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EFFICIENT ESTIMATION IN
THE ERRORS IN VARIABLES MODEL!

By P. J. BickKEL AND Y. RiTOV

University of California, Berkeley and The Hebrew University of
Jerusalem

We consider efficient estimation of the slope in the errors in variables
model with normal error when either the ratio of error variances is known
and the distribution of the independent is arbitrary and unknown or the
distribution of the independent variable is not Gaussian or degenerate. We
calculate information bounds and exhibit estimates achieving these bounds
using an initial minimum distance estimate and suitable estimates of the
efficient score function.

1. Introduction. Errors in variables models have been the subject of an
enormous amount of literature. A fairly recent reference with a good bibliogra-
phy is Anderson (1984).

In its simplest form the model assumes rn independent observations X, =
(X, Y,), which are written as

X, =X/ + ey,
(1.1)

Yvi =a+ BX"/ + Eig.
The X/ are viewed either as

(i) unknown constants;
(i) independent identically distributed random variables.

Model (i) is called functional and (ii) structural by Kendall and Stuart (1979),
Chapter 29. '

The (¢;,, €;,) are considered random vectors, which are identically distributed
with mean 0, as well as independent of the X; in model (ii). In this paper we will
deal exclusively with large sample theory in the structural model, although we
believe our results generalize to the functional model. Our aim in this paper is
the construction of efficient estimates of 8 under various assumptions in various
special cases of (1.1). We also suggest how our results may be extended to
instrumental variable models through the special case of repeated observations
at the same X/.

Write X, X, ¢,, ¢, for “generic” observations. If we do not make any assump-
tions on the distributions of X and (¢, ¢,), then B is clearly unidentifiable. In
fact, B is unidentifiable even if we assume ¢, ¢, to be independent Gaussian
variables with unknown variances and suppose X'’ is also Gaussian.
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514 P. J BICKEL AND Y. RITOV

However, B8 has been shown to be identifiable under various sets of assump-
tions. These fall into two broad classes:

(A) Gaussian errors. (g, ¢,) have a bivariate Gaussian distribution with
variance—covariance matrix =. The usual way to make B identifiable in the
literature is to assume ¢, ¢, independent and either

(1.2) Var(e,) = cVar(e,)
(1.3) | Var(e,) = co,

with ¢, assumed known. Both (1.2) and (1.3) are plausible under special cir-
cumstances [see Kendall and Stuart (1979), Chapter 29, for a discussion]. We
shall explore a generalization of (1.2),

(1.4) 3 =023,

where 2 is known. Model (1.3) can be analyzed in the same way. We shall call
(1.4) the restricted Gaussian error model. This model and its generalizations to
more complicated situations have been extensively studied; see Anderson (1984),
for example. A second model in which the identifiability of B was established by
Reiersel (1950) puts no restriction on = but requires X’ to be non-Gaussian
(where constants are viewed as Gaussian). We shall call this the general Gauss-
ian error model.

(B) General independent errors. Assume ¢,, ¢, independent. If (1.2) holds, 8
is identifiable. This restricted independent error has also been extensively
studied. If (1.2) is not present but either X’ is non-Gaussian or ¢,, ¢, have no
Gaussian component, then, again according to Reiersel (1950), 8 is identifiable.
This arbitrary independent error model is probably most satisfactory but our
results do not bear on it.

We review briefly some results on these models.

The restricted Gaussian model can be reduced to case (1.2) with ¢, = 1. The
maximum likelihood estimate for 8 in this case is 8 p, Which minimizes the sum
of squared perpendicular distances of observed points from the fitted line

(15) Pt X)

i=1

This estimate is well known to be n!/?-consistent and asymptotically normal not
only under the restricted Gaussian model but also under the restricted indepen-
dent error model, see Gleser (1981) who considers multivariate generalizations. In
the presence of fourth moments, it is not hard to show that n!/2-consistency and
asymptotic normality persist under the restricted independent error model when
3, is the identity. Estimates of B8 in the general Gaussian error model, with X,
diagonal, have been proposed by a variety of authors including Neyman and
Scott (1948) and Rubin (1956). In the arbitrary independent error model,
Wolfowitz in a series of papers ending in 1957, Kiefer and Wolfowitz (1956) and
Spiegelman (1979) by a variety of methods gave estimates, which are consistent
and in Spiegelman’s case n'/?-consistent and asymptotically normal.
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Little seems to be known about the efficiency of these procedures other than
that in the restricted Gaussian model the estimate fp is efficient if X’ is
Gaussian by the classical results for M.L.E.’s in parametric models. Our main
aims in this paper are:

In the general Gaussian error model:

(i) To give the structure that efficient estimates in the sense of Stein (1956),
Koshevnik and Levit (1976) and Pfanzagl (1982) must have (Theorem 2.1).

(ii) To exhibit a reasonable efficient estimate (Theorem 2.2). In addition, we
extend Theorem 2.1 to the simplest instrumental variable model, m repeated
measurements with Gaussian errors,

Xij=Xi/+ €
Y,

i

ijl>
=a+ BX;+ ¢, j=1,...,m,i=1,...,r,n=mr,
and
X, ={(X,,Y,),j=1,...,m},
where m > 2.

The ¢;;, are independent and identically distributed Gaussian and independent
of ¢;;, which are also Gaussian. We refer this as the multiple Gaussian measure-
ments model. Note that in this model if m > 2, the assumption of non-Gaussian-
ity of the distribution of X’ is unnecessary.

We speak of efficient estimation in the sense of Stein (1956) as developed by
Koshevnik and Levit (1976), Pfanzagl (1982), Begun, Hall, Huang and Wellner
(1983) and in a forthcoming monograph by Klaassen, Wellner and ourselves. Let
P be the set of possible joint distributions of X. We call P, a parametric
submodel of P if P, C P and P, can be represented as {F; ,; B € R, 1 € E open
C R*). A parametric submodel is regular if at every (S, m,) the mapping
(B,m) = P, , is continuously Hellinger differentiable. Suppose that P belongs
to P,—a regular parametric submodel of P. Then the notion of information
bound and efficient estimation of B are well defined [e.g., Ibragimov and
Has’'minskii (1981), pages 158-169). Let n~ I~ }(P; B, P,) denote the asymptotic
variance of an efficient estimate of 8 when P ranges over P,. Clearly, if we only
assume that P € P we can estimate no better than if we assumed that P € P,,.
Accordingly, let I(P; B8, P) = inf{I(P; B,P,): P, a regular parametric submodel,
P € P,}, be the information bound for estimating 8 under P.

Loosely speaking, /?n is regular and efficient in P if

Ly(vn (8, — B(P))) - N(0, I"'(P; 8,P)),

in some sense uniformly in P € P. Here N(y, 6%) denotes the normal distribu-
tion with mean p and variance o2 The weakest kind of uniformity acceptable is
that

(1.6) Ly(Vn(By — B(B,))) - N(0, I"(P; B, P)),

for sequences P, € P,, a regular parametric submodel as above, with P, =
Pigannys B2 = Bol = O(n™*) = |m,, = mg| for some By, mg, P = By, -
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If I"Y(P; B,P) is assumed at some P,, we obtain from the HaJek Le Cam
convolution theorem, Ibragimov and Has’minskii (1981), that B is asymptoti-
cally linear

B, = B(P) + n1 3 I(X,, P, B,P) + o,(n"7?),

i=1
where [ is defined as the efficient influence function, which has the properties

EP[(Xii P’ B’P) = 07
E.I*(X,, P,B8,P) = I"(P; B8,P).

Finding [ is equivalent to finding a suitable least favorable P, (at each P). We
discuss the theory which guides us in this search in Section 3.
Note that an estimate is efficient if

(a) it converges in law uniformly [as in (1.6)] on P and

(b) it is efficient in some parametric submodel P, at each P. By the Hajek—
Le Cam theorem (b) holds iff the efficient influence function is the influence
function of the (local) maximum likelihood estimate of 8 in P,.

In Section 2 (Theorem 2.1), we exhibit 7 and P, for the general Gaussian error
model and the restricted Gaussian model and discuss the main features of
I(P; B8, P). In Theorem 2.2 we exhibit, for each of the two models, an estimate B,
converging in law uniformly [as in (1.6)] on P, which has [ as influence function.
By (a) and (b), B is necessarily efficient. The proof of Theorem 2.1 is deferred to
Section 3, and the proof of Theorem 2.2 to Section 4.

2. The main results. Without loss of generality let (¢;;, €;5) ~ N(0, Z) where
2 = [0;;]2x, is nonsingular. Let 6 = (a, B, Z) and
Y-a—-BX
o(0) °
(2.2) T(0) = T(X,0) = 52(6)[(0n — Bora) X + (Boyy — 01)(Y — @],
where 5%(0) is the variance of Y — a — BX if 0 is true,

(23) 5%(0) = B%,, — 201, + 0p,.

Then given 6, T(0) is a complete and sufficient statistic for X’ treated as a
parameter, i.e., for the model {Ly«(X|X’ = 1): 7 € R}. This follows since given
X’ =1,(X,Y)have an N(, « + B7, 2) distribution. Moreover, U(6) is ancillary
in this problem. It is necessarily independent of T(#) in the original model and is
distributed N(0,1). T(6) is also the unbiased predictor of X’, i.e., given X’ =1,
T(6) has a N(n, §2(6)) distribution, where

6%(0) = 6_2(0)(011022 - 0122)-
We can write the joint density of X under (8, G), where G is the distribution of
X,

(24) p(x,0,G) = [K(x,2,6)G(dz),

(2.1) U(9) =UKX,9) =
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where
K(x,z,0) = [2(01100 — 02)"7] "
xexp{ — [2( 01105 — 03)]
X [og(x = 2)* = 20,5(x — 2)
X(y—a—Bz) +oy(y—a— B2)’])
= [27(0y0m — 02)"Y] _lexp{ - %Uz(x, 0)}

§~*(0)
2

(T(x, 0) - )}

is the conditional density of X given X’ = z.
Fix 6 = 6,, G = G,. Drop the argument 8 in U(9), T(6), 6%(9), and 62(6). Let

(2.5) w(t) = w(t,8,G) =61 f¢(5—l(t — 2))G(dz)

be the density of T and let

Xexp{ -

I,= /[w,]z (t)dt

w

be the Fisher information for location of w. Let n = (g, 1), p € R, 7> 0, and
TTHR
G(-,m) =G| —|.
(vm) = 6o —*)
Define
(2.6) P, = {P(o,G<-,n»}-

That is, in P, we assume G known up to location and scale. P, is not the same in
the general Gaussian error model and the restricted Gaussian error model since 3
varies freely in the former!

THEOREM 2.1. Assume [7’G(dn) < . Then P, is the least favorable regu-
lar parametric submodel and the information bounds and the efficient influence
functions for estimating B at 6 = 6,, G = G,, are as follows:

Restricted Gaussian error model. Define the random variable

. o
2.7) 1* = E‘IU(T _ E(T) + 52—(T)).

w
This is the efficient score function defined by Begun, Hall, Huang and Wellner
(1983). The information bound of (1.5), which we write as I, is given by

(2.8) I, = E\(12)" = - *(Vax(T) + 6*I, - 26°)

=67 2(Var(X’) + 6%(6%, - 1))
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and the efficient influence function is given by
(2.9) I,=1x/1,

General Gaussian error model. Define

’

w

(2.10) 1 =6‘1U(T— E(T) +10—1—(T)).
w

The information bound is given by

(2.11) I,= E(13)" = 5 (Vax(T) - I;?)

=5 *(Var(X’) + 62 - I;'!)
and the efficient influence function by
(2.12) I, =13/1,.

NOTEs.

Restricted Gaussian error model.

(1) If o,; = 0, then 6 = 0 and we are in the case where T'= X = X" is observed
without error. In this case,

I,=Var(X’)/Var(Y — a — BX)
is the reciprocal of the asymptotic variance of n'/? times the ordinary

least-squares estimate as it should be.
(2) If X’ is normal, Var(T) = I; ' and (2.7) becomes

5 %(Var(X’) + 6%(6% — Var(T))I,) = 6~ *(Var X")(1 - 6%I,)
=5 *Var}(X')/Var,(T),
which we shall call I..

This is just the asymptotic variance of 8 p if 2, = identity [see, e.g., Gleser
(1981)], whatever be G. So we conclude that we can do as well not knowing G as
knowing it is Gaussian. This is a special instance of the claim that P, given by
(2.6) is least favorable.

(3) We can study the asymptotic efficiency I /I, of ,lfp if G, is not normal. We
show in Section 5 that, I./I, > (1 + ¢%/(B% + 1)(Var(X’) + 02))" L. In par-
ticular, if the signal-to-noise ratio in X, Var(X’)/o?, is large ﬁp is close to
efficiency.

(4) The score function I} can be written as

l¥=6""U(E(X"|T) - E(X")).
The least-squares estimate if X’ were known is based on the score function

FU(X’ - E(X")).
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Thus the efficient estimate replaces the unobservable X’ by its best “esti-
mate” E(X'|T).

(5) Suppose that with £ = 023, we have m repeated observations at each X/.
Then by sufficiency /¥, evaluated at the mean of each set of observations
with 3, replaced by Z,/m, is the efficient score function.

General Gaussian error model.

(1) Normality of X’, under which B is unidentifiable, corresponds to G = point
mass at 0. Appropriately, I, » 0 as G tends to point mass since then T
approaches normality and 62 ~ I,

(2) Necessarily, I, > I,. The inequality is always strict since

o*(I, — I,) = I; (6% — 26%, + 1)
= I; (62, - 1)* > 0,
since I, the Fisher information for X’ + ¢, is always smaller than the Fisher
information for e, which is just ¢-2.

Multiple Gaussian measurements model. The efficient influence function can
be calculated as for the general Gaussian error model, but is much more
complicated.

Let X = (X, Y), j=1,..., m, where X;=X"+e¢,Y,=a+pX’'+ €jpis a
generic observation. We assume the ¢;; are independent Gaussian with mean 0
and Var(e;;) = 0y,, Var(e;,) = 0g. Let

U= ()_’—BX— a)/oo,
T= (022)? + .8011(}_"'“))/(022 + .32011),
where Y=m™! mY, X=m" "X, Let
o = (022 + 32011)/’”,

(24) 7= ouen/m's,

(2.13)

’

w’\2
I, = /( ;) w(t) dt, where w is the density of T given by (2.13).

The efficient score function is then

ur U
(2.15) I*=—% +a,—7—(T) +a3(U%-1) + a,S, + a;S,,
6,0 0,0° w ,
where
—=\2 =\2
m (Y.—Y m (X —X
PR ) k. R SRS € b S M
J=1 O2 j=1 on

and the a’s are functions of m, 62, o and I,. For m = 1 the form of I * agrees
with [} as it should. As m — o,

~2
a,~ 6%,



520 P. J BICKEL AND Y. RITOV

which corresponds to . This is as expected since m large corresponds to o,;, 659
essentially known. The information I; for this problem is I, plus a complicated
positive term vanishing for m = 1.

We now construct efficient estimates. The idea is to proceed as in the classical
estimation of the location problem:

(a) Find a good estimate §, of B.

(b) (i) Consider [ as I(x, B8, n,G) where 8 = (8,1), G are now viewed as
dummy variables and the argument x replaces X. For example,

I(x,6,G) = 6‘1(0)U(x,0)(T(x,0) ~ [T(x,0)Py,6,(dx)

+62(0)%,(T(x, 9), a))/za(a, @),

where T is given by (2.2) and w(-, #) is the marginal density of T(X, ), under

P, ) Construct a suitable estimate Ix,B;X,,...,X,) of I(x,8,1,G).

(ii) Form

A

B.=B,+nt Y IX;,B8:X,....X,)

i=1

as the efficient estimate.

PRELIMINARY ESTIMATE. We motivate our §, as follows. If we calculate
under P, and B = B,, Var(Y) > Var(B8X), then

(2.16) L(Y) =L(BX + 6Z + ),
for Z ~ N(0,1) independent of X and
p=E(Y) - BE(X),
0% = Var(Y) — B*Var(X).
If Var(Y) < Var(BX), then

(2.17) L(X)=L%,+0Z+p ,

for Z ~ N(0, 1) independent of Y, some o, . For |B| # |B,| neither identity (2.16)
nor (2.17) can hold; see Proposition 5.1. Our initial estimate is essentially a
minimizing value for the distance between the natural estimates of the laws in
(2.16) or (2.17). We believe our estimate may be improved by considering the
joint distribution of (X,Y) and not only the marginals. For that note that if
(2.16) holds, then

L(BX+0Z+p,Y)=L(Y,BX + 6Z + p).

Another possible estimate is given by Spiegelman (1979) who does not assume
Gaussianity of the errors but does assume ¢,, &, independent. Different estimates
B., B, are appropriate for the restricted Gaussian error model and the general
Gaussian error model. Essentially, 8, works whenever Ea does except when G is
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Gaussian. We give 8, formally and sketch the difference for B,. Without loss of
generality, we assume E(g) = E(gy) = 0.

Let F, be the empirical distribution function of X, i= ,n,and F,(-) be
the dlstrlbutlon function of X. Let Fz( ) and Fy(-) be the emplrlcal distribution
function of Y; and the distribution function of Y, respectively. Let

a(B) = Y-BX, 8%B) =18} - B,

n
en R (N-FF, g-n
. i=1 i

(2.18)

'[\’13

(X,-X)', A=4/s.
1

~A2 22
Define, for 67 > 0, 67 > 0,

2

s8) = |0 — fo “EnHE ar o) o)
(2.19) , " , = P
L x —y+ i .
Fy(x) - f‘l’(m)dE(J’) Ao(Ay) dy,

if 62 < B%7.

Note that A,(8) can be defined by continuity at o(B8) =0 since P[|B] +
62(B) > 0, VB] = 1. For given a > 0, let A, (B, a) be the corresponding quantity
with Y, replaced by Y; + aX;, i = 1,..., n. Let B*(a) minimize A, (B, @). B, =0
poses dlfﬁcultles but we can always Shlft away from this value. Accordingly, let

Bn* = n (0)’ lf |Bn (O)l = 60
= B*(28,) — 28,, if |Bx(0)| < 8.

Finally, we need to distinguish between + 8*. For that let W,:’ be the empirical
distribution function of 6~XY; — u(B8¥) — B} X;), where

52 =n"! Z (Yz - u(B}) - Bn*Xi)Z
i=1
and VV,,‘ the corresponding quantity for — L. Let

B=pr, it (W) -e[e(x) dy< [IW; () - 2(») o(y)dy

= —f* otherwise.

n ?

For the restricted Gaussian error model, =, = identity we proceed as above
but change the definition of 62(8) to, using the new information,

52 | _,B| n-1 L A _ 2
28) = gt K (% A(B) — BX)

and switch the definition of A (B8) as B2 < 1lor > 1.
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EFFICIENT ESTIMATES. Note that

(2-20) Boy, — 0y, = BVar(X) — cov(X,Y),
(2.21) 0y — B0y, = Var(Y) — Beov( X,Y),
(2.22) a=E(Y)- BE(X).

We can reparametrize the general Gaussian error model using (B, a, v, ¥,
6,,, G), where v,, v,, a are the expressions in (2.20)—(2.22), respectively. Abusing
notation, let 6 = (B, , v, v;) so that

Ui(8) = (Y, — a — BX;)/ (B, + v2)"/%,

Tz(a) = (Y‘[Xi + 'Yl(Yi - a))/(B'Yl + 72)-

Define 6, = ( 3 &, ¥1n» ¥2n) by substituting sample moments and ﬁn in the
definitions (2.20)—(2.22) for B, a, v;, Y. Let

A(t) = e (1 + e )’

A(t) = %A(%)

For sequences c,, 7, |0, to be characterized later, let A, = A, and estimate w,
by the kernel estimator,

1 n
"Sn(t’ 0) = Z }\v(t - T'z(o)) + cp.
nio
Define the efficient estimate for the general Gaussian error model by

(2.23) Bu=B,+n 't Y —(—(,é—)—(Ti— T. +1;* "(T,-,e,,)),

i=10

where U, T: are used for U(8,), T(4,), and T. = n='27_ T,

(2.24) I, = —12(M)2( (4, )"n),

©29)  fy= (Bt 1) 0 X (1= T [ 2 (0,6))

i=1

Similarly, we define the efficient estimate §,, for the restricted Gaussian error
model by

. n . . T A
B = ot n Y —s( T (14 f2) ia,o,,>),
i=1 0 @y
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where
2= (L4 32) ' X (%= w(B) - A%
Tio= (Y- &) + X,)(1+ g2)""
I,=é; z LB e

in accordance with (2.7) and (2.8).
Let {c,}, {v,} be such that

¢, =0, ,-0, ncib® - .
THEOREM 2.2. (i) Suppose G, is non-Gaussian, [x*dG(x) < o and P, =
{P6,c,): 0 € O} is regular. Then, if Py= Py g, satisfies the general Gaussian

error model,
(2.26) Lp(n'(Bon — B(By))) > N(0, I; Y(By)),

for all P, € P,.
(i) If also nv; ®logn — 0, the convergence in (2.26) continues to hold if P, is
replaced by P, = Py ), where

6, = ( ns Xns Yins Yens 011n) - 0= (,B, a, 71’72’011)

and G, - G weakly and [2°G,(dz) - [2°G(dz) < .

(i) Write (221)~2.23) as B, = B.(B,) and let By, = B,, B = BBy ),
i=1,2,3,....Then, fori > 1, all §;, are efficient and |B,, — ,é,_l’ ol =0, (n71?)
for all i > 2.

(iv) If ﬁn is replaced by ,éan and the restricted Gaussian error model is
considered then claims (i)-(iii) continue to hold with I, replaced by I,

NoTEs.

(1) Let K c P be compact in the total variation norm topology. Part (ii) of the
theorem shows that the convergence in (2.24) is uniform over K if P — I,(P)
is continuous on K. These are the largest sets over which we may expect
uniform convergence.

(2) Part (iii) of the theorem may be 1nterpreted in terms of running the iteration

in tO convergence Suppose the stopping rule is of the form: Stop as soon as
|Bin — Bi_1 al < e,, where ¢, 10, n'/%¢, > ¢ > 0. This is reasonable since the
random fluctuations in the estlmate are of order n~'/2, Then, by part (iii),
with probability tending to 1 the iteration stops with ,82n :

Under more stringent conditions on v,, c, we conjecture that tedious calcu-
lations will show that, in fact, lim ,Bm exists with probability tending to 1 and is
efficient.
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3. Information bounds and proof of Theorem 2.1. Let P, be a regular
parametric submodel of a model P written in the form {FPz ., BE R,y € E C
R*}. Let I(X, B,v) denote the log likelihood of an observation from P, ) and
let [(X) = 3L/ 3Bl gy, voys l(X) 0l/3%]|(gy, vy 1 <J <k, where y =
(Y15---5Yz)- Begun, Hall Huang and Wellner (1983) [see also Efron (1977) and
Neyman (1957)] show (in slightly different terms) that, if B, = P, .,

I(P,; B,P,) = min{E(io(X) - Zk: cjfj(X)) :(ey...,0) € Rk}
= E{[1*](X)},
where
k
(3.1) I*=1I,- E c;"l'j,

and the c* are uniquely determined by the orthogonality condition
(3.2) EI*[(X)=0, j=1,...,k.
Moreover, the efficient influence function for P, is given by

(3.3) [(X, P\B,Py) = 1*(X)/I(Py; B, Py).

Therefore, to calculate { for P,we need only calculate the projection Z 1¢FL(X),
in Ly(P,), of [, into [Z 1 <j < k], the linear span of I,,..., . Let H(hIL)
denote the projection of h € Ly(P,) into a closed linear space L C Ly(P,).

To prove Theorem 2.1 we go through the following steps for the restricted
Gaussian error model and an analogous series for the general Gaussian error
model.

2

(i) Identify (v,,v,) = (a,02), where o2 is given by (1.4) and let n =

(Myy+-+» Mp_o) index G, ie,
By = (Bunyi 1€ 5,0 (o o), 08 & )

Calculgte formally l}, 0<j<k,at P = P«’o,G.,o)’ where j=0e 8, j=1,2 &
a, 0% j23 e

We project I, into [l j > 1] in two steps. First, calculate, for 0 <j < 2,
H(l 1V'), where

= [ij: j23],

1* =1y — T({p|V) — II(I, - (L, V)W),

(3.4)

where

W= [l— |V)1<_]<2]
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Claim (3.4) is well known and can be verified by checking (3.2). We establish
that:

(i) For any regular parametric submodel P,
[i: j=3] c {a(T): a(T) € Ly(P,), Ea(t) = 0}

and then prove:

(iii) If P, is given by (2.6), then P, is regular and
(35) [i: 7= 3] o [E(iy(X)T)].

The existence of a model P, having property (3.5), but not the specific choice
(2.6), follows from Theorem 14.3.12 of Pfanzagl (1982). Note that

(3.6) E(h(X)-E(h(X)|T))a(T) =0, forall a(T), h € Ly(P,).
Now (ii) and (iii) imply that, for P, given by (2.6),

(V) = E(I(X)T), 0<i<2,
and hence by (3.4) if [§ is the [* of P, given by (2.6),

(8.7) 13(X) =I(X) - E(i( X)IT) - gldj(l;(X)) - E(i(x)T),

with {d;: 1 <j < 2} determined by (3.2) for j = 1,2. Take P, to be any regular
parametric submodel. By (ii) and (3.6)
El}(X)i(X)=0, j=3.
By (3.2)
ElF(X)i(X)=0, j=1,2.
Therefore,
E(1%(X))* - E(I3(X))’
(3.8) = E(*(X) = 13(X))" + 2E(I3(X)(1* - I3 )(X))
= E(I*(X) - 13(X))" 2 0,
since [* — [} € [ i+ J = 1]. We conclude that P, given by (2.6) is least favorable.
. PrROOF OF THEOREM 2.1. For mnemonic convenience we write J, = ly and
li=1, 1., 1,, etc., as appropriate.
Restricted Gaussian error model. (i) 'Differentiating (2.4) we get, for 6 = 6,,
G = G,
lB(X) =p '(X,9, G)/(011022 - 0‘122)_1("’11(Y_ a—fz) —o,(X - z))
x zK(X, z,0)G(dz)
U Boy, — oy
=6"%9) ( + T-2z)
‘/ a(0) 011022 — 0122(

X z¢(6~Y(0)(T - 2))G(dz) /w(T),

(3.9)
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since
X=T- __1(0)(:3011 - 012)U,
Y—a=8T+ 54 0)(0y — Bo,,)U.
Similarly,
1, = [o(T)é(6)] "
(3.10) | Xf( J N Bo,, — 699

7 (T = 2) |¢(67H(0)(T - 2))G(dz2),

0({") 011052 — 032

1 2 ~—1
Lo = 202((1} —1) +678)
(3.11)

% f(5720)(T = 2" = 1)o(6~(O)(T - 2))G(de) /a(T) .

(ii) Suppose P, = {Fy,¢ )} is a regular submodel with G, < G, = G lfg, =
dG,/dG, g, = 1, and, formally,

~—2

612 GX) = fop| - (T - 2| 2(2)6 () (),

a function of T only. If I .+ exists only in the Hellinger sense it is easy to check
that [, , is an L, limit of functions of T and hence T measurable.
(iii) If P, is given by (2.6),

- w‘l(T)a—ifexp{— i (T— (2 : ») )2}G(dz)

2

al
a—#(x,o,G,,)

(3.13)

p=0,7=1

= w1 (1 - esp - (7 - 2V e,

"l
3.14) —
(3.14) aT(X,H,G,,)

= w“(T)fz(T ~ z)exp{ -6 X(T - 2)’} G(dz).

p=0,7=1

The independence of U and T and EU = 0 yield from (3.9)

E(T) = 67 L2200 (7 2y 66T - 2))G(de) (T,

011022 — 012

which is proportional to dl/dr as required. Therefore,
-1
ls— E(IT) = 6‘1U[f¢(6‘1(T - z))G(dz)] fqu(&“(T - 2))G(dz).
From (2.5)

(3.15) ly— E(T) = a-IU(T + 62%(T)).
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Similarly,
l,-E(L)T)=6"'U,

1
l,—E(l:T) = 5;_—2(U2 - 1).

Now, from (3.10) and (3.13)

(3.16) I, — (V) =1, - E(1,)T)
and necessarily by (ii)
(317) luz - H(l02|V) = laz - E(lole) + b(T)

Therefore, (3.17) is orthogonal to both (3.16) and (3.15) so that d, = 0. On the
other hand, it is easy to see that d, = E(T). From (3.7), (3.15) and (3.16) we
obtain Theorem 2.1 for a restricted Gaussian model.

General Gaussian error model. We find after some computation

wl
l, = au(U2 - 1) + :BuU_(T) + 'Yub(T)s

11 W

wl
(3-18) lozz = a22(U2 -1)+ 1322U:(T) + Y92 0(T),

Lo, = @o(U? = 1) + BU—(T) + b(T),
where
b(T) =671 [2%(67X(T - 2))G(dz) /w(T),

a; By

and the matrix | ap, B, | has dimension 2. Let V = [l,(®), 1(x)].
ay B
From (3.18) the linear span of [, — E(I|T), la” - H(lo”|V), i,j=1,2is
wl
(3.19) [U,U2 -LU (D), c(T)],

where ¢(T') = II(b(T)|V). We find the projection of lg — E(Ig|T) on (3.19) by
using the independence of U and T, EU = 0, EU?2 = 1. We obtain

s (I(UTI[U ) + H(UTi[U%(T)]) ; 520%'@)
— WE(T) + (52 - %)U%’(T),

since E(T(w’/w)(T) = —1. We conclude that under the submodel (2.6), with =
varying freely, I is the efficient score function. But clearly, El*(X)a(T) = 0 for
all a(T') € Ly(F,) and, in view of (ii), the argument leading to (3.8) applies to I}
also and (2.6) is least favorable. O
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4. Proof of Theorem 2.2 and miscellaneous results. We begin by study-
ing B*.

PROPOSITION 4.1. If either

(4.1) Lp(Y) = Lp(BX)*N
(4.2) Lp(X) = Lp(Y/B)*N

(where N is a Gaussian law and * denotes convolution), then |8 = |B,| or G,
is Gaussian. If B = B, one of these relations holds.

Proor. Let ¢ be the characteristic function of X’. The case 8, = 0 is simple.
Assume B, # 0. Without loss of generality, take E(X) = E(Y) = 0and B8, = 1.
Suppose |B]| # 1 and without loss of generality, take |8| > 1. Then (4.1) becomes
(4.3) $(t) = ¥(Bt)e,
for some a. Iterating (4.3) we get for all &, ¢
(8- 1)

4(B4) = exp(—at2 .

)\P(t)-
Putting u = 8%t and letting £ — oo,
9() = exp(—au?(B? = 1)1 + 0(1)))(1 + 0(1))

and we get G, Gaussian. The same argument works for (4.2). O

PROPOSITION 4.2. Suppose that P consists of all probabilities satisfying the
general Gaussian error model with (x? dG(x) < . Then for every P, € P

lim lim Py[Vn B, - B(R,)| = M] =o0.

M- o0 n— o

Proor. Let

2,0 8) = V| () = R - [ D

(8) )d(Fl(x) _Fl(x))}
@4 = n{(Fl5) — () + s [ (((5 ~ u(B) — 20(8))/8)

—F((y - n(B) — 20(B))/B))s(2) dz},

where F,, F, are the marginal distribution functions of X and Y under P, and
w(B), o(B) are obtained by substituting population for sample moments in (2.18)
and (2.19). By strong approximation, e.g., Csérg6 (1981), we can construct Z(-,- ),
a mean 0 Gaussian process in C([ — 00, c0] X [ — 00, 0]) such that

(4.5) sungn(y, B) — Z(y, B)| = o,(1).
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Let Zn(~,~ ) be defined by replacing u(B), o(8) by A(B), 6(B) in (4.4). For
a(B) = ¢, the family of functions x - ®((y — Bx — p(8))/0(B8)) is uniformly
bounded and equicontinuous. Moreover,

sup{o~"(B)Be((» — Bx — n(B)/o(B))

—6(B)Bs(y — Bx — n(B))/a(B)): o(B) 2 ¢} =5 0.
From (4.4) we then conclude that

sup {|Z,(7,B) — Z,(y,B)|: o(B) = ¢} »p0.

Now there exist ¢, § > 0 such that inf{o(B): |B| < 8} = ¢ and so
sup {|2,(7, B) — Z,(y,B)]|: 1B < 8} =5 0.
y

On the other hand, from (4.5)
sup {|Z,(3,8) = Z(3,B)|: 8 < 1B} =50
y

and so

(4.6) sup{|Z,(5, ) ~ Z(3,B)|} —» 0.
Similarly,

(4.7) sup({|Z*(x, B) — Z*(x, B)|} =50,
where

Bx—y+p(B)) .
—W) d(Fz(y) - Fz(y)))

and Z* is an appropriately defined Gaussian process. A weak consequence of
(4.6) and (4.7) is that for all ¢ > 0,

inf(A,(B): ¢ < |82~ B} ~p oo

Zn*(x? B) = m(ﬁl(x) - Fy(x) - /‘D(

and
An(ﬂo) = Op(l)
Therefore, by Proposition 4.1

min{|B(0) — Bo, |B#(0) + Bo|} —»0.

Since Y — u(B) — BX is normal if and only if 8 = B8,, we conclude that 8, is
consistent.
We need to distinguish several cases for n!/2-consistency:

@) 1Bl = 58y, 6*(By) > 0;
(®) Byl = 58, 6%(By) = 0;
(©) 38 =< |Bol < 38

(@) 1Byl < 36o-
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(a) Suppose also that Var(Y) > B2Var(X). Then, by (4.4) and (4.5)

(y—Bx—u(B)) *

A(B) = T (B dFl(x))JrZ(y,B) ¢(y) dy

n (Fz(y) - [o
+@Q,.(8),

where
Sup{)Qn(B)l |IB - BO| < 8n} = Op(l)'

Now, under these conditions,

E%fq’(y - Bx - .“(:B) ) dF,(x)

o(B)
u(B))

— - om8) fo| T - B - o)

X(y = Bx — p(B))Var X ) dF,(x),

9 y = Bx — p(B)
e
= — B ((y — EY)fy(y) + Var Yf,/()),

which cannot vanish identically as a function of y unless Y is normal (i.e., 8, = 0
or G, is normal) Moreover, the derivative in (4 8) is bounded as a functlon of y
and continuous in 8. We can conclude that 8, is n'/?-consistent in this case. This
follows since A (B,) = O,(1) and

8,(B) = [(2(5, B0) + n/2(B, = Bo)e(¥)) 9(¥) dy + 0,(1),

where c(y) is the derivative in (4.6). Unboundedness of n*/%(8, — f,) leads to a
contradiction since c(y) does not vanish identically.

Case (a) with Var(Y) < B2Var(X) is dealt with similarly using Z *.

(b) If o(B,) = 0, calculate (taking B, > 0)

, . y— Bx — n(B) [y p(B)
Jim (8= o) [qu(——o(ﬁ) )dFl(x) Fl(——ﬁo )]

= lim (8= 80)”" [(F((> = n(B)
-20(B))/B) — Fl((y - H(Bo))/ﬁo)) do(z)
Y-

= - Bo fl((y I"(BO))/BO) VarXfl’((y_l‘(Bo))/Bo)'

Again this expression cannot vanish identically in y unless F, and hence G, is
normal. Boundedness in y and continuity in B again hold. (i) and case (b) follow.

(4.8)
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(c) In this range since B, is consistent, we are driven to minimizing either

A,(B,0) or A, (B,28). In the first case, we are minimizing at |8, > §/2 and get
n'/%.consistency. In the second case, after reparametrization, we again minimize

at 8/2 < B, < 78/2 and again get n'/?-consistency.
(d) In this range since 8, is consistent, we minimize A (8,28) with probabil-

ity tending to 1. But after reparametrizing this corresponds to minimizing at
B, = 38/2 and we again get n'/2-consistency. O

NoTEs.

(1) For cases (ii) and (iii) of Theorem 2.2 we need to check that convergence in

(4.9)

our arguments holds uniformly for sequences with | P, — Py — 0,
[x?dG,(x) - [x?dGy(x), where || - || is total variation. A careful examina-
tion of the argument shows that for consistency, we need only check that

? _)P,, EO(Y)a 6x2 —‘)P,, VarPO(X)’
X —p, Ey(X), 67 _;P,‘ VarPO(Y).

Y

For n!/%-consistency, the derivatives in (4.8) and (4.9) are now evaluated at
By, < P, and depend on the marginals of T, F,, & P, with ||F,,, — Fy,|| = 0
and F,, © P, non-Gaussian. The derivatives still converge to that
for F, uniformly for 8 bounded and are bounded uniformly in y, since
sup, [|x| dF}, < oo. The argument can now be made at the limit F, as
before.

(2) Under the restricted Gaussian error model the same argument yields that £,
is n'/2-consistent.

We now proceed to study the correction term which gives efficiency.

PROPOSITION 4.3. Whatever be G,

20| <5 @)l + fimean)

ProoF. By a standard Laplace transform theorem, writing 6 for 6(6,),
9By = g J(n = )$(6~(¢ — ))Gy(dn)
Wo [6(67(t = 1))Go(dm) ’

< fin - 46((67X(t = n)))Go(dn)
< [in— Gu(an) [o((57(¢ - m))Goldn),

‘f(n — t)6((67X( = 1)))Go(dn)

by an inequality of Chebyshev [Hardy, Littlewood and Poélya (1952), page 43]
since ¢(t) is decreasing for ¢ > 0. O

PROPOSITION 4.4. Suppose H, > H weakly and [x*dH,(x) — [x%dH(x).

Then

I(H,*®) > I(H+®),

where I denotes Fisher information for location.
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Proor. By dominated convergence for all ¢
H,*(t) > Hxo(t),
[H,*x¢](¢) > [Hxo]'(2).
By Proposition 4.3

ILH,*o](¢)["

(4.10) [H 9] < V(¢, H,),
where
V(t, H) = 4[H*¢](t)(t2 + fnZH(dn)).
But
V(t,H,) » V(t,H) forall¢
and

[v(t, H,)dt = 8 [n*H,(dn) + 4~ 8 [n*H(dn) + 4 = Jvie, H) at.
The sequence in (4.10) is uniformly integrable and the result follows. O
PROPOSITION 4.5. Let
(4.11) wonlt) = fwo(t —0,5)\(s)ds + c,.

Then if we write T, for T(8,),

Wop

(4.12) (lm - S, ))

Won wo
(4.13) E ] —(Tl) -0
w W,

Oon

Proor. We repeatedly use the inequalities

|w$)ir)tl < an_inn’ Won < OO_nl’
Write
&, n g [N = T) — wpa(T))]
—(T )—(T) = "
Won Wy,
wOn(T )

Z?\ ( ) wO,L(Tl) .

wWq nwn n

The first term has L, norm bounded by
cnn_l/zEl/Z([}\'n]z(T1 - T2)) = (c_la_2n 1/2).

n
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The second term is similarly norm bounded by
O( c;lan‘zn‘l/z)
and (4.12) follows.
For (4.13) note that, for all ¢, by dominated convergence,

’
Worn

(4.14)

Without loss of generality, take 6(6,) = 1. Then
wOn(t) = /d’(t - 1’) d(GO * An)(n) + Cpn>s
@a(t) = [t = 0,8)\(s) ds.

By Proposition 4.3 we get

[ on]2

On

(t)<:2(t2 [1dG,oxA, (n))
But
ft%o(t) dt < oo,
so that by dominated convergence and (4.14)
f(:—f:)z(t)wo(t) dt j[ji]z(t) dt.

L, convergence of w},/w,, to wy/w, follows. O

PROPOSITION 4.6. For sequences {P,},{c,},{v,} as in Theorem 2.2(ii), and
all M finite,

sup {

n-1/2 éui(a)(%(n(o),a) - :—f’)"(ﬂ(ﬂ)))l=

(4.15)
n'/%|9 — 6,,| < M} —p 0,
where 0, < P,,,
1 n Wor
sup{ = 2 {0(0)(140) - By(mi0) + 132 22 (m)))
(4.16) U000 i0hn) = Eo(T(00)) ~ T2 (18,

+Ibn(0 - :BOn) :

n46 — 6,,| < M} -
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This proposition reduces the proof of case (ii) to establishing that if U, £
Ui(8o,), T; & Ti(6on)

n

(4.17) Lpo(n_l/2 Z{U(T EP(T))+IOI “on

i=1

}) - N(0, I, '(Ry))

and
(418) | ;n)zww IRy,
(4.19)A n-! LZIUz(TJrI ": ) —p I(Py).

All three claims follow since
LP"(UI’ T) - LPO(UI’ 1),

’
Wopn

for all ¢,

and Ep(U?), Ep(T?), | ([w},]%/wo,)(t) dt all converge to the appropriate limits
under P,. The last claim is a consequence of Proposition 4.4.

PROOF OF PROPOSITION 4.6. Denote the (random) functions in absolute
values in (4.15) by
Q,(2), where A = (8 — 6,,)n'/2.
Now
(4.20) Q,(0) -
by Proposition 4.5.
Write

n

Ql,,(A)—n-IZT,( “(16),0) - 2

Qui8) =7 £ U, 10,0 - S0
It is easy to see that for (4.15) we need only check that
(4.21) sup{|Q;,(A)|: 1Al slM} -p 0, i=1,2.
Throughout this calculation we write A, = A, and repeatedly use
B, = Cpy  Wop = Cp AD| < v\,
We begin with i = 1. Let

Vi8) = Z(1,(0),0) -

’
@on

1(6),8).

By Cauchy-Schwarz and uniform integrability of T} (as P, varies), it is enough
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to check that
(4.22) Esup(V,,(A))° = O(n v, %(c;? + logn)).
A

Note first that
(4-23) |Vln(0)| = c;ll“A’;z(Tv 00n) - ‘°(’)n(T1)| + cr:l”n_lw’n(Tl’ 00n) - ‘*’On(Tl)'-

Let F, be the empirical distribution function of T,..., T, and F its expec-
tation. Then

n

|(:’rlt(t’ 00n) - w(,)n(t)l = O(n_lon_2) +n Z [}‘, (t - T) - E}‘In(t - TL)]

=0(n"%0;2) + o(1)f F(s) — F(s))\y(t - s) ds

<0(n%;?) + O(l)supl W(s) = F(s)| [IN(s)ds,

where the 0 terms are nonstochastic and 1ndependent of t. A similar bound holds
for the second term in (4.23) and hence

(4.24) EVZ(0) = O(n~'v;%c;?).
Next we write
a b
T(6) =T+ =U+ =T,

so that a, b are well defined functions of A and note that

3 Lo DU = U)NH(TW(8) - T(8)) &,
3g ul) = /{ e, T EN(T0) - @) 8, 0

(U, — U)N(Ty(8) - T;(9)) Won |’
ne, ¥ IAT(0) ~ T(0)) =) (T‘("”}'

Therefore,

a 2
025 E sup{lEVln(A)l. (a) < M}

< C(M)n_lvn_“E(max(Ul - l/})2 + Uf) = 0( loino,;“).
Similarly, we can bound
e BT = T)NA(TW(8) - T(6))
‘%V‘"(A)i =nY 5,(T,(0),6)

(426) - (10), 0) TIT; — TN (Ti(0) - T(6))

-Tl(z—'z—:)'(n(o))..
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Representing T, = kT(8) + (c¢/ Vn)U,, k — 1, we can bound (4.26) by

an-12fy2 IO ~ TON(T(0) — T(60))
nc, + I\, (Ty(8) — TH(8))

A%
+p-l2lZ1m (A
n=—-=(4)

+ l’n_2(|Ul| + |T1|)}

Representing T; = kT,(8) + (¢/ Vn )U,, k — 1, we can bound (4.26) by

LZ|T(8) — T,(0)]A(Ty(6) — T(6))
ne, + LA, (Ty(8) — TH(9))

An —1/2{

av,
+n-12 17 (A
n=/%——=(4)

+ 0,20y + |T1|)}1

for a constant A depending on M only. Since A (|¢|) is decreasing, the first term
in curly brackets is bounded using the Chebyshev inequality by

(4.27) n~' Y| Ty(8) — T,(6)].
Since (4.27) is bounded by

B{n ' L(IT) + 1Tyl + n72(U) + 1Uy)) ],
for B depending on M only, we obtain

1
ab
Combining (4.24), (4.25) and (4.28), we get (4.21) for i = 1.

The proof of (4.21) for i = 2 is similar, but more complicated using the almost
independence of U(#), Ty(6).
First, since &,(-, 6,) does not depend on the U,

EQ2,(0) = EUZE(V2(0))
= 0(n"%,%c;?).

v,
(4.28) E sup (Al <M} = O(n 'y, *logn).

(4.29)

Next,

an (a) =—ZUZ((”)'(T<0>0) (f’")'(w»)

- L UN(T(6) — T)(6))
; "ne, + I\, (T(0) — T(6))
- L UN(T(6) - T,(6))
LU 0.0 EAT(0) — T,(0))
= Rln(A) + R2n(A) + Ran(A): say.
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By arguing as for (4.22)
sup{ER?,(A): [A| < M} = O(n"';%(c;2 + logn)).

The additional », % comes from the third derivatives in A, we have to deal with.
To deal with R,, and R;,, note that we can define ¢(d) such that the
Gaussian random variable
~ c(6
(430) 0.0) = U+ 21, x;)
Vn
is independent of T;(6). This follows since T(6) is a linear combination of X/
and the Gaussian variables U, and T; — X/, both of which are independent of X.
Using (4.30)

2

o e o Na(TA(8) — T(6))
n* LUUO)=Z T0),0)

377 (g Nl T(0) — Ti(6
n~ L (00; - U0(6)) («s,,ETi)(o),o() :

=0(n"',*) + O(n"'log nv, *),

ER2 (A) < 4E

2

+4E

since
EU(6) = 0(1),
Emax(Uin(O) - Uin)2 = O(n " 'logn).
We can bound ER2,(A) similarly to get

(4.31) sup{E(—é%Q2n(A))2: 1A] < M} = 0(n ' %(c,? + logn)).

Finally, we need to study (3/3b)Q,,(A). It is possible to pass from the bound on
E((3/0a)Q,,(A))? to the bound on E((d/3b)Q,,(A))? as was done in the
passing from the bound on (d/da)V,,(A) to the bound on (d/db)V,,(A). We
conclude

P 2
(4.32) sup{E(%Qu(A)) DAl < M} =0(n"%,%c,? + logn)).
If we combine (4.31) and (4.32) with (4.29), we get by the standard
Billingsley—Chentsov fluctuation inequalities [Billingsley (1968)],
sup{|V,(A)|: |A] < M} = Op(n"0,%(c;? + logn)).
The proof of (4.15) is complete.
We now prove (4.16). Let

W(8) = n~35(0) 3. U(0)( Ti0) ~ Ey(T(0)) + I} 2 (1,(9))

i=1
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where 0 = 6, + An" %, A = (A,,...,A,), A, = B, etc. Claim (4.16) is equivalent
to

£ IW,(0)
(4.33) sup{ w,(A) — W,(0) - 21 Ty Al ]Al < M} —p 0
j= J
and
IW,(0) _ .
(4.34) aA ] - Ibno(00)81_} —_)Pn 0, ] = 1,...,4.
J

Now,

IW,(0) Whn

=n! X\ T, + I —(T,) | + Ui(vU; + vo(T; — ET;))
94, i=1 Won

X

wl ’
1+ I()_nl(ﬂ) (Tz))]y
Won
for suitable vy,, v,, the laws of the summands converge to L(A), where
W) wo |
A=X|T+I;'—(T)| + UWU + v(T - E,T))|1 + I;'| — | (T)],
Wy Wo

and the summands are uniformly integrable (P,) by Proposition 4.4. Therefore,

ow, _
S (0) =5, Ey(4) = I(8,),
1

after some computation. A similar argument establishes (4.34) for j > 1. For
(4.33) we check that for 1 <j < k < 4,

2

(8)
INET

(4.35) sup{ DAl < M} - 0.

We give the argument for a typical term, A; © v,

wan g $oou@nxg 22 (1),

2
aA3 i=1 on

Since |w{)/w,,| < o, ‘, we bound (4.35) uniformly in |A| < M by

(4.37) n-l/%fou){n-l S \UNTE+ U2) + n52 ¥ mr*}.

i-1 i=1
Since T}? are uniformly integrable under P,,
(4.38) n~'? max|T}| —p 0.

12

Claim (4.35) for j = k = 3 follows from (4.37) and (4.38). The other terms are
dealt with similarly and the result follows.
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Proposition 4.6 establishes claim (ii) of the theorem. For part (iii) note that
Proposition 4.6 shows that if 8* is n'/2-consistent so is 8,(8,*) and, in fact,

B\n(:Bn*) = :BOn + n_l Z fb(Xi’ Pn) + OPn(n_l/z)'
=1

Therefore, taking B8,* successively as ,1?0,,, ,éln, ..., we get
Bin— Bin=0p(n"?)
and claim (iii) follows. Claim (iv) is established in exactly the same way as claims
()-(ii). O

ProrosITION 4.7. The efficiency of ,é » under model (Identity, ®), 1./1,,
satisfies

I/I,>(1+6%/(B%+1)(Var(X’) + 0?))

Proor.
I/I, = [Var(X’)] "*Var(T)[Var(T) — 262 + 6*I,]
=1+ §*(IVar(T) — 1)/(Var(X"))?,

since Var(T) = Var(X’) + 62 Since T is, in general, an inefficient estimate of 7
in the location model T = 1 + ¢ we must have 62 > I;! so that

I/1, - 1< 6*(Var(T) /6% - 1)/(Var( X))’
62/Var(X'’) = 62/(B2 + 1)Var(X’)

IA

and the result follows. O
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