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ON IMPROVING DENSITY ESTIMATORS WHICH ARE NOT
BONA FIDE FUNCTIONS

By LEstaw GAJEK

Technical University of £odz

In order to improve the rate of decrease of the IMSE for nonparametric
kernel density estimators with nonrandom bandwidth beyond O(n~4/%) all
current methods must relax the constraint that the density estimate be a
bona fide function, that is, be nonnegative and integrate to one. In this paper
we show how to achieve similar improvement without relaxing any of these
constraints. The method can also be applied for orthogonal series, adaptive
orthogonal series, spline, jackknife, and other density estimators, and assures
an improvement of the IMSE for each sample size.

1. Introduction. Several techniques of nonparametric estimation of an un-
known density have been proposed by a number of researchers during the last 25
years; see Tapia and Thompson (1978). Since the shape of the density is of most
interest, the integrated mean square error (IMSE) is an appropriate criterion for
comparison. In general, it is known that the best possible mean square error
(MSE) convergence rate for a density estimate, which is uniform over the Sobolev
space of functions with m — 1 derivatives absolutely continuous and mth deriva-
tive in L,, p > 1, is not better then n~?(" 9, where

2 2
=l2m - ——|/|2m+1 -
otm=(2m- ) flom 1= 2

for arbitrary small ¢ > 0 [see Wahba (1975)]. Some estimates which offer the rate
of convergence close to the optimal one are reviewed below.

(1) For the kernel type estimators with nonrandom bandwidth, Parzen (1962)
proved that one can choose kernels so that the IMSE is like O(n~2m/@m+1) for
densities with m — 1 derivatives absolutely continuous and mth derivativein L
[see also Bartlett (1963), Rosenblatt (1971) and Nadaraya (1974)]. However, if
m > 2 the kernel estimate is not nonnegative. Thus for bona fide (i.e., nonnega-
tive and integrable to 1) kernels the method is limited by the rate O(n~*/?). One
should note here that Abramson (1982) has presented a kernel type bona fide
estimator with bandwidth depending on the sample, the MSE of which is of order
o(n=%?).

(2) Schucany and Sommers (1977) employed the generalized jackknife method
to reduce the asymptotic and small sample MSE and bias of the kernel type
estimators [see also Koronacki (1984)]. Since their estimator can be produced by
the initial use of a single kernel that is not bona fide, this method does also relax
the nonnegativity constraint.
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(3) Wahba (1975) has shown that rates of convergence of the MSE like
O(n~?™) are possible for the Kronmal-Tarter and spline estimators. However
these estimators are not bona fide densities.

(4) An adaptive-data version of the Kronmal-Tarter estimator has been
constructed by Anderson and Figueiredo (1980). This method offers reduced bias
in comparison to the conventional Kronmal-Tarter estimator, but again, the
nonnegativity constraint is relaxed.

(5) Walter (1977) has shown that for the Hermite series estimators of density
functions with compact support the MSE is of order O(n~'*'/™), Thus in the
case for which the trigonometric system is natural, the Hermite series estimator
does almost as well, while for the case when the support is not compact (which is
natural for the Hermite series estimator), the trigonometric system cannot be
even used. However, the Hermite orthogonal series estimator also is not nonnega-
tive.

It is of interest to us that essentially all the above authors seem to ignore the
nonnegativity constraint whereas, for techniques like likelihood ratio estimation,
the presence of negative values poses theoretical as well as practical problems. A
negative hazard rate implies the spontaneous reviving of the dead. Therefore
Terrell and Scott (1980) proposed a particular class of estimators based on
ordinary kernel estimators that achieve the goal of faster rates of convergence by
relaxing the integral constraint rather than the nonnegativity one.

Another approach was proposed by Silverman (1982) who had applied the
maximum penalized likelihood method for estimating the logarithm of an un-
known density instead of the density itself. Silverman’s approach gives bona fide
estimators; however, it is restricted to the case of densities having bounded
support.

In this note we propose a simple algorithm which improves any density
estimator that is not bona fide with respect to weighted IMSE and which
converges to a bona fide density estimator. The only condition on the weight
function A(t) in the IMSE is that [ dt/h(t) is finite, that is, the tails have to be
weighted strongly enough. All results of this note concern improving the weighted
IMSE for arbitrary sample size n (contrary to the Terrell-Scott method which is
of asymptotic type only) and may be useful in small sample estimation. Com-
pared with Silverman’s approach, our method is much more immediately practi-
cable, and also is not restricted to a bounded interval.

2. The main result. Let P be a probability measure on the real line
absolutely continuous with respect to Lebesgue measure A and denote f = dP/dA.

Let f(-,x") be an estimator of f for the sample x" = (x,,..., x,,) and define the
weighted IMSE for f by
(1) R(f, £) = [ [[f(t,x") = () P"(dx)h(2) dt,

where the weight function 4 is nonnegative and Borel measurable.
Denote by ( -, ) and || - || the inner product and the norm of the unitary
space L%(S) = {g: S - R|[/g?hdx < oo}, where S is a given Borel subset of R.
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Let #* be the subset of all functions of L%(S) which are positive a.e. [A] on S;
similarly let #! denote the subset of all functions of L%(S) which integrate to
one on S. Denote #* = %" N%! and observe that #*, #!, and & * are all
closed and convex subsets of L%(S). For the remainder of this note, attention will
be restricted to the case where % * is a class of densities under consideration.
Suppose that f, an estimator of f € % *, is not a bona fide density (i.e., it is
not a function which is simultaneously nonnegative and does integrate to one).
We shall investigate the following simple iterative procedure which corrects f:

P-ALGORITHM.

Set fo(-, x") = f(-,x") and k = 0.

2. Setf,. (-, x") = max(0, f,(-,x")) and check C, ., = [sfp\(2)dt. If ), =
1 stop.

3. Setfpio(-,x") = fri(c,x") = (Cpyy — 1/LA(-)[s1/h(t) dt].

4. Setk =k + 2 and go to 2.

=

REMARK 1. For the sake of brevity we assume that Step 3 is always well
defined. In Section 3 it will be shown that f, is the orthogonal projection of f
onto #", f, is the orthogonal projection of f, onto #' (if it exists) and so on.
The ex1stence of f, is equivalent to the conditions [(1/A(¢) dt < oo and |C,| < co.
However if f € L%S) and L%(S) is assumed to be a Hilbert space, then all
projections exist and are unique, since #* and %! are closed and convex. For
our purpose so strong an assumption is not necessary because we can directly
verify the conditions [41/A(¢) dt < oo, |C,| < oo, which assure that Step 3 is well
defined for each iteration.

The following theorem states the main result.
THEOREM 1. Assume that o > [f(t, x")dt > 1 a.e. [\"],
(2) fl/h(t) dt < oo
s

and R(f, f) < o for every f € F*. Then
(i) for each iteration f, of the P-Algorithm

k
(3) R(f,f) 2 R(fe 1)+ X ENfi~ fial®,

i=1
forall f € F*.

(ii) There exists a unique real number « such that the P-Algorithm converges
pointwise and in norm to a function f * € F* of the form
(4) (-, x") = max(0, f(-, x") — a/h(-)).

(iii) f* is the best of all uniform over F* corrections of f, i.e., for any other
function f(-, x") € F *, depending on the sample x" through only, we have

jnf [R(f, 1) = R(j* )] = inf [R(f, 1)~ R(F, )]
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REMARK 2. Observe that if the support S is compact and 4 is continuous,
then hypothesis (2) will be satisfied. In the case where S is not compact the
condition [dt/h(t) < co means that the weight 2 should increase for “large”
arguments. A similar effect of increasing the importance of the tails could be
caused by estimating the logarithm of the density f instead of f itself [see
Silverman (1982)].

REMARK 3. Clearly f * given by (4) has at least the same rate of convergence
of the IMSE as its original f. Furthermore, Lemma 4 below implies that for
every f € F *

IF=F12=1f*=F1? ae [N]

and therefore f * has also at least the same rate of consistency as f.

REMARK 4. In practice f * will be evaluated numerically, for example by the
use of the P-Algorithm. Then we can stop the algorithm whenever |C), — 1| < g,
for a given real ¢ > 0, and estimate the improvement of the weighted IMSE by

3.

REMARK 5. Terrell and Scott (1980) have proposed another method which
assures good asymptotics and nonnegativity of the estimator by relaxing the
integral constraint. Evidently the estimator f* defined by (4) is much more
simple than the Terrell-Scott one, which is the ratio of two nonnegative kernel
estimators. Furthermore, their result is restricted to kernel type estimators and is
only of asymptotic kind, contrary to the above theorem.

3. Proof of Theorem 1. The proof proceeds through a series of lemmas.

LEMMA 1. Let %, be a given convex subset of L%8) and fAe LX(S). Then
fo € %, is the orthogonal projection of f onto %, if and only if
I = FIP =1 = foll® + 11 fo = 11,
for all f € %,.

Proor. It is well known that f, is the orthogonal projection of f onto F, if
and only if for every f € %,

(F=foo f—fo) 0.
Since
W= FI2=1lfo = FI12 = 2(f — fo, f = fo) + I1f = Foll?,

therefore the result follows. O

Suppose that f is an estimator of f € .%* which does not satisfy the
condition f(-, x") > 0. Then it is easy to verify directly that the corrected version
of f defined by

(5) f(-,x") = max(0, f(-,x"))
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has smaller (or equal) IMSE than f. Furthermore, the definition of the orthogo-
nal projection prompts

LEMMA 2. [* defined by (5) is the orthogonal projection of | onto F*.
Lemmas 1 and 2 show optimality of Step 2 of the P-Algorithm.

LEMMA 3. Assume that [(1/h(t)dt < co. If f(-, x™) integrates to a finite
constant a.e. [\*], then

© 1) = fewn) = [fe ) di- 1)/[h<-)/81/h<t>dt]
is the orthogonal projection of f onto F.

PROOF. Let us notice that f! is well defined and for every f € %!

JUF(8m) = F(0)1(e) de = [1F (2 x7) = (6, 2")]*R(2) dt
w2 [[f(t,x") = £1(t, )]
x[f1(¢,2") = f()] h(¢) dt
+ 118 xm) = f(O)]°h(2) at.

(7)

It follows from (6) that [ f(-,x") — f (-, x")]h(-) = const., and since f(-, x")
integrates to one, the second integral on the right-hand side of (7) is equal to 0.
Therefore || f — f!||*> = infz || f — f||? and this completes the proof. [

Let us notice that Lemmas 1-3 imply for every f € % *
k
(8) I =122 0fe = 12+ X — fiall®
i=1

Thus (i) follows from (8) and the Fubini theorem.

Now we shall prove (ii). Let us define S(x") = {t € S|f,(t,x") > 0} and
observe that the assumption [ f(t, x™) dt > 1 implies §,28,2 -+ and there-
fore f,(-,x") > 0 for every i = 1,2,... on the set S*(x™) = N ,S;(x"). Further-
more, the sequence f,(-, x™) is nonincreasing on S* and therefore it converges
pointwise to the following function,

FA(¢, xm) = {f(t,x") —a/h(t) forte S*,
0 elsewhere,

where a is a constant such that [¢f *(¢, x) dt = 1. Convergence in norm follows
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from the Lebesgue theorem because

I R R CESIRIOL
< [ LA xm) = 1206, x)]R(e) de
+(Cr_, — 1)2fs_stdt/h(t)[fsdt/h(t)]_2

+f [£.(¢t,x™)]*n(t) dt fori>1.
5,-8*
In order to prove (iii) we show

LEMMA 4. Under the assumptions of Theorem 1, [* defined by (4) is the
orthogonal projection of f onto F *.

PRrOOF. It is easy to verify directly that for every £ = 0,1, ...
(fe = s Fesr — F*) =0,

where f, = f. Therefore we can obtain

k
W= F*12= X Ifi— ficl® + 11 fi — F*I1%
i=1

Hence

(9) I = £*11° = iu fi = fiall?,
because || f; — f *|| = 0. On the other hand, (8) implies

(10) I =fIP=f= =12+ ifflnfi = ficall®.

The result follows from (9), (10), and Lemma 1. O
To prove (iii) it is sufficient to apply Lemma 4 and the Fubini theorem.
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