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HIGH BREAKDOWN-POINT AND HIGH EFFICIENCY
ROBUST ESTIMATES FOR REGRESSION

By VicToR J. YOHAI
Universidad de Buenos Aires and C.E.M.A.

A class of robust estimates for the linear model is introduced. These
estimates, called MM-estimates, have simultaneously the following proper-
ties: (i) they are highly efficient when the errors have a normal distribution
and (ii) their breakdown-point is 0.5. The MM-estimates are defined by a
‘three-stage procedure. In the first stage an initial regression estimate is
computed which is consistent robust and with high breakdown-point but not
necessarily efficient. In the second stage an M-estimate of the errors scale is
computed using residuals based on the initial estimate. Finally, in the third
stage an M-estimate of the regression parameters based on a proper rede-
scending psi-function is computed. Consistency and asymptotical normality
of the MM-estimates assuming random carriers are proved. A convergent
iterative numerical algorithm is given. Finally, the asymptotic biases under
contamination of optimal bounded influence estimates and MM-estimates are
compared.

1. Introduction. Consider the usual regression model with random carriers,
i.e., we observe z; = (¥,,X;), 1 <i < n, iid. (p + 1)-dimensional vectors, where
¥, € R, x; € R? and the prime denotes transpose, satisfying

(1.1) y,=0}x,+u;, 1<i<n,

where 8 € RP is the vector of the regression parameters and u; is independent of
x;. Let Gy(x) be the distribution of the carrier x; and Fy(u) the distribution of
the error u;. Then the distribution of z; is given by

(1.2) Hy(2) = Go(x)Fy(y — 65%).

The least-squares estimate (LS estimate) is defined by the value éLS which
minimizes
n
(1.3) S(8) = X r(8),
i=1

where the residuals r,(0) are defined by
(1.4) r,(8) =y - 0'x,.

12

When F, is normal, 8,4 corresponds to the maximum likelihood estimate. In
this case @15 is efficient since its covariance matrix attains the Rao-Cramér
bound matrix.

However, it is well known that the LS-estimator is not robust: A small
fraction of outliers, even one outlier may have a large effect on the estimate.
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The degree of robustness of an estimate in the presence of outliers may be
measured by the concept of breakdown-point which was introduced by Hampel
(1971). Donoho (1982) and Donoho and Huber (1983) gave a finite sample version
of this concept which will be used here. The finite sample breakdown-point
measures the maximum fraction of outliers which a given sample may contain
without spoiling the estimate completely.

Unfortunately, many of the proposals for robust estimation in regression fail
to have high breakdown-point. The M-estimates with monotone psi-function
introduced by Huber (1973) have breakdown-point 0. Maronna, Bustos and
Yohai (1979) showed that GM-estimates have a breakdown-point tending to 0
when p increases. This class contains the optimal bounded influence estimates
obtained by Krasker (1980) and Krasker and Welsch (1982). It also contains the
optimal estimates with bounded change-of-variance function derived by
Ronchetti and Rousseeuw (1985).

In the last years several estimates with high breakdown-point, i.e., 0.5, were
proposed. Siegel (1982) proposed the repeated median (RM) estimate. Rousseeuw
(1984) proposed the least median of squares (LMS) and the least trimmed
squares (LTS) which are defined by the minimization of the median or the
trimmed mean of the squares of the residuals, respectively. Rousseeuw and
Yohai (1984) proposed a class of estimates based on the minimization of a robust
M-estimate of the residual scale (S-estimates).

However all these estimates are highly inefficient when all the observations
satisfy the regression model with normal errors. Moreover Siegel’s RM-estimator
is not affine equivariant. See Remark 2.2 for the definition of affine equivariance.

Rousseeuw (1984) aiming at reconciling high breakdown-point and high
efficiency, proposed to use a high breakdown-point estimate followed by a
one-step M-estimate or a one-step reweighted least squares. It seems quite
plausible that this type of procedure keeps the breakdown-point high and
improves the efficiency of the initial estimate. However, the exact breakdown-
point of this type of procedure is not known and therefore there is no guarantee
that the breakdown-point of the initial estimate is kept unchanged. Moreover
the one-step reweighted least-squares estimate, contrary to what happens with
the one-step M-estimate, does not have the same asymptotic efficiency as the
fully iterated estimate. In fact, its asymptotic efficiency depends on the initial
estimate and may be quite difficult to compute.

The purpose of this paper is to present a new class of estimates, which we call
MM-estimates, having simultaneously (1) high breakdown-point and (ii) high
efficiency under normal errors.

In Section 2 we define the MM-estimates and establish that they have high
breakdown-point. We also give another robustness property of the MM-esti-
mates, called here the “exact fit” property, which was introduced by Rousseeuw
(1984). In Section 3 we study consistency and in Section 4 asymptotic normality.
In Section 5 we give a numerical algorithm for computing the MM-estimates. In
Section 6 we compare the asymptotical biases of MM-estimates and optimal
GM-estimates under contamination when the z,’s are multivariate normal. The
last section is an Appendix with the proofs.
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2. MM-estimates. Huber (1981) defines the scale M-estimates as follows.
Let p be a real function satisfying the following assumptions.

(A1) () p(0) = 0; (ii) p(—u) = p(u); (iii) 0 < u < v implies p(u) < p(v); (iv)
p is continuous; (v) let a = supp(u), then 0 < a < c0; (vi) if p(u) < a and
0 < u < v, then p(u) < p(v).

Given a sample of size n, u = (u,, u,,..., u,), the scale estimate s(u) is
defined as the value of s which is the solution of

1) (1/n) ép(u,./s) -,

where b may be defined by E,(p(u)) = b, and where ¢ stands for the standard
normal distribution.
It is easy to show that if

clw) =#{i:1<i<n,u;=0}/n<1-(b/a),

then (2.1) has a unique solution and this solution is different from 0. If
c(u) =1 - (b/a), we define s(u) = 0.
Then the MM-estimate is defined in three stages as follows.

STAGE 1. Take an estimate T, , of 6, with high breakdown-point, possibly
0.5. See Remark 2.4 for the selection of this initial estimate.

STAGE 2. Compute the residuals
(2.2) rl(TO'") = yl - T(;'nxl', 1 < i < n,
and compute the M-scale s, = s(r(T, ,)) defined by (2.1), using a function p,
satisfying assumption (Al) and using a constant b such that
(2.3) b/a = 0.5,

where a = max py(u). As Huber (1981) proves, (2.3) implies that this scale
estimate has breakdown-point equal to 0.5.

STAGE 3. Let p, be another function satisfying assumption (Al) and such
that

(24) pi(u) < po(u),
(2.5) sup p,(u) = sup py(u) = a.
Let ¢, = pj. Then the MM-estimate T, , is defined as any solution of
n
(2.6) 2 ¥i(r(8)/s,)x; = 0,
i=1

which verifies
(2.7) S(T,,,) < S(T,, ),
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where

(2.8) S(8) = X pi(ri(8)/s,)
i=1

and where p,(0/0) is defined as 0.

REMARK 2.1. Lemma 2.1, proved in the Appendix, implies that the absolute
minimum of S(0) exists. It is clear that this absolute minimum should satisfy
(2.6) and (2.7). However any other value of 8 which satisfies (2.6) and (2.7), e.g., a
local minimum, will be also a MM-estimate with high breakdown-point and with
high efficiency under a regression model with normal errors.

REMARK 2.2. If T, , is regression equivariant, i.e., if
TO, n(( yl + e/xl’xl)’ (y2 + 0'X2,X2), ey (yn + O’Xn,xn))

= TO,n((yl’xl)’ (y2’x2)""’(yn’xn)) + 0

and if T, , is defined as the absolute minimum of S(6), then T, , will be
equivariant too. A similar statement can be made when T, , is affine equivariant,
ie., if

TO, n(( yl’ Axl)’ ""(yl’ Axn)) = A_ITO, n(( yl’xl)"“’ (yn’xn))
for any nonsingular matrix A.

REMARK 2.3. One way of choosing p, and p, satisfying (Al), (2.4) and (2.5) is
as follows. Let p be a function satisfying (A1), and let 0 < &, < k,. Let py(u) =
p(u/ky) and p,(u) = p(u/k,). The value k, should be chosen such that (2.3)
holds. The choice of %, will determine the asymptotic efficiency of the estimate.

Donoho (1982) and Donoho and Huber (1983) give the following finite sample
version of Hampel’s breakdown-point concept.

Let Z, = (z,,2,,...,2,) be any sample of size n, and let T = {T,}, ., (T, is
the estimate corresponding to a sample of size n) be a sequence of estimates. Let

b(m’T’zn) = suple+n(Zn U Wm) - Tn(zn)l’

where the supremum is taken over all the samples W, of size m, Z, U W,,
denotes the sample of size n + m which contains the observations of both
samples and | | denotes Euclidean norm. The breakdown-point of T at the
sample Z , is defined by

eX(T,Z,) = min{m/(m + n): b(m,T,Z,) = }.
We can interpret ¢} as the maximum fraction of outliers that we can add to
the original sample without spoiling the estimate completely.
Let
(2.9) c,= max #{i:1 <i<nandf’'x;,=0}/n.

8 RP
Then, if any set of p carriers is linearly independent, we have ¢, = (p — 1)/n.
Let T, = {T,, be the initial sequence of estimates, and T, = (T, ,},. , the

n}nzp
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corresponding MM-estimate. The following theorem implies that if ¢*(T,, Z,) is
asymptotically 0.5 and ¢, = (p — 1)/n, then &}(T,, Z,) is asymptotically 0.5
too.

THEOREM 2.1. Suppose that p, and p, satisfy assumption (Al), that (2.3),
(2.4) and (2.5) hold and c, < 0.5. Then if Ty = {T, ,},., is any sequence of
estimates which satisfies (2.7), we have

e:(TI’Zn) 2 min(S:(TO’Zn)’ (1 - 2cn)/(2 - 2cn))’ )

REMARK 2.4. A possible choice for T, is Siegel’s RM-estimate whose break-
down-point is asymptotically 0.5. Another estimate with asymptotical break-
down-point equal to 0.5, but which is affine equivariant was proposed by Leroy
and Rousseeuw (1984). This estimate may be considered as a finite variant of
Rousseeuw’s LMS-estimate, and is defined as follows. For each set of p observa-
tions of the sample we compute the value of 8 which fits exactly. Then we have

N = ( Z) estimates, @1, 62, cee, GN of 8,. For each of these estimates ﬁi, we compute
the residuals 7;; = y; —Aﬁi’xj, i<j<n,and 0! = med{r?,1 <j<n}.ThenT,is

defined as the value 6, which corresponds to the minimum 67. We call this
estimate finite LMS. If p is large the finite LMS-estimate may be computa-
tionally very expensive. Then Leroy and Rousseeuw (1984) propose to use only a
sample of all the possible sets of p observations drawn out of the n observations.
In this case we can only guarantee breakdown-point 0.5 with some probability
which depends on the size of this sample.

Another important robustness property used by Rousseeuw (1984), and called
here “exact fit” property (EFP), is the following: An estimate T, has the EFP if
given any sample of size n, (¥,,X,), (¥3,X5), .-, (¥n» X,,), for which there exists 0
such that #{i: y, = 0'x;} > n/2, then #{i: y, = T;x;} > n/2 too.

The following theorem shows that the MM-estimate inherits the EFP from
the initial estimate.

THEOREM 2.2. Assume that p, and p, satisfy (Al). Suppose T, , has the
EFP and let T, , be any estimate satisfying (2.7). Then T, , has the EFP too.

REMARK 2.5. The RM-, LMS., finite LMS-, and S-estimates have the EFP.
Therefore if we take any of these estimates as T, ,,, the MM-estimate T, ,, will
also have the EFP.

3. Consistency. In order to prove the consistency of the MM-estimates we
need the following additional assumptions.

(A2) The function g(a) = Eg(p,(( — a)/a,)), where o, is defined by
(3.1) EFO(PO(“/%)) =b,
has a unique minimum at a = 0.

(A3) P;(8'x = 0) < 05 for all € RP.
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If p, satisfies (Al), then a sufficient condition for (A2), see Lemma 3.1. of
Yohai (1985), is given by:

(A2*) The error distribution F, has density f, with the following proper-
ties: (i) f, is even, (ii) f,(x) is monotone nonincreasing in |u|, and (iii) fy(u) is
strictly decreasing in |u| in a neighborhood of 0.

Theorems 3.1 and 3.2 establish the consistency of the scale estimate s, defined
in stage 2 and of the MM-sequence of estimates {T, ,},. , of 8,. The proofs are
omitted and may be found in Yohai (1985).

THEOREM 3.1. Let (¥;,X,), (¥5,X3),---,( ¥, X,,) be i.i.d. observations with
distribution H, given by (1.2). Assume that p, satisfies (Al) and {T, ,},., is a
sequence of estimates which is strongly consistent for ,. Then s, is strongly
consistent for o,, where o, is defined by (2.1).

THEOREM 3.2. Let (y;,X,), (¥ X5),...,(Y,,X,) be i.i.d. observations with
distribution H, given by (1.2). Assume that p, and p, satisfy (Al) and that (A2),
(A3), (2.3), (2.4) and (2.5) holds. Assume also that the sequence (T, ,},., is
strongly consistent for 8,. Then any other sequence {T which satisfies
(2.7) is strongly consistent too.

1, n}nzp

REMARK 3.1. Suppose that (A2) does not hold but g(a) has a unique
minimum at a, # 0, and suppose also that the regression model has a constant
term, i.e, x; , =1 for all i. Then in this case Theorem 3.2 shows that the first
p—1 coordinates of T, , are strongly consistent with their true values and the

last coordinate has an asymptotic bias equal to a,.

4. Asymptotic normality. Asymptotic theory of M-estimates with random
carriers can be obtained from Theorem 4.1 in Maronna and Yohai (1981).
However, when applied to M-estimates, this theorem requires fourth moments
on the x;’s, We are going to give here sufficient conditions for the asymptotic
normality of the MM-estimates which require only second moments on the
carriers. We need some additional assumptions.

(A4) p, is even, twice continuously differentiable and there exists m such
that |u| > m implies p,(u) = a. .

(A5) G, has second moments and
(4.1) V = Eg (xx})
is nonsingular.
The following theorem gives the asymptotical normality of M-estimates with

scale estimated separately, with include as a special case the MM-estimates. The
proof is omitted here and can be found in Yohai (1985).
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THEOREM 4.1. Let z,,2,,...,2z, be i.i.d. with distribution H, given by (1.2).
Assume p, satisfies (A4) and G, satisfies (A5). Let s, be an estimate of the error
scale which converges strongly to o,. Let T, be a sequence of estimates which
satisfies (2.6) and which is strongly consistent to the true value 8,. Then

(42)  nVHT, - &)~ N0, of[A(y1, ) /B4y, Fy)]V7Y),
where —, denotes convergence in distribution,

(4.3) A(Y, F) = Ep(¥*(u/0,))

and :

(4.4) B(y, F) = Ep(y'(u/0))).

REMARK 4.1. Let p, and p, be as in Remark 2.3, where p(u/k) is equivalent
to u? for large k. For example, let p be given by

u?/2 —u'/2 + ub/6 if|ul <1
4.5 = ’
(45) p(2) {1/6 if |u| > 1,
which corresponds to the bisquare psi-function

1-u?)? ifju <1
4.6 u) =¥ '
(4.6) ¥a(u) {0 if |u| > 1.

Suppose also that the MM-estimate is computed using s, defined in stage 2 with
b = E,(p(u/kg). Then if the u;’s are N(0,1), we have o = 1 and according to
Theorem 4.1, the asymptotic variance of the MM-estimate depends only on k,.
Therefore we can choose k2, so that the MM-estimate can be highly efficient
without affecting its breakdown-point, which depends only on the choice of k.
When p = py the value %k, that makes (2.3) holds is 1.56, the corresponding
b = 0.0833 and the value &, which gives efficiency 0.95 for normal errors is 4.68.
However it is worth noting that even if this estimate has breakdown-point 0.5, it
will be less robust, i.e., more sensitive to outliers, than the estimates correspond-
ing to a smaller value of &,.

REMARK 4.2. According to Theorem 4.1, the asymptotic efficiency of the
MM-estimates with respect to the LS-estimate is independent of the distribution
G, of the carriers. This represents a clear advantage over the GM-estimates
whose efficiency may be seriously affected by high leverage observations; see
Maronna, Bustos and Yohai (1979).

5. Computing algorithm. Here we propose a computing algorithm for the
MM-estimate which is a modified version of the iterated weighted least-squares
(IWLS) algorithm used for computing M-estimates [see Huber (1981), Chapter
7]. Let z, = (¥,,%x;), 1 < i < n, be a sample of size n and suppose that we have
already computed the initial estimate T, , and the scale estimate s, defined in
stage 2. For each t € R” define the weights

(5.1) w,(t) = ¥,(r,(t) /5,) /(r:(t) /s,).
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Also define

62 gt = (1/52) ¥ w®n(t)x; = (1/5,) L :(r(t)/5,)x,

i=1 i=1

and
n

(5.3) M(t) = (1/s2) L w(t)xx;.
i=1
It is easy to show that —g(t) is the gradient of S(t). The recursion step of the
IWLS is defined as follows. If t*) is the value of the estimate in the jth step,
then tU*D is defined by

(5.4) LU+ = tO) 4+ A(tVD),
where
(5.5) A(t) = M~Y(t)g(t).

Using this recursion we cannot guarantee that StV*?) < S(t*’) and, there-
fore, if T, ; is computed as a limit of the sequence t, (2.7) may not hold. We
propose the following modification. Take 0 < § < 1; then since —g(t) is the
gradient of S(t), we can find an integer & such that

(5.6) S(tY + A(tD)/2%) < S(t9) — 8(A(tY) /2*) g(t).

Let k, ; be the minimum of such %’s and let k, ; be the value of &,
0<k< laz1 j» which gives the minimum of StV + A(t(f))/2k) Then define the
recursion step by

(5.7) LU+D = ¢ 4 (1/2k2)A(D)

starting with t© = T, . Clearly we now have S(tY+V) < S(t). The following
theorem shows that any limit point of the sequence t) satisfies (2.6) and (2.7),
and therefore is an MM-estimate.

THEOREM 5.1. Suppose p, and p, satisfy (Al), (2.3), (2.4) and (2.5) hold, ¥,
is continuous, lim , _, oy, (u)/u >0, u+ 0, and p,(u) < a implies Y (u) > 0 and
finally c, < 0.5. Then if t\ is defined by (5.7) with t© =T, ,,

(i) the sequence tV) is bounded;
(ii) any limit point of t\Y) satisfies (2.6) and (2.7);
(iii) if t, and t, are two limit points of t\, we have S(t,) = S(t,).

6. Bias under contamination. The influence curve was introduced by
Hampel (1974) to measure the degree of bias robustness of an estimate when the
distribution of a central nominal model is subject to an infinitesimal contamina-
tion. Suppose that the distribution of z; = (¥;,X;), H,, is given by (1.2) and that
the sequence of estimates {T,},. , is deﬁned by a functional T applied to the
empirical distribution, i.e., T, = T(H,) which is consistent for 8, i.e., T(H,) = 8.
If H, is subject to a contammatlon of size ¢, with the distribution §, , con-
centrated at the point (y,X), the asymptotic bias of the estimate given by the
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functional T is
b(T, Hy, ¢, y,x) = T((1 — e)H, + €8, ,) — T(H,)
and the influence curve is defined by
IC(T, H,, y,x) = zi_rgb(T, Hy, e, y,x)/e.

Since the MM-estimate is an M-estimate, its influence curve [see Krasker
(1980)] is given by

IC(T’ HO’ y’x) = ‘Pl(y - Béx)xog(B(zlzl, FO)V)_l’

where V is given in (4.1) and B(y, F) in (4.4).

Therefore, the influence curve of the MM-estimates is not bounded. However,
for practical purposes it is more meaningful to consider the case of small but
positive contamination size. For this purpose we define the e-influence curve by

ICe(T9 H09 yax) = b(T7 H07 87 y’ X)/E.

It may be proved, by arguments similar to those used in Theorem 2.1, that if
T is an MM-estimate, then T((1 — ¢)H, + eH*) is bounded in H* for any
e < 0.5, and consequently IC(T, H,,, y,x) is bounded in ( y, x) too.

In this section we compare the e-influence curves of MM-estimates and the
optimal Krasker and Welsch (1982) bounded influence estimates (KW-estimates)
when F, and G, are normals.

The MM-estimate considered here is based in the bisquare rho-function given
by (4.5): p,(u) = pg(u/k;), i = 0,1. The values of &, and &, are those given in
Remark 4.1. and correspond to an estimate with breakdown-point 0.5 and
efficiency 0.95 for normal errors. As initial estimate T, we use the S-estimate with
rho-function p,. Rousseeuw and Yohai (1984) proved that this estimate has
breakdown-point 0.5. We denote this MM-estimate by T,.

The KW-estimate belongs to the class of GM-estimates and is defined as a
solution of

éxpy,k(((yi - 0'%,)/s,) - Ixi|5)(x/Ix)]5) = 0,

where |x|z = (x’27!x)!/%, T is the covariance matrix of x; (supposed known
here) and ¢y , is the Huber psi-function given by ¢ ,(u) = sign(u)max(|u|, k);
s, is estimated simultaneously using the same equation as in stage 2 of the
MM:-estimate T, i.e., using the equation of an M-estimate of scale based on p,.

The value of the constant % is chosen so that the asymptotical efficiency of
this estimate, which we denote by T,, be 0.95 when the distribution H, of
z = (¥, x) is multivariate normal and may be found in Maronna, Bustos and
Yohai (1979). This estimate has the property of minimizing the invariant gross
error sensitivity [see Krasker and Welsch (1982)] defined by

1/2
Y*(T) = (Sup[C(T’ HO’ y’ X),V_IIC(T, HO’ y,X)) 1)

Y, X



ROBUST ESTIMATES FOR REGRESSION 651

TABLE 1
QGross error sensitivities €

e =010 e =015 e = 0.20
p T, T, T, T, T, T,
1 8.7 3.8 8.1 5.2 8.3 18.4
2 8.7 4.7 8.1 74 8.3 )
3 8.7 5.2 8.1 9.0 8.3 o)
5 8.7 6.5 8.1 15.3 8.3 0
10 8.7 9.5 8.1 ) 8.3 )

subject to the restriction that the trace of its asymptotical covariance matrix be
less than 1.05 = 1/0.95 times the trace of the covariance matrix of the LS-esti-
mate.

Without loss of generality we may assume that 6, = 0, 2 = I and, therefore,
y = u has distribution N(0, 1).

In Table 1 we show the values of a positive-e version of the gross error
sensitivity given by

1/2
(6.1) (T = (supIC (T, H,, y,%x)’V'IC(T, H,, , x))
X
for ¢ = 0.1, 0.15 and 0.2, p = 1,2,3,5,10 and T equal to T, and T,.

It is straightforward to show that for the both estimates T, and T,, v* is
obtained by restricting the supremum in (6.1) to x varying in the direction of the
first coordinate (or any other fixed direction). As a consequence of this, only the
first coordinates of the estimates are biased, and this will simplify considerably
the computation of these estimates. Moreover, in the case of T, it is easy to see
that y* is independent of p, and therefore we will need to compute it only for
p = 1. Then in order to compute y*(T,) in the case of p =1, we compute

Ty — e)H, + &5, ) numerically for each pair (y, x), and then using the routine
ZXMIN of the IMSL (1982) library we find its maximum value. Computmg

v*(T,) is easier since it may be shown that the maximum of T((1 — e)H, + &5, .)
is obtained when y — o0, x, & o and y/x; = oo. This property follows from
the monotony of ¢ ,.

We observe that y*(T,) > y*(T,) for p = 10 if ¢ > 0.1, for p = 3 if ¢ > 0.15
and for p = 1if ¢ > 0.20. This shows that the infinitesimal gross error sensitivity
may not be enough to compare the bias robustness of the two estimates even for
small e. This table also shows that the MM-estimate T, may be better than the
optimal bounded influence estimate T, in terms of v.*, especially for large p.

The following example taken from Rousseeuw and Yohai (1984) will illustrate
the robustness of the MM-estimates in the presence of a large fraction of
outliers. The dependent variable y is the annual number of international calls
made from Belgium and the independent variable x is the year. These variables
contain heavy contamination from 1964 to 1969 due to the fact that a different
recording system was used (the total number of minutes was registerec).
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TABLE 2
Data for the example (number of calls in ten of millions)

Number of Number of Number of
Year calls Year calls Year calls

50 0.44 58 1.06 66 14.20*
51 0.47 59 1.20 67 15.90*
52 047 60 1.35 68 18.20*
53 0.59 61 1.49 69 21.20*
54 0.66 62 1.61 70 4.30
55 0.73 63 2.12 71 2.40
56 0.81 64 11.90* 72 2.70
57 0.88 65 12.40* 73 2.90

25 P

*
20 |
*
*
15 "
* * -~
- -~
y 10 | _ - -
e
_ -~
5 I~ - - - *
e
-
-
-~
*
0
|
-5 K 1 i 1 !
50 55 60 65 70 75
X
FIIG. 1.

The data are shown in Table 2 and the spurious observations are marked
with an asterisk. The LS-estimate gives y = 0.504x — 26.01 and corresponds
to the dotted line in Figure 1. The KW-estimate gives a very similar result:
y = 0.489x — 25.16. The MM-estimate gives y = 0.11x — 5.24 and is plotted in
Figure 1 as a solid line. The initial estimator used for the MM-estimator was the
finite variant of the LMS-estimator described in Remark 2.4.
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We can observe in Figure 1 that contrary to what happens with the LS- and
KW-estimates, the MM-estimate is not very much influenced for the outliers.
The KW-estimate is not plotted but it is almost identical to the LS-estimate.

APPENDIX

Before proving Theorem 2.1 we will prove the following:

LEmMMA 2.1. Let Z = (z,,2,,...,2,) be any sample of s.ze n and let c,, be
given by (2.10). Consider the same assumptions as in Theorem 2.1. Then given
e<(1-2¢,)/@2-2c,) and k, there exists k, such that m/n + m < ¢ and
Smin < Ry imply

m+n m+n
inf Z pl(ri(e)/sm+n) > Z pl(ri(TO,m+n)/sm+n)
B2k ;—3 i=1

for all samples Z, U W, with #W,, = m and where | | denotes Euclidean
norm.

Proor. By definition of ¢,, we have for all 8
#{i:1<i<n,|0'x)>0}/n>1-c,.
Take c¢* > ¢, such that ¢ < (1 — 2¢})/(2 — 2¢,) too. Therefore, using a com-
pacity argument we can find 8§ > 0 such that

(A1) gnf #{i:1<i<n,|0x,>8}/n>1-ck.
18]=1

Since 1 — ¢ > 1/(2 — 2¢}), we can find a, < a such that m/(n + m) < e im-
plies

(A2) aon/(n+m) 2 (1 - e)a, > a/(2 - 2¢).

By (2.5) there exists k, such that p,(k,) = @, and let

k, = (112?;,2'3'"' + k0k2)/8.

Therefore, using the monotonicity of p,, (A.l) and (A.2) we see that
m/(m + n) < ¢ implies

m+n

inf Y pi(r(8) /51 0)

|0|2klr'sm+nS 0 k=1
2 |g|rlf1 2 ou((15] — R11(07x,)1) /keo)
=1i-1
>n(l—c*)p,(ky) =n(l —c¥)ay> (n+ m)a/2.
On the other hand by (2.1), (2.4), and (2.5) we have

m+n m+n

Z pl(ri(TO,m+n)/sm+n) < Z pO(ri(TO,m+n)/sm+n) < (m + n)a/2
i=1

i=1

Then the lemma follows. O
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PROOF OF THEOREM 2.1. According to (2.7) and Lemma 2.1, it is enough
to show that for any & < min(e}(T,y,Z,),0.5), there exists k, such that for
any sample Z,U W,, where #W,=m and m/(n + m) <e we have
SminZ, U W,) <k,

Since ¢ < ¢*(T,,Z,), there exists k, such that

TO,m+n(Zn U Wm) < kl v Wm‘

Therefore, there exists k, such that
(A'3) sup ri(TO,m+n(Zn v Wm)) = k2’ 1< l = n.

l1<i<n
Since ¢ < 0.5, by (2.3) we can find vy > 0 such that ca + y < b. Let § be defined
by po(8) = v and let k, = k,/8. Then using (A.3) we have

m+n

(1/(n + m)) _gl pO(ri(TO,m+n(Zn U Wm))/kO)

< (1/(n+ ) . po1(To ol 0 Wa)) /o)

n+m

+1/(n+m)) X po(rdTo, min(Z, U W,))/ k)

i=n+1
< (n/(n+ m))py(ky/k) + (m/(n + m))a < py(8) + ea
=¢ea +vy<b>.
Therefore, s, (Z, Y W,,) < k,. This proves the theorem. O

ProOF OF THEOREM 22. Let Z, = {z, = (y;,X,),.--,Z, = (¥, X,)} be a
sample and suppose that there exists 0 * such that

#{i:1<i<n,y-0*x,=0}>n/2
Since T, ,, have the EFP we have
#{i:1<i<n,y—-T;,x;=0} >n/2,

and, therefore, s, = 0. Then for any 6 we have
S8) =Y p,((y,—0'x;)/s,) =a#{i:1<i<n, y—0x+0}.
i=1

Then S(T, ,) < an/2 and, therefore, (2.7) implies S(T, ,) < an/2 too. This
implies #{i: 1 <i<n, y—T{ ,x,=0} > n/2, and, therefore, T, , has the
EFP too. O

PROOF OF THEOREM 5.1. Since S(tV) < S(T, ,), (i) follows from Lemma 2.1.

In order to prove (ii), is enough to show that lim_,  g(t"”’) = 0. Suppose this
is not true; then there exists a subsequence t*) such that lim; _, t) = t* with
g(t*) # 0. We will show that M(t*) is positive definite. Let. m = #{i:
p(r(t*)/s,) = a}. We will show that m < n/2. We have

(A1) am=§mwmm2m.
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According to the definition of s, (2.3) and (2.4), we get S(T, ,) < na/2. Then,
since S(t*) < S(T,, ), from (A.4) we get m < n/2. Let H = {i: py(ry(t*)/s,) <
a)} and w, = 1nfLEHw (t*). Then w, > 0 and M(t*) > w,X; . zX X} Since ¢, <
0.5 and #H > n/2 we have rank {x;: i € H} = p and, therefore, by (A.5), we get
that M(t*) is positive definite.

Let A, ;=(1 /2)kl and A, ; = (1/2)*2:. We can assume without loss of gener-
ality that lim;_, A, e = A% We will show that A¥ > 0. Since g(t) and M(t) are
continuous, g(t*) # 0'and M(t*) is positive deﬁmte there exists ¢ > 0 such that
[t; — t*| < eand |t, — t*| < & imply

|g(t,) M~ (t2)g(ts) — &(t,) M~'(t;)8(ts)l/8(t2) M7 (t,)8(ts)

<1-38,
(A.6) lg(t,)l < 2|g(t*)
and
(A7) pp(ty) < 2p,(t*),

where p (t) is the maximum eigenvalue of M~ I(t).

Let j* be such that j>j* implies [t) — t*| <e/2, then A(t®)) <
4p,(t*)|gt*)| for j>j*. Then A <e/(8u,(t*)g(t*)|) and j>j* implies
|)\A(t(’f))| < ¢/2 and, therefore

(A.8) S(t(‘f) +AA(D)) = S(t%) — Ag(s) A(t™),
where |s — t*| < e. Then using (A.5) and (A.8) we have
S(t(if) + AA(t®D)) < (W) — 8g(t(if))'()\A(t(iJ))).

This implies k1 i, < 1n(8pp(t*)|g(t*)|/e)/ln2 + 1 and, therefore, A% > 0.
We can find j}* such that j > Ji* implies A; ; > Af/2 and

g(t™) MH(tH)g(t™) > g(t*)' M~ (t*)g(t*)/2.
Then according to the definition of A, ; it is easy to show that we have
(A.9) S(t*V) < S(t) — (1/4)8M1g(t*) M~ (t*)g(t*).

Since S(t) > 0 for all t and g(t*)'M‘l(t* )g(t*) > 0, (A.9) can not hold for all
J > Jji*. Therefore, lim; _, ,g(t"’) = 0. This proves (ii).
(iii) follows immediately from the fact that S(t‘*’) is monotone decreasing. O
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