, L)<

(35)
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A/ C, then by Theorem 2 of Pollak (1986)
P.{T(A/Q(J, L;), F) < i#(L;)}
= {[@Ui, L;)/A] /Y(E)}[1 + 0,(1)]

=[1/A]f[1/v(y)]exp{ » Z;”} dF(y)[1 + 0,(1)],

k=L, ,+1

where 0,(1) = p 0 as C — oo uniformly in F;. Therefore, it follows from (35) that
APoo(Hj < 00) =1+ 0(1)]f[1/Y(y)]Eoo(Lj - Lj—l) dF(y)

= [1+0(V)]EQ(J, L;)/¥(F),
where 0(1) = 0 as C — co. This accounts for Lemma 1*. O

LEMMA 2*. Let 0 <1 < 1. There exist A% and C} such that if A > C > C?
and A > A2, then

(1 =m)Ay(F) <E{V(j, H;)H;< o} < (1+ 0)Ay(F).

ProoF. The same as that of Lemma 2, with Lemma 1* replacing Lemma 1.
O

LEmMA 3*. Let 0 <17 < 1. There exist A3 . and C? such that if C > C? is
fixed and A > A3 ., then

(1 = n)AY(F) < E.{V(J, M;)|V(j, M;) > A} < (1 + ) Ay(F).

PrOOF. Denote @,(-) = [ P?(-) dG(y). Note that for r > A/C,
sup o {T(A/r,G) 2 x} -»,_ 0.
{G|supp(G)c ©}
Therefore, when C is fixed, insert F; instead of G and Q(j, L ;) instead of r in
the inequality (36) to get
P{x<H-L<ow)=EP[x<H-L <w#(L)}
(36) < E, 9{T(A/r,G) 2-’C}’"/A|G=p;,r=Q(j,L,)
0.

The proof of Lemma 3* is now the same as that of Lemma 3 with (34) replacing
Theorem 1(i) and Lemma 2* replacing Lemma 2. O

LEMMA 4*. Let 0 <n < 1. There exist A; . and C; such that if C > C} is
fixed and A > A% | then

n, ©

1-9<EV(J,M;)/[Ay(F)] <1+n.

Proor. Note that if (12) were shown to hold, then the proof of Lemma 4
would carry through for Lemma 4* [with the obvious changes of replacing
Theorem 1(i) by (34). Lemmas 1 and 3 by Lemmas 1* and 3* and y(y) by y(F)].
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Therefore, all that is left to show is that (12) is satisfied. We will now sketch a
proof.

Note that the proof of Lemmas 2 and 3 of Pollak and Siegmund (1975) can be
carried through uniformly for 6 € @, so that there exists A > 0 such that for
k=1,2,..., all ye 0 and all G with support contained in ® (when a > 1 is
fixed)

PY|X, - ¥'(y)| > n} < exp{ Ak},
P {I1X,| > n} < exp{—Ak},
PY{T(B,G) < (log B)/[aI(y)]} < exp{—Alog A}.
Let G be a probability measure whose support is contained in ®. Then in a

manner analogous to the derivation (8) one gets that
E_{R(T(B,G),F); R(T(B,G) - 1,F) <B,T(B,G) < 0}

= i feEooP;;“{k < T(B,G),R(T(B,G) — 1, F) < Bl¥(k — 1)} dF(y).
k=1

Suppose first that ® = [a, b] where 0 < a < b and by’(a) — ¥(b) > 0. Then
the idea of (9)-(12) carries through if one replaces 7, by T(B, G), one replaces
IX,_1] > n/|y| by |X,_,| > & and one replaces £3'Z? in (10) and its sequel by
YTB.GO-11pX. — y(b)]. The details are omitted.

For general O, note that ® can be represented as a finite union of intervals
[a;, B;], where «;, B; are such that B;y’(a;) — ¢(B;) > 0if §; > 0 and a,¥'(B;) —
Y(a;) > 0if B, < 0. Clearly, {R(n, F) < B} implies

{fﬁuexp{ élz,.y} dF(y)/F{[a;, B;]1} < B/F{[«;, B;1}.

@

Therefore, if y € [a;, 8;] and F{[«a,, 8;]} > 0, then the analog of (10)-(11) carries
through with B replaced by B/F{[«,, 8;]} and R(n, F) replaced by

{ /" > exp{ fzz} dF(y)/F{[a;, 8.1} 0

% k=1 i=1

LEmMMA 5*. Let 0 <n < 1. There exist C] and A , such that if C > C} is
fixed and A > AY , then
E_Q(J+1,M,) = O(log A),

where O(log A)/(log A) is bounded as A — oo [and where Q(J + 1, M) is
understood to be zero if M, = L ;).

PROOF. Analogous to that of Lemma 5. O

LEMMA 6*. Let A\ > 0. There exist C§ and A , such that if one fixes
C = Cj, then for any A > A§ .

O0<E_R(M,,F)—-E_V(J,M;) <AA.
PROOF. Analogous to that of Lemma 6. O

ProoF oF THEOREM 2(ii) (continued). For © of the form assumed above, the
proof is analogous to the proof of Theorem 1(ii).
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For the general case, consider ©, = [a,, —1/n] U [1/n, b,], where a,, b, are
interior points of € and a, —,_,, inf{x|x € @}, b, =, _ , sup{x|x € Q). Let
E* Dbe defined by dF,*(x) = Z(x € ©,)) dF(x). For arbitrary a > 0, define F> =
(1 + a)F*. We will let N(A, E*), N(A, F?) have the obvious meaning, despite
E* and F? not being probability measures. Clearly, N(A, F) < N(A, F}*).
Therefore,

lim sup E_,N(A, F)/A
A—>o0

< lim E_N(A, F¥)/A

lim E_{N(A/F(6,), F;*/F(6,))/[A/F(8,)]}/F(8,).

Setting n —» oo yields that limsup, _, (E_ N(A, F)/A < y(F).
Clearly,

E.[ R(N(A,F),y)dF(y) = E,N(A, F)[1 - F(8,)].
Q-0,

Therefore,
1-F(®, E ,_N(A,F)
Pw{f R(N(A,F), y)dF(y) = AA} < ,
-0, A A

which, for any A > 0, can be made arbitrarily small by taking n to be large
enough. Now for A < a/(1 + «a)

P {N(A,F) <N(A,F)}

< Pw{N(A, F) < N(A, F); fQ_GR(N(A, F),y)dF(y) = AA}

st{fQ_

In other words, for arbitrary ¢ >0, P {N(A, F) < N(A, F?)} < ¢ for large
enough n. It is easy to see that

E (N(A,F*) - N(A,F)N(A,F*) > N(A,F)} <E,N(A, F}).
Hence, E_N(A,F)> E_N(A, E*)(1 — ¢). Letting ¢ » 0, a = 0 yields that
liminf, ,  E_N(A, F)/A > y(F), completing the proof of Theorem 2. O

gR(N(A,F),y) dF(y) > )\A}.

5. The average run length when v = 1. Define

1+ f‘, exp{— ézg}},

C3'% = Eflog

k=1
M(B, y)
Cy?= lim E! ¥ Z7- B,
B—

i=1

Crt=cpf - Cpt,

CHF = —Llog[2n(F(0))’ /4(0)],
! = tlog I(8) - 3,

COF = COF 4 Cf40 — C49 — P,
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The computation of Cy? is an application of renewal theory. The calculation of
C2? seems to be feasible only with the aid of Monte Carlo.

THEOREM 3. Ify,0 € Q,0 < yy'(8) — ¥(y) < o0, and the P!-distribution of
ZY? is nonlattice, then

E{N(A, y) = [log A + C? + o(1)],

1
' (0) —¥(y)

where 0o(1) > 0 as A — oo.

THEOREM 4. Suppose F'(y) = dF(y)/dy exists, is positive and is continu-
ous in an open neighborhood of 8 € Q. Then

E’N(A, F) =[log A + Lloglog A + C!'F + o(1)] /1(6),

where o(1) - 0 as A — .

PROOF OF THEOREMS 3 AND 4. For the proof of Theorem 4, assume (without
loss of generality) that # > 0. Consider first the case where F is concentrated
on [8,,0,], where 0 <, <8 <6, < oo are such that yy’(6) —y(y) > 0 for
0, <y <86, and F has a derivative F’ which is positive and continuous on
[6,, 0,]. For 6, < y < 6, denote

n k-1
Wmy=1+ ) exp{— Yy Zly}.
i=1

k=2
Note that W™~ converges a.s. P{ as n » o to a random variable W, 4. Since

)

£ oo wen) - § el <[y £ -0} nen0 as
n=m n=m 1
uniformly in y € [6,, 8,], it follows that W, , is a.s. P? continuous in y € [6,, 6,]
and W™ —» W, 4 as. P? uniformly in y € [6,, 0 ,.]. Note that

n— oo

R(n,y) = exp{ ) Z{’}W”’y,

i=1

R(n,F) = f;lexp{ Y Z,?'}W"'de(y).
0 i=1

The proof of Theorem 3 is therefore a direct application of the nonlinear renewal
theorem. The proof of Theorem 4 follows the proof of the asymptotic formula for
the expected sample size of power one tests, based on nonlinear renewal theory
[cf. Lai and Siegmund (1977)]. The details presented here follow the proof
presented in Woodroofe (1982), Section 6.3. With minor modifications, the proof
is the same. _

One difference is that Woodroofe’s u,(Y,) now has w(ds) replaced by
W™ *r(ds). Note that the upper bound on the newly defined u,(Y,) is not
uniform in W™ %, One must show that (13) and (14) of Section 4.4 of Woodroofe
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(1982) are nevertheless satisfied. One can dispense with (14) by noting that
W2 > 1. To show that (13) is satisfied, it more than suffices to prove the
existence of a constant a > 0 such that

(37) E{’(L:‘Wy,odF(y))a < .

Let €e>0, A= min{n“)_(m —¢’(0)] <& for all m > n}. Suppose that ¢ is
small enough so that there exists 8 > 0 such that X ,Z? > Bn if n > A for all
0, < y < 0,. There exists a constant y > 0 such that

(6 —y) +¥(y) —¢(0) <y forall b <y <6,

There exists a constant § >0 such that PJ A =)) < exp{—8A}. Choose
1 > a > 0 such that ay — (1 — a) < 0. Now

fW dF(y) = f[ Zexp( %§1Z3)+k_i:: exp(—%g:lziy)]dF(y)

'[1 + ) exp(— tgzg) +

k=2

< foj _B}dF(y),
k-1

‘ ﬁ eXp(— p Ziy) dF(y)|A = x)

i=1

ﬁ

=)

E{’(

E{ (ST _qexp(—Li2)Z7) dF(y)

PAA=N)
_ b WO -2+~ OKE-1) JF
- Po(A )\)/; Z e (y)
< __—1.___ l YA
T P(A=)N)y

By Jensen’s inequality,

Ef( [ W0 dF(5)) - ELES [( [ W0 df(3))
(38) ’

A]
e 1 1 2—e P\

< Y e+ 25| PoA=1).
A§I(P3(A=x)ye 1—e-ﬁ) H(A=2)

The inequality (37) now follows because

i 1 1 “ 1 =
— o oYA P0 A — = ay)\ /] — 1-a
< l i Nay—(1-a)8)
Y a2
< o0.
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To complete the proof of Theorem 4 for the case that F' is concentrated on
[6,, 8,] as above, one need only show that (16) of Woodroofe (1982), Section 4.4,
holds. For this, following Woodroofe’s (1982, Section 6.3) proof, it suffices to note
that (for large A)

log A (log A)/(21(0))

(log A)/21(8)) ;
< _
i=1 A
1 (logA)
=< 2
(I(6))" A
Since
n
p?. max Z? > 3%log A
l{lsns(logA)/(2I(0)) E’l o8 }

= P{M(3log A, y) < (log A)/(21(6))}
< exp{—wlog A},
for some w > 0,
P}(N(A, F) < (log A)/(21(9)))
- exp{ 4log A} (log A)?
(I(8) A

1
-0 logA )’

which is equivalent to (16) of Woodroofe (1982), Section 4.4.

For the general proof of Theorem 4, let F' be a measure on the real line. There
exist constants 0 < §<1(0)/2, w>0 and 0<8,<8 <80, <o such that
() —Y(y) >0 for ye[b,0,], max{yy'(§ — ) — Y(¥), (0 + w) -
Y(y)} <& for y€[6,,6,] and F(y) has a derivative F’(y) for §, <y < 4,,
which is positive and continuous for 6, <y < 0,. Since P{’(N(A, F) >
(2log A)/I(0)) is arbitrarily small when A is large enough and since for all
x>0, ESN(A, F)INA,F)>x)<x + (2log A)/I(0) for large enough A, it
suffices to show that

+ exp{ —wlog A}

log A) P!
(log A) 1{ ’“”r(g?o};A)/I(o)/l‘l [6, 6]
o 4A
x 3 exp(yZ Xi—(n—k+ I)My)) )= log 4
k=1 i=k
—')A—»OOO.

The remainder of the proof is therefore an analysis of this expression.
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Let —o0 < 6§ <6, <8, <6} < oo be such that
—§ = max{yy'(0) — y(y)ly & (65, 0)} <.

In the same manner which lead to (37) above, it can be shown that there exists
a constant a > 0 such that

0 k «
F=Ef(fn ZeXP(yZXi—kxP(y))dF(y)) <

—[65, 6 1p=1 i=1

and hence by Jensen’s inequality

(logA)Pla( n=1,.., (210gA)/I(0)/I; [6g%, 0]
n n A
x £ anly £ 5= (0= ks 00| aR()2 g2
2log A)/I(0) n @
(@) < (logA) ((f )y eXP(yE X,—(n-k+ 1)¢(y)) dF(y))

>
log A
2(log A)* r

=T16) (A/lgA)
- 0.

A—> o0

For large enough A

max f an eXP(y Zn‘. X;—(n-k+ 1)=P(y))

n=1..., (2log A)/I(0) 165, 01— (6, 6,1 =1 i=k

dF(y)

X
1]

1 n
(m % X (V- 0y + o)

§(n—k+1)

< e dF
(2108A)/1(0)f Z (y)
(41) ef(n+ 1)

IA

max
n=1,...,(2log A)/1(6) £

_ & p2e/10
§

A
log A"~

Let n > 0 be such that P{(C* X, /k & (Y'(8 — w), V(0 + w))) < exp{ —nk}
for all k. Let A > 0 be such that E{[Y* (X, — ¢’(0))]* < Ak? for all k. For

<
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large enough A and for n < (2log A)/I1(6)

B[ £ ey £ x- (= k4090

i=k

X'E( ] §X~€E(t]/’(0—w),z[/’(0+w))) dF(y)>%}

n n
< Pf{ 5 exp(ol* 5 X,-)
k=1

i=k

1 A
X:(ngx $(1[/ (0—(0) \P(0+w))) logA}

1 k A/n
XE(ZZX$(¢(0—w)¢(0+w))) A}

£ r £ (- vz 3 Exe 00, v0+0)

<
1
1
> ———logA - b—;loglogA ky'(0) + log(I(0)/2)}
nA(log A)/4 AR2
< k§1 1 2 I(0) 4
0—*logA - 0—*loglogA ky’(0) + —log 5

s £ R Ixe -0, v+ o)

k=(log A)'/* i=1

A(log A)**

IA

4
[51—*—10,;,4 - FloglogA — (log A)*y'(6) + —10g(I(9)/2)}
1

- /4
+e n(log Ay'* __—
1—e™



DETECTING A CHANGE IN DISTRIBUTION 775

It follows that

(g2, w1 ooy Ex- (- ke v

k=1,...,(2log A)/I(0) P

(42)

— d , , A
X’“(n—kﬂ LXe(y(0-0)v(0+0) dF(y)>m}

In a similar fashion one gets that

(log A)P"{ ..... m %A)/M) e Z xp(y XX, -(n—k+ l)zl/(y))
(43)

n—k+1 gXiQE(‘V(e_w),II/'(9+w))

In]

X

dF A
> ————
(¥) log A

0.

-
A—> o0

Formulas (40)—(43) account for (39) and so the proof of Theorem 4 is complete.
O

6. Monte Carlo. A Monte Carlo study was made for the normal model with
unit variance. Letting f, denote the density of the N(#,1) distribution, simula-
tions of N(A, 8), R(N(A,8),0) were made for 6 = 0.4,0.8, 1.0, 1.2,
1.6,2.0,2.5,3.0,4.0 and A = 10,20, 30,100, using X, ~ N(0,1) random numbers.
For each of the 36 combinations of § and A, 10,000 realizations were obtained.
The results show that the asymptotic formulas (derived in the previous sections)
give a very good picture of E,_N(A, 6) even for surprisingly low values of A.

As expected, the Monte Carlo estimate of E,_(R(N(A,8),0) — N(A, 8)) was
zero: In only one of the 36 cases did the estimate exceed two of its (Monte Carlo)
standard deviations. The results of Lai and Siegmund (1977) lead one to
conjecture that the linear correlation coefficient between N(A, #) and
R(N(A, 0), 8) is asymptotically (A — o) zero. The Monte Carlo results support
this conjecture; the highest Monte Carlo correlation between N(A,#) and
R(N(A,0),0) was 0.0234. [In 28 of the 36 cases the correiation between
N(A,0) and R(N(A,0), was not significantly different from zero at a 5%
level of significance, and in all of the 36 cases this correlation was not
significantly different from zero at a'1% level of significance.] Therefore,
estimates of E_N(A, §) were made using a linear combination
ay gN(A,0) + (1 —ay o)R(N(A,8),0), where a, , was chosen to minimize
a?Var N(A, 0) + (1 — a)®Var R(N(A, 8), 8) (the variances being Monte Carlo
variances). The results are presented in Table 1.

Table 2 presents the ratio between the theoretical value TH and the Monte
Carlo estimate MC.

The results show a surprisingly good fit, even for low values of A (as long as 6
is not too large). It seems clear that for most practical purposes the asymptotic
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TABLE 2
Ratios of asymptotic theory predictions of E, N(A, )
to Monte Carlo estimates (TH/MC)

A
0 10 20 30 100
0.4 0.97 0.99 0.99 1.00
0.8 0.96 0.98 0.98 1.00
1.0 0.97 0.99 0.98 1.00
1.2 0.95 0.99 0.99 1.00
1.6 0.94 0.95 0.99 1.01
2.0 0.90 0.95 1.00 0.99
2.5 0.84 091 0.95 1.00
3.0 0.72 0.83 0.87 0.99
4.0 0.44 0.53 0.59 0.76

formula can be safely applied. (Shewhart control charts using “3¢ limits” —often
used in practice—have P, -expected sample size of 741.)

For an indication of how well one may expect the formula of Theorem 4 to fit,
see Pollak and Siegmund (1975). One would expect the formula presented here to
hold as well as the formulas presented there, provided that E’N(A, F) is
large enough for the distribution of log[l + LY Flexp{—X%_ ,Zf}] to have
approximately reached its limiting distribution.

7. Remarks. 1. In Theorems 1, 3 and 4, if I(8) = oo, it is possible to show
that E_NJ/A —» w0 as A > oo and E!N(A, F)/log A - 0as A > oo.

2. Using the method involved in showing the validity of Remark 1, one can
show that Theorem 2 remains valid with F({y|I(y) < o0}) > 0.

3. The fact that lim, , E_N(A, y)/A exists follows from Theorem 4 of
Kesten (1973). Theorem 1(ii) gives its value.

4. It seems reasonable to conjecture that Theorem 2 remains valid if the
Pp-distribution of X, is just assumed to be nonlattice. The proof given above for
Theorem 2 breaks down because the uniformity of the renewal-theoretic conver-
gence used in the proof of Lemma 1* [based on Theorem 2 of Pollak (1986)] is
not clear if the strongly nonlattice assumption is dropped.

5. In the lattice case, even a version of Theorem 1 seems to be difficult to
formulate. Despite X,’s being lattice, R, is not, and the proof presented
here—which conditions on %#(N/ ,c)—does not yield an expression for the
nonlattice part of the asymptotic P,_-distribution of log R(N(A, 8),8) — log A.

6. The loglog A term in Theorem 4 is the price one must pay for efficiency at
every alternative. [For an indication of this see Pollak (1978).]

7. The difference between the asymptotic expansion of Theorem 3 and that
of its CUSUM analog is only in the constant term. To compare the two, fix
(large) B as the expected number of observations until a false alarm. If the
parameter value after the change is represented by a value 8, Theorem 1(i) im-
plies that one would choose A = A(B) = B/y(#), and Theorem 3 implies that
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(for y satisfying E?Z? > 0)
(44)  E?N(6, A(B)) = [log B — log v(6) + C7°] /E?Z? + o(1).

The analogous CUSUM procedure would (for the same values of B and 6)
require computing A*(B) defining by E_I14«5 = B and then calculating
E?Tl 4+ gy [This can be done using the results of Siegmund (1975).] This
expression would then be compared to (44). For a numerical comparison (in the
case of detecting a change in the drift of a Brownian motion) see Pollak and
Siegmund (1985).

8. The problem of formulating an analog of Theorem 2(ii) for mixture-type
CUSUM rules [14 seems to be intractable. Therefore, although use of II% is
(conservatively) possible via the inequality E_IT§ > A [Lorden (1971) and
Pollak and Siegmund (1975)], use of N(A /y(F), F') should be more appealing.
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