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REPRODUCIBILITY AND NATURAL EXPONENTIAL
FAMILIES WITH POWER VARIANCE FUNCTIONS

By SHAUL K. BAR-LEV! AND PETER ENIS
State University of New York at Buffalo

Let X,,..., X, beliid. r.v.’s having common distribution belonging to a
family #= {F;: § € ® C R} indexed by a parameter §. % is said to be
reproducible if there exists a sequence {a(n)} such that L(a(n)X)_,X,) € #
for all 8 € ® and n=1,2,.... This property is investigated in connection
with linear exponential families of order 1 and its intimate relationship to
such families having a power variance function is demonstrated. Moreover,
the role of such families is examined, in a unified approach, with respect to

* properties relative to infinite divisibility, steepness, convolution, stability,
self-decomposability, unimodality, and cumulants.

1. Introduction. The notion of a distribution function (d.f.) F being “re-
productive” with respect to a parameter § was introduced by Wilks (1963) as
follows: Suppose X, and X, are independent random variables (r.v.’s) with d.f.’s
F(-: 6,) and F(- : 6,), respectively, where 6, and 6, are values of a parameter 6.
Let Z denote the r.v. X, + X,. Then, if the d.f. of Z is F(-: 6, + 6,), the d.f.
F(- : 6) is said to be reproductive with respect to 6.

It is both interesting and surprising to note that very little attention has been
directed to this notion in the literature. Not only has the descriptive terminology
“reproductive” not been adopted by many authors to describe this phenomenon,
but, more significantly, although a number of specific distributions (such as the
normal, chi-square, and Poisson) are known to satisfy this property, there do not
‘appear to be any systematic investigations of what broad families of distribu-
tions possess such a property.

Here we consider a variation of this property, which we term “reproducibility,”
as applied to a linear exponential family of order 1. [Morris (1982) uses the
terminology natural exponential family for such a family and, hereafter, we use
the abbreviation NEF to denote this family.] We define reproducibility as
follows:

DEFINITION 1.1. Let %= (F;: 6 € ® C R} be a family of distributions
indexed by a parameter 6. Let X,,..., X, be iid. rv’s with £(X,) €% and
a(n), n = 1,2,..., nonnull constants. [ #(Z) signifies the law of the r.v. Z.] ¥ is
said to be reproducible in 8 (or reproducible) if, for all § € ® and n = 1,2,...
there exists a mapping g, from © onto ® such that L(a(n)Xl_,X,) = F, ).
The constants a(n) are referred to as the stabilizing constants of #.
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An extension of Definition 1.1 to the multi-parameter situation is straightfor-
ward. Indeed, the present investigation was motivated by a result of Bar-Lev
and Reiser (1982) obtained for the two-parameter case. They considered i.i.d.
rv.’s X,..., X, with common distribution a member of a special exponential
family of order 2 with 8 = (6,, 8,) as the natural parameter. They showed that,
for this family, the distribution of ¥ ,X,/n is as that of X, with parameter
(nb,, nb,). Thus, in terms of the multi-parameter extension of Definition 1.1, this
family is reproducible with stabilizing constants a(rn) = 1/n. Barndorff-Nielsen
and Blaesild (1983) generalized to a higher dimensional parameter space the
results of Bar-Lev and Reiser for this special case, a(n) = 1/n. Baringhaus,
Davies, and Plachky (1976) considered reproducibility with stabilizing constants
a(n) = 1, in the case of NEF’s. They showed that the only reproducible family
with such stabilizing constants is the family of Poisson-type distributions [de-
fined following Equation (2.7)]. Using a different method of proof, Bar-Lev and
Enis (1985) independently obtained the same result. This result is a special case
of our Theorem 2.2.

In this paper, we show that the class of reproducible NEF’s with stabilizing
constants of the form nf coincides (with one exception) with the NEF class
having power variance functions. Before defining the latter family, we intro-
duce some notation and assumptions. Throughout the sequel, we consider %=
{Fy: 8 € ® C R} as being a minimal and steep NEF with members

(1.1) dFy(x) = h(x)exp{0x + c¢(0)} dv(x),

where » is a o-finite measure on some Borel set of the real line. Denote by C the
convex support of (1.1), and for § €int®, let p = p(0) = —dc(8)/df and
Q = p(int ®) be the mean value and mean parameter space, respectively. By
Barndorff-Nielsen (1978), Theorem 9.2, Q = int C. We also denote by (V(p), ),
o(t:0) = exp{¥(¢:0)}, and ¥(¢:0)=c(0) — c(6 — t) the variance function
(VF), Laplace transform (LT), and cumulant transform, respectively, correspond-
ing to (1.1).

DEFINITION 1.2. A NEF is said to have a power variance function (abbrevi-
ated NEF-PVF) if its variance function is of the form V(p) = ap”, p € @, for
some constants « # 0 and v, called the scale and power parameters, respectively.

In addition to its intimate relationship with reproducibility, the class of
NEF-PVF’s is shown to be a broad family with interesting properties and would
seem to have a potentially important role in statistical inference.

In Section 2, we derive some basic properties of NEF-PVF’s and reproducible
NEF’s and demonstrate the above-mentioned equivalence. In Section 3, we
classify NEF-PVF’s into classes and show that these classes are closed under
convolutions and positive scale transformations. We prove that all NEF-PVF’s
are infinitely divisible with a self-generating property (the meaning of which is
given in Section 3). In Section 4, we find all NEF-PVF’s (see Figure 1 for an
illustration). It is proved that there exist no steep NEF-PVF’s corresponding to
y-values in the intervals (— 0, 0) or (0, 1). The y-values 0, 1, and 2 correspond to
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normal, Poisson-type, and gamma distributions, respectively. For the remaining
y-values we show that, (i) for any 1 <y < 2, the corresponding NEF-PVF is
composed of compound Poisson distributions generated by gamma variates and,
(ii) for any y > 2, the corresponding NEF-PVF is generated by a stable distribu-
tion with characteristic exponent (2 — v)/(1 — y). Densities of NEF-PVF distri-
butions with y > 2 are derived in Section 5. Section 6 is devoted to derivations of
general expressions for cumulants and relationships between cumulants and
morﬁents of different orders. Unimodality is discussed in Section 7. It is shown
that NEF-PVF’s with y > 2 are self-decomposable and thus are unimodal. For
NEF-PVF’s with 1 <y <2, we present a special case which demonstrates
nonunimodality.

2. Reproducibility and NEF-PVF’s. Morris (1982, 1983) established a
general framework of NEF’s by means of their variance functions and showed
that the VF (V(u), Q) characterizes a NEF within the class of NEF’s. He defined
and discussed a particular class of NEF’s possessing a quadratic variance
function (QVF) and showed that only six families of univariate distributions
have such a property. Members in the class of NEF-PVF’s with y = 0,1,2 are
also members in the class of NEF-QVF’s and correspond to the normal, Poisson-
type, and gamma distributions, respectively.

In order to investigate the relationship between NEF’s that are reproducible
and those with power variance functions, we derive some basic properties of
these families. We begin with NEF-PVF’s and determine the structure of Q, 0,
c(0), and ¥(t: 0).

In general, the structure of the set Q is determined as follows. Given V(-) and
o With 0 < V(py) < o0, Q is defined as the largest open interval containing p,
such that 0 < V(m) < 0 ° all m € @ (Morris, 1982). Thus, for V(p) = ap?,
Q =R if and only if y = 0; .or y # 0, Q is either R* or R™. For y # 0, the two
models, one with Q = R~ and the other with @ = R™, characterize two different
NEF’s. However, the former model can be considered as the reflection of the
latter about the origin, in the sense that if X, has a distribution corresponding
to (1.1) and has VF (V(p) = ap”, @ = R™), then the distribution of X* = — X,
belongs to a NEF-PVF with mean p* = —p and VF (V*(p*), Q*), where
V*u*) = V(—=p*) = a(—p*)Y and Q* = —Q = R~. The -corresponding
changes,with respect to the natural parameter, resulting from such a transforma-
tion are obtained by replacing 6, ©, and c(6), for X, by 6* = -0, 0* = -0,
and c*(0*) = c(—0*), respectively, for X*. Accordingly, we can restrict our-
selves to deriving results for the case @ = R, as the results for the case @ = R~
can be obtained by a suitable change of sign (see Remark 2.1).

Assuming that Q is either R (y = 0) or R* with y #+ 1,2 (the case where
vy = 1,2 will be treated separately), then clearly « > 0 and the corresponding
forms of § and c¢(6) are derived as follows. Since df/dp = (ap¥)"!, we im-
mediately obtain that 6 = (a(1 — v)) 'Y+ m, p = {al — y)(§ — m)}/O~ "),
and c(0) = — (a2 — 7)) {a(@ — y)(@ — m)}® /=Y + 4, for some constants
m and d. A reparameterization of the natural parameter from 6 to , =0 — m
yields an appropriate change in ¢(8) into ¢,(6,) = ¢(8, + m). [For convenience,
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we continue to use 8 and c(6@) rather than 6, and c,(6,).] Under such a
reparameterization which does not affect 2, the above results can be written as

1 -
(2‘1) 0= m,}, s
(2.2) p={a(l —v)8)0,
/ ! 2—v)/(1—y
(2.3) c(9) = —m{a(l — 7)0}( VA= d,

and the corresponding cumulant transform is given by

V(t:0) = .

= (a0 = o= e

(2.4)
—[a(1 - y)8]® /1),

As p ranges over {, the range of 8 = () is int ® and is determined by (2.1) as:

(1) forQ=R(y=0):int®@ =0 =R
and
(ii) for @ = R*(y # 1,2):
9 mo- {3 s
Similarly, for @ = R* and y = 1,2, we obtain, respectively,
(2.6) V(t:0) = (1/a){ex?D — e}, 0 =R,
and
(2.7) V(t:0) = (1/a)log{6/(8 —t)}, int®=R".

(2.8) is the cumulant transform of a Poisson type distribution, which is obtained
by a (positive) scale transformation of the standard (a = 1) Poisson distribution,
and (2.7) corresponds to a gamma distribution.

REMARK 2.1. For @ = R™, the corresponding cumulant transforms are sim-
ply obtained by replacing, in (2.4), (2.6), and (2.7), 8 and t by —8 and —¢,
respectively. The corresponding parameter space is not affected if y = 0,1.
However, if y # 0,1, int © is changed [see (2.5) above] to R* for 1 — y < 0 and
toR forl—vy>0.

We now discuss reproducible NEF’s. The following lemma presents some
properties of such families.
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LEMMA 2.1. Let % be a reproducible NEF with stabilizing constants a(n).
Then

(i) foralln =1 and p € Q,

(2.8) no*(n)V(p) = V(na(n)p);

(i) a(n) # n7Y, foralln > 2;
(iii) g,(int ®) = int ©;
(iv) Q is either R*, R~, or R.

Proor. (i) Let X,,..., X,, beii.d. r.v.’s with common distribution belonging
to #. Then E(a(n)L’,X,) = na(n)p and Var(a(n)L?,X,) = na®(n)V(p). Since
& is reproducible, the distribution of a(n)L,X; is in the same NEF as X,.
This implies (2.8).

(ii) Assume a(n,) = ngy! for some n, > 2. Substituting this in (2.8), we obtain
ng 'V(p) = V(p). Since V() > 0, it follows that n, = 1, a contradiction.

(iii) We assume that © is not open (otherwise, the statement is clearly valid),
and show that g,(int ®) C int ©. The latter result and the fact that g,(-) is an
onto mapping imply, by straightforward argumentation, that g,(int ®) = int ©.
Accordingly, let 6, € int © and X,..., X, beiid. r.v.s with common distribu-
tion F,. Since Ey|X;| < 0 and ZL(a(n)Li-,X;) = Fy o, we have
J1x| dF, (5, (x) < oo. Brown (1982), Proposition 3.3, shows that a minimal NEF
(with canonical statistic X) is steep iff Ey|X|= oo for all § € ® — int ©.
Applying this proposition to our case, we obtain that g,(6,) € int O, since F is
steep by assumption.

(iv) Since # is reproducible, we have na(n)u(8) = n(g,(0)), for n > 1 and
6 €int@®. As g, (int @) =int® and na(n)u(int ®) = p(g,(int O)), we obtain
na(n)Q = Q for all n. But na(n) # 1 for all n > 2, hence @ must be either R,
R ,orR. O

The next two results relate reproducible NEF’s with NEF-PVF’s. As { must
be either R, R*, or R~ for both of the latter families, the first of these results
concerns the case where £ = R and the second deals with the case & = R*. The
case where @ = R~ can be treated in a manner analogous to that of & = R*.

THEOREM 2.1. For Q@ = R, % is the family of normal distributions (i.e.,
F is NEF-PVF with y=0) iff & is reproducible. In this case, the only
two possible stabilizing constants are a(n) = +£n~'/? and these correspond to
g.(0) = £n'/?%0.

PrROOF. Let % be the family of normal distributions. Its cumulant trans-
form, given by (2.4) with y =0 and Q = © = R, satisfies n¥(+n~'%¢:0) =
¥(t: +n'/?0) for all n and 6 € R. This implies that % is reproducible with
a(n) = +n~2 and g,(0) = +n'/?0. Now, assume that % is reproducible. By
substituting p = 0 in (2.8), we obtain na?(n)V(0) = V(0), which implies a(n) =
+n"'2, Thus (2.8) becomes V(p) = V(+n'/?u), which holds for all n > 1 and
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p € R. The proof that V(u) is identically constant on R can be completed in a
manner analogous to that of Theorem 2.2, for 8 = — 1 [see the lines following
Equation (2.9)]. O '

THEOREM 2.2. For @ = R*, # is a NEF-PVF with power parameter y # 2
iff F is reproducible with stabilizing constants a(n) = nt"7/0=2_ Here,
g,(0) = 0n" V0D for y = 1, and g,(0) = 0 + (1/a)logn for y = 1.

ProOF. For convenience, let 8 = (1 — v)/(y — 2) and note that as y ranges
over R — {2}, B ranges over R — { —1}. Let # be a NEF-PVF with y # 2. For
y # 1, the natural parameter space and the cumulant transform corresponding to
& are given by (2.5) and (2.4), respectively. The latter satisfies n¥(nft: 8) =
¥(¢:0n"F) for all n>1 and § € O. For y = 1, the corresponding cumulant
transform is given by (2.6) with ® = R; here, we have n¥(t:60) = ¥(¢: 0 +
(1/a)log n) for all n and 6. Thus, F is reproducible with a(n) and g,(6) as
stated. [If y = 2, corresponding to the case where # is the family of gamma
distributions, then (2.8) is satisfied only for n = 1. Thus, this family is not
reproducible. However, in Section 3, it is shown to be reproducible when
considered as being a two-parameter family.]

Now, let % be reproducible with stabilizing constants a(n) = n#, g # —1.
Substituting these in (2.8), we obtain

(2.9) n®*W(u) = V(nf*), forn>1,p>0,
from which it follows that
(2.10) (1/n* ) V(p) = V(p/nP*), forn>1, p> 0.

Multiplying both sides of (2.10) by m2?#*!, where m is an arbitrary positive
integer, yields

(2.11) (m/n)"* " V(p) = m*1V(/nf*1) = V((m/n)"*'u),

form,n>1, p> 0.
In (2.11), set p = 1 and a = V(1) to obtain
(2.12) ax?Btl = V(xh+Y),

which holds for any rational x > 0. Since V(-) is continuous, it follows that (2.12)
holds for any real x > 0. Setting y = x#*! in (2.12) yields V(y) = ay”, y > 0,
the desired result. O

We end this section by demonstrating Theorem 2.2 with the following two
examples; in both, » is the Lebesgue measure over (0, ©) and ® = R~ U{0}. In
Examples 2.1 and 2.2 with § = 0, the corresponding distributions are stable with
characteristic exponents ; and 3, respectively. These two examples are special
cases of steep (but nonregular) NEF-PVF’s generated by stable distributions (see
Section 4).
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ExaMPLE 2.1. Inverse Gaussian distribution.
dF(x) = (2m) %%~ %2\ %exp{ —8x/2 — A/(2x) + (8X)"*} dx
§>0, A>0.

Here, § = —8/2, int® = R~, and c(f) = (—2X0)"/% + llogA. c() is of the
form (2.3) with y = 3, a = 1/A, and a(n) = n~2

ExaMPLE 2.2. Modified Bessel-type distribution.
dF(x) = (27) '3V2A0 92K, i(Ax~ 2 )exp( —px + 3(Np/4)"?) dx,
A>0, p=>0,

where K, ,5(2) is the modified Bessel function of the second kind of order § with
argument 2. For reference to this distribution, see Oberhettinger and Badii
(1973), page 155, and also Zolotarev (1954), who considers the special case p = 0.
Here, § = —p, int ® = R, and ¢(8) is of the form (2.3) with y = 2.5, a = 4/3A,
and a(n) = n"3,

3. NEF-PVF’s considered as two-parameter families. Let % be a NEF-
PVF (with @ either R or R*) having a PVF V(u) = ap?, p € @, for some
constants @ > 0 and v, and X be a r.v. with #(X) € #. The transformation
X — bX with b > 0, yields a distribution belonging to a NEF-PVF, say & *. In
this case, p* = E(bX) = by, V*(u*) = Var(bX) = ab® Y(p*)?, and Q* = bQ =
Q, so that & and &# * possess the same power parameter y and the same convex
support. However, unless y = 2 (in which case = %*), # and % * differ by
the value of the scale parameter.

As b ranges over R (y # 2), ab®™, considered as a function of b, ranges over
R too. Accordingly, we can classify NEF-PVF’s by the values of y and the form
of Q, as follows: Two NEF-PVF’s are said to belong to the same class if their
power parameters and convex supports are identical. Obviously, any member in
some class can be obtained by a positive scale transformation of any other
member in the same class. For y = 2 and @ = R* we define the corresponding
class to include all gamma distributions with varying shape parameter 1/a,
a > 0, and mean p > 0.

By this definition of classes, each class contains all NEF-PVF’s with equal y
and Q. Each such class can equivalently be considered as being a two-parameter
family of distributions indexed by the parameters a and p (or equivalently by «
and ). The parameter space of this two-parameter family is the Cartesian
product R* X Q (or R* X @).

Distributions in the same class, although posessing the same convex support,
may have different supports. However, as will be apparent from the results of
Section 4, each class, excluding the case y = 1, possesses a common support.

The normal class (y = 0) is closed under linear transformations. However,
each of the other classes, although closed under positive scale transformations, is
not closed under linear ones: X —» bX + ¢, b> 0, ¢ # 0. Under the latter
transformation, the distribution of bX + ¢ will belong to a NEF with mean
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p* = by + ¢ and VF (ab? Y(p* — ¢)", Q* = bQ + ¢). This NEF loses its PVF
property and also possesses different convex support.

All classes are closed under the convolution operation. As if X,,..., X, are
ii.d. with common NEF-PVF distribution having VF (ap?, Q), then the law of

7_1X; belongs to a NEF-PVF in the same class as X, with scale parameter
an' 77, This result implies that any such class of distributions, parameterized by
a and p, is reproducible with stabilizing constants a(n) = 1. In particular, the
family of gamma distributions, although not reproducible when parameterized
by p (« fixed), is reproducible when considered as a two-parameter family.

By Definition 1.1 and Theorems 2.1 and 2.2, it follows that NEF-PVF’s with
vy # 2 are composed of infinitely divisible members. We now use the above
properties of classes to show that all NEF-PVF distributions are infinitely
divisible with a self-generating property. By this, we mean that any NEF-PVF
distribution F can be represented as the n-fold convolution of a distribution
within the same class as F. Let X be a r.v. having a NEF-PVF distribution with
VF (ap?, Q). We have to show that, for every n = 1,2,..., #(X) = LELLY, ),
where the Y, ’s, i=1,..., n, are i.i.d. with common distribution belonging to
the same class as X. To verify this, consider, for each n, the NEF-PVF in the
same class as that of X with scale parameter an”~!. Within this NEF-PVF,
choose the member with mean p* = p/n as the common distribution for the
Y, ,’s. We immediately obtain

vﬂ(zxaj=nv%m)=mmf%wr, wreg,

i=1

which establishes the desired result.

4. Classifications of NEF-PVF’s by sets of y-values. In this section, we
identify all NEF-PVF distributions. We determine the values of y for which no
NEF-PVF’s exist. Permissible values of y are divided into two main sets
including NEF-PVF’s with similar properties. Figure 1 illustrates and sum-
marizes the results of this section.

NEF-PVF’s with power parameters 0, 1, and 2 have already been characterized
as corresponding to normal, Poisson-type, and gamma distributions, respectively.
We henceforth assume that y # 0,1,2 and 2 = R*. In the following discussion,
it is convenient to let p = (2 — v)/(1 — v). With this notation, (2.5), (2.3), and
(2.4) become, respectively,

. _[R™, ifp<1,
(4.1) 1nt®—{R+, ifp>1,
p—1( afd \*
4.2 = —
(42) «(0) - -] v,
and

(4.3) \I'(t:0)=p_1{[a(0_t)]p—[ il ]}

ap p—1 p—1
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Normal Poisson-type Gamma
dist. dist. dist.
Distributions genera-
Compound Poisson ted by stable distri-
None exist None exist distributions gener- butions with
ated by gamma variates |characteristic exponent
in (0,1)
o & o o 4* * e oo
0 1 2

Fi16. 1. Classifications of steep NEF-PVF distributions by sets of y-values.

The examined y-values are partitioned into y-sets in the intervals (— o0, 0), (0, 1),
(1,2), and (2, o0). These correspond, respectively, to p-sets in the intervals (1,2),
(2, ), (— 0,0), and (0, 1).

The following theorem establishes the results illustrated by Figure 1.

THEOREM 4.1. Let % be a NEF-PVF with power parameter y. Then

(i) it is necessary that y & (—00,0) U (0,1) [equivalently, p & (1,2) U
(2,00)];
(ii) for any fixed vy € (1,2) (p <0), & is a family of compound Poisson
distributions generated by a gamma distribution;
(iii) for any fixed y € (2,0) (0 < p <1), & is the family generated by a
stable distribution concentrated on [0, c0) and possessing a characteristic expo-
nent p.

Proor. (i) We give an indirect proof. Fix y € (—00,0) U (0,1) and assume
that % is a NEF-PVF with VF (ap’, R™). As p ranges over @ = R*, § = 6(p)
ranges over int ®. Since p > 1 then, by (4.1), int ® = R*. The latter is the
interior of the natural parameter space © of the steep (and thus full) exponential
model (1.1). Let S be the common support of #. By definition, ® is the effective
domain of e ® = [;h(x)e’* dv(x) and has been shown above to be at most
R* U{0}. However, @ = int C = R* so that S ¢ R* U{0}, and this implies that
the effective domain of e~ “? also contains R~, a contradiction.

(ii) Let p € (—0,0) be fixed, then by (4.1) int® = R™. For § € R™, let

= —@ and write £(¢: ) for W(¢: 6) expressed in terms of A. Then (4.3) can be
rewritten as

p—1[ aX \* ,
£(t:N) = ” (i—_p) {(@+e¢A) -1}, t> -\
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Let

p—1/[ aA
p=

)P and g,(¢) = (1 + ¢t/A)".
ap \1—p

Then, £(¢:A) can be written as £(t: ) = p{g\(t) — 1}, where p > 0 (since
A >0 and p <0) and g,(¢) is the LT corresponding to a gamma distribution
with scale parameter 1/\ and shape parameter —p. But e?& -1} ig the LT
corresponding to the random sum Sy = XYY, (S, = 0), where the Y’s are i.i.d.
with common LT gy(¢) and the r.v. N (independent of the Y,’s) has a Poisson
distribution with mean p. It is an immediate consequence of the present case
(i-e., p < 0) that int ® = ® = R™. [ Note: There does not appear to be a univer-
sally adopted terminology to describe the relationship above. The terminology
used here (i.e., “compound Poisson distribution generated by a gamma distribu-
tion”) is that of Feller (1966), page 501.]

(iii) Let G, be a stable distribution with a characteristic exponent p € (0, 1),
as cons1dered in Feller (1966), Theorem 1, page 424. G, is absolutely continuous
relative to a Lebesgue measure on (0, ) and possesses a LT of the form
exp{ —¢°}, £ > 0. Let GXy) = G,(y/a) where a = {(1 — p)'~*/(pa'~*)}'/* for
some positive constant a. Clearly, G is also a stable distribution concentrated
on [0, 00) (since a > 0) with exp{ - (at)"} as its LT. We use G} to generate a
NEF with cumulant transform of the form (4.3), as follows. Deﬁne ¢(6) on O, the
largest interval for which the integral below exists, by

c(8) = —log e’*dGx(x), 6e€O.
[0, 00)
Clearly, ® = (—0,0] and ¢(#) has the form

e(8) = (—ab)” = —(p_l)( a_al)p.
ap \p

We generate a NEF with members Fj, 6 € O, by defining
(4.4) dFy(x) = exp{fx + c(0)} dGX(x).

Obviously, F, is a distribution function with cumulant transform (4.3).

The NEF just defined is nonregular since © contains 0 as a boundary point.
However, it is steep as is shown by the following argument. G} is stable with
characteristic exponent 0 < p < 1, and has a finite rth moment only for r € (0, p)
[see Feller (1966), page 215]; i.e., Ji0,00)1%| dGX(x) = 0. Since F, = G}, the
desired result is established by applying Propos1t10n 3.3 of Brown (1982). I:l

5. Densities of NEF-PVF’s generated by stable distributions. Steep-
ness is a property of exponential models defined and discussed by
Barndorff-Nielsen (1978). This property has an essential importance in connec-
tion with maximum likelihood estimation and other related topics. The most
common and classic example provided in the literature for a steep exponential
model is the inverse Gaussian one (Example 2.1). The family of modified
Bessel-type distributions (Example 2.2) is a further example of this type.



REPRODUCIBILITY AND POWER VARIANCE 1517

Theorem 4.1(iii) provides us with a class of (nonregular) steep exponential
models, composed of NEF-PVF’s with power parameter y > 2 (0 < p < 1). The
above two examples are special cases with p = § and p = 3}, respectively.

Any NEF-PVF in this class, with members Fy, § € (— o, 0], is generated by a
stable distribution G defined in Theorem 4.1. G* itself differs only by a scale
factor from G,. Accordingly, the problem of obtaining the density of Fy (relative
to a Lebesgue measure on R*) is solved by determining the density of G,. As is
known [Lukacs (1970), Section 5.8], apart from the inverse Gaussian distribution,
no other stable distributions with characteristic exponent p € (0,1) are known,
whose densities are given by elementary functions. However, series expansions of
such densities, which we consider below, are available. In some special cases as
p = 1, 2, and some other rational p, these series expansions can be expressed in
terms of higher transcendental functions (Zolotarev, 1954).

Let g,, gf, and f, denote the densities corresponding to G,, G, and F,
respectively. Pollard (1946) showed that the density g, corresponding to the LT,
exp{ —t*}, p € (0,1), can be expressed as

1 = (-1)* I(pk + 1)

gp(x) = —;k=0 X Sin(ﬂpk)w, x > 0.

Since g¥(x) = (1/a)g,(x/a), where a = {(1 — p)~*/(pa'~P)}}/?, we obtain by
use of (4.4)

fo(x) = (1/a)g,(x/a)exp{fx + c(6)}

1= (-1)* (1= 0)"" T (pk +1)
= —_ ;k=0 k! Sln('”pk) pkak(l_P)xpk+1
{ (1- p)[ af ]”}
X exp{ Ox + )
ap p—1

x>0, <0, a>0, 0<p<l.

Note: g, is exactly p,, in the notation of Lukacs (1970), page 140.
The following example treats the case p = 2 for which f; can be expressed in
terms of the Whittaker function.

ExaMPLE 5.1. Whittaker-type distribution. Pollard (1946) [see also Zolotarev
(1954)] showed that g, ,; can be given the form

S ey 4
2(37) a* “1/% 716\ 2 |

where W, 4(2) is the Whittaker function. For this case, we have

1 1 . 1
fo(x) = {_ W;e 1/(12ax )W—1/2,—1/6(_ W)}

Xexp{ﬁx + (1/2a)(—3a0)2/3}.

gz/s(x) =
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This result is used in Section 6 for evaluating certain integrals involved with
Whittaker functions.

6. Moments, cumulants, and upper bounds for tail probabilities. In
this section, as a consequence of the special structure of the variance functions
for NEF-PVF distributions, we obtain simple expressions relating moments and
central moments with cumulants and obtain bounds for tail probabilities for
these distributions.

Consider NEF-PVF classes as defined in Section 3. For given y and {, any
such class is parameterized by (a, n) or (a, #). Other useful parameterizations
can be given in terms of (a, k;), (ky, ky) or, in general, in terms of (k,, k,),
p < gq, where k,, r=1,2,..., denotes the rth cumulant. For all such possible
kinds of parameterizations, we express, in a unified manner, cumulants of all
orders. The resulting expressions, which are interesting by themselves, are useful
for characterization problems concerned with NEF-PVF distributions.

For the derivations in the sequel, we make use of the following relation
(Morris, 1982), which holds between cumulants of any NEF,

(6.1) Cpia(y) = V(k,)Cl(xy), r=12,....

Here, k; = p, k, = C(k;) is the rth cumulant expressed in terms of «;, and
prime denotes denvative wrt k,. Relation (6.1) implies that, for the normal case
(y = 0), k, = 0 for all r > 3. For the remainder of this section, we discuss only
the case @ = R* and y > 1. Accordingly, for y > 1 and € = R*, we denote

‘s,<y)=£10[n—(j—1>], rs0.

Then, as is easily verified by induction, we obtain the following expressions for
cumulants in terms of (a, k;) and (e, k,):

(6.2) Kppo=a T8 (y)k{™ VY7 r>0, yx1,
(6.3) Kpoo= a8 (y)kh 177/, r>0, y>1.
It is interesting to note that, for y > 1 and @ = R*, NEF-PVF cumulants of all
orders are positive. This result follows from (6.2) by noting that §,(y) > 1 for all
y>1and r>0.

By substituting k; = —dc(8)/d8 into (6.2), we can express the cumulants in
terms of (a, 0) as
~Ja8(y)[al —y)8]” YT, y>1, R, r>0,

o e, vy=1, 6€R, r=0.

A representation of cumulants in terms of the mean (k,) and variance (k,) can be
made, by substituting a = k,/x; into (6.2), to obtain
(6.5) krip = 8.(y)k5 y”,  r>0.

A more general expression for k,,,, in terms of any pair of cumulants of
smaller orders, say (k, .o, k,. ), is found to be

(r—q)/(g—p)
(66) k0= 8,y )(8(”) (

(6'4) Kyyo

(r-p)/(q-p)
) , O<p<g<r.

8,(v)

p+2
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The relations given by (6.6) are useful in the characterization of NEF-PVF
distributions by zero regression properties (Bar-Lev and Stramer, 1984).

Moments and central moments of NEF-PVF distributions in terms of any of
the parameters introduced above can be calculated, recursively, by use of
formulas (7.1) and (7.2) of Morris (1982). For an illustration, we express the
central moments p;, j=1,2,..., in terms of the parameter («,, k,). Formula
(7.2) of Morris (1982) can be rewritten as

(r+1

r
Brio = Kpypt )y j

=2
Using this and relation (6.5) yields

)ujxr_j+2, r>=2.

e [r+1 j
0 1 L LN VN X
Jj=0
Further, since (for @ = R*) k;,k, >0 and 8(y)>1 for y>1 and r>0, it
follows from (6.7) that all central moments p,, r > 2, are positive.
The coefficients of skewness, v, = k;/k3/?, and kurtosis, v, = k,/k2, of NEF-
PVF distributions, expressed in terms of (k;, k,), have the forms:

1

v =o'’k and v, = y(2y — Dok %,

Since y > 1 and k; > 0, we obtain y, > 0. This implies that the corresponding
NEF-PVF distributions are leptokurtic [Kendall and Stuart (1977), page 88].
Note that y,/y2 =2 — 1/y so that the set of possible values for (y,,7v,) is a
parabola. Also, by defining v,,.,; = Balta,43/k2" % n > 1, as general measures of
“skewness” [Kendall and Stuart (1977), Section 3.31], we obtain that these
quantities are always positive since py,,3 > 0, n > 1.

NEF-PVF moments can be computed similarly by use of formula (7.1) of
Morris (1982). Such expressions for moments can be used to evaluate integrals of
certain higher transcendental functions, which are not available in frequently
used tables of integrals [e.g., Gradshteyn and Ryzhik (1965)]. For example, let /.
denote the rth moment of the Whittaker-type distribution considered in Exam-
ple 5.1. Here y = 4 and we immediately obtain

fwx"lexp{0x - 1/(120x?)}W_, 5 _; 6(—1/(60x?)) dx
0

(~3a0) ¥

= —;.t',2(377)1/2exp{ 5 } r=1, a>0, 6<0.
o

We conclude this section by presenting an expression for an upper bound for
(right) tail probabilities for NEF-PVF distributions. Morris (1982, Section 9)
showed that if X has a NEF distribution with VF (V(u), ), then

P[X > x] < exp{-B((x — p)/0)},

for x > p, where 02 = V(p) and

B(t) = OZ/Ot[(t —w)/V(p + ow)] dw.
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When applied to NEF-PVF distributions, this expression for an upper bound can
be given a very simple closed form. Excluding the cases y = 0,1,2 which have
been treated by Morris, one can obtain by elementary computations that if X
has a NEF-PVF distribution with & = R* and y € (1,2) U (2, ), then

1| px pxZY p
PlX >x] <exp{— - - , x> W,
=1 = e e 5 - i - o '

where the term in braces is a strictly concave function of x. This is not
necessarily the sharpest upper bound that can be achieved for a particular

NEF-PVF distribution. However, it does provide a unified upper bound for
general NEF-PVF’s,

7. Unimodality. The normal, Poisson-type, and gamma distributions are
known to be unimodal. [For the unimodality of the gamma and Poisson-type
distributions, see Examples 6.2 and 6.9 in Barndorff-Nielsen (1978).] A natural
question which arises concerns the unimodality of the remaining NEF-PVF
distributions. In this section, we show that NEF-PVF distributions, generated by
stable distributions (0 < p < 1) are self-decomposable, a property which implies
unimodality [Lukacs (1983), Theorem 5.4.3]. We also discuss unimodality of
NEF-PVF distributions with p <0, and present a special case according to
which the given distributions are not unimodal.

We first present a lemma which is used to prove unimodality of NEF-PVF
distributions with p € (0, 1).

LEMMA 7.1. ForanyB>0,0<0,0<p <1, and 0 < ¢ < 1, the function

(7.1) o t) = exp{ ~B[(t ~ 0)" — (et - 0)]},
defined on [0, ), is a LT of a distribution concentrated on [0, o).

Proor. Let B, ¢, p, and 0 be as in the statement of the lemma and denote

m(t) = B[(¢ = 0)" = (ct - 6)°].
Then, ¢/(t) can be written as ¢ (t) = exp{ —m(¢)}. For ¢ > 0, ¢ > ct, and thus
(t — 8)* > (ct — 0)*, which implies that m (¢) is positive. Since ¢ 0) = 1, the
statement of the lemma is established if one can show that m (t) possesses a

completely monotone derivative [Feller (1966), Theorem 1 and Criterion 2, pages
415-417]. For this purpose, let

gt) = dm(t)/dt = Bo[(t = 0)° ' — c(ct = 0)"'],  t>0,
and g{")(t) denote the nth derivative of g(¢) wrt ¢ It can be easily shown that
(—l)ngﬁ”)(t) — (_1)ann[(t _ 0)0—(n+1) — e (et — 0)p-(n+1)],
where p, =17 o(p —Jj), n=0,1,....
For 0 <p <1, p,>0if n is even or zero, and p, <0 if n is odd. Hence,
(—=1)"Bp, > 0 for all n. Thus, for proving complete monotonicity of g/(¢), it
remains to show that

(7.2) [(t —9)" "D _enti(ep — 0)"_("“)] >0,
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for all ¢ > 0 and n > 0. Now, for p and ¢ belonging to (0,1), ¢ > c(**D/(r+1-p)
for all n > 0. Therefore, for any ¢ > 0 and 6 < 0, we have

t(C _ c(n+1)/(n+1—p)) + 0(c(n+1)/(n+1—p) _ 1) > 0’

from which inequality (7.2) immediately follows. O

THEOREM 7.1. All NEF-PVF distributions generated by stable distributions
are unimodal.

ProoF. Consider NEF-PVF distributions with fixed p € (0,1). Their LT’s
are given by ¢(t: 0) = exp{¥(¢:0)}, 6 < 0, where ¥(¢: 0) is given by (4.3). For
0 = 0, ¢(¢:0) is the LT of a stable distribution with characteristic exponent p,
and thus the corresponding distribution is unimodal [Lukacs (1983), corollary to
Theorem 4.2.1 and Theorem 5.4.3). Fix § < 0 and let X be a r.v. with LT ¢(¢: ).
For every 0 < ¢ < 1, let Y, be a r.v., independent of X, having a LT of the form
(7.1) with 8 =[(1 — p)/a]?(1/p). Using Laplace transform techniques, it can be
easily shown that X =,cX + Y, That is, X has a self-decomposable distribu-
tion [for a definition see Lukacs (1983), Section 4.2]. A result due to Yamazato
(1975) shows that all self-decomposable distributions are unimodal. This com-
pletes the proof. [ Yamazato’s result is also quoted and proved in Lukacs (1983),
Theorem 5.4.3.] O

We now discuss the question of unimodality of NEF-PVF distributions with
p < 0. Let F denote such a distribution. According to (ii) of Theorem 4.1, F
coincides with the distribution of the random sum LV ,Y;, where N has a Poisson
distribution with mean

p—1/( af
ap \p—1

P
p= ), 0<0, a>0, p<O,
and the Y;’s, independent of N, are i.i.d. having a common gamma distribution
with scale and shape parameters —1/6 and — p, respectively.

Wolfe (1971), Theorem 3, considered the problem of unimodality for the
special case of F' where the Y;’s have a common exponential distribution with
mean equal to one. This special case of F' corresponds to values (4, p, p) =
(-1, —1,4/a®). Wolfe showed that F is unimodal with single mode at 0 if

2, and otherwise is not unimodal.

For a more general case, with various values of § <0 and p <0, F can be

given the form [cf. Wolfe (1971), page 917]

F(x) = e PE(x) + e’pf [ o i e ]dt,

~, n!T(—np)
where E(x) is a distribution function degenerate at 0, b = —(1/p){(1 — p)/a}! 7*,
p<0,0<0,and a > 0. It seems that similar results can be obtained for such F

by adopting Wolfe’s approach and analyzing the behavior of d?F(x)/dx? for
x > 0. We do not pursue this matter further and leave it as an open question.
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