The Annals of Statistics
1986, Vol. 14, No. 4, 1485-1496

ASYMPTOTICALLY INDEPENDENT SCALE-FREE SPACINGS
WITH APPLICATIONS TO DISCORDANCY TESTING

By T. J. SWEETING

University of Surrey

Motivated by the construction of independent scale-free spacings for the
exponential distribution, analogous quantities are defined for an arbitrary
distribution, and their joint asymptotic behaviour studied under suitable tail
conditions. These scale-free spacings provide a unified approach to the
problem of consecutive discordancy testing when location and scale parame-
ters are unknown. A normal example is discussed and the accuracy of the
approximations assessed via some Monte Carlo studies.

1. Introduction. When testing for the existence of an unspecified number of
upper or lower outliers, it is desirable to have a procedure which will not only
detect the existence of outliers, but which will also indicate the number of
outliers present. A type of consecutive discordancy test aimed at doing just this
in the case of normal samples was proposed by Rosner (1975); a similar proce-
dure for the exponential case is discussed in Kimber (1982). A major problem
with such procedures, however, is the difficulty of calculating the null distribu-
tions. The process is greatly simplified if the consecutive test statistics involved
are all independent. In the case of exponential samples, it is well known that the
spacings (differences between adjacent order statistics) are all independent, and
so form an appealing set of quantities on which to base a consecutive test. When
the scale parameter ¢ is unknown, however, it was shown in Sweeting (1983)
that, somewhat surprisingly, the independence is retained if one uses an ap-
propriate sequence of consecutive estimators of o.

Turning now to samples from arbitrary distributions F' belonging to the
domain of attraction of the Type III extreme-value distribution, in the same way
one can use the result that the £ upper spacings when suitably normalized are
asymptotically independent and exponentially distributed (Weissman, 1978).
When, as is often the case, an unknown scale parameter o is present, it is shown
here that one can construct a natural set of scale-free spacings by using
consecutive estimators 6; of o analogous to the exponential case. The consistency
of these estimators, proved in the appendix, certainly guarantees the asymptotic
independence and exponentiality of these quantities, but one would anticipate
superior approximations if one were to use the exact distributions available in
the exponential case. The method of proof here, based on a well-known exponen-
tial representation of spacings, yields a direct proof of Weissman’s result;
furthermore, it enables one to study the joint asymptotic behaviour of &,
spacings where &, & n.
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These asymptotic results and their application to the problem of consecutive
discordancy testing are discussed in Section 2; some details for specific distribu-
tions are given in Section 3. In Section 4 the consecutive test procedure is
applied to some contaminated normal data given by Rosner (1975). Finally, in
order to assess the accuracy of the approximate null distributions, some results
from Monte Carlo investigations are presented in Section 5. These studies
indicate that the approximations are of practical value, and hence provide a
unified approach to the problem of consecutive discordancy testing when loca-
tion and scale parameters are unknown.

2. Asymptotic distributions and applications to discordancy testing.
In this section we introduce the scale-free spacings, present the required asymp-
totic results for these quantities and discuss their application to the problem of
consecutive discordancy testing. Let X),..., X, be independent observations
from a distribution F with continuous density f(x), positive over the range of F.
For ¢t > 1 define the functions

U(t) =tfF'(1—-1¢"), L(t)=t¢tF(¢t7").
Let X),..., X, be the order statistics and define

12
D; = Ci,n(X(i) - X(i—l))’ W= % D;
=2

fori=2,...,n, where ¢; , = nfF~'((i — 1)/n) = (n — i + YU(n/(n — i + 1)).

When F is the exponential distribution with mean ¢, denoted here by E(1 /o),
then ¢; , = (n — i + 1)/0 and the quantities D, are all independent and E(1). It
was shown in Sweeting (1983) that the scale-free spacings D,/W, are also
independent with distribution functions given by 1 — (1 — 2)'"2,i=2,..., n. In
this case it can be seen that W, = Zj,l(X(j) = Xq) + (n - i)( X, — X)) is the
numerator of a one-sided Winsorized estimator W, /(i — 1) of 6. Now let F be
an arbitrary distribution. Notice that if one writes F,(x) = F((x — p)/0),
then, with obvious notation, U,(x) = U(x)/s. Therefore the ratios D, /W,
i =2,...,n,are scale free; we refer to such quantities as scale-free spacings. The
question we wish to investigate is whether the known joint distribution of these
scale-free spacings in the exponential case can be used as a suitable approxima-
tion more generally. When F belongs to the domain of attraction of the Type I1I
extreme-value distribution [see Galambos (1978) for example], it is known that
for fixed % the normalized spacings

(1) (n—i+1)U(n) (X, - X;y), i=n—-k+1,..,n,

are jointly asymptotically independent and E(1); see Weissman (1978) for
example. Moreover, using a representation given by Pyke (1965), one can deduce
the asymptotic independence and exponentiality of any finite number of “central”
D;’s. These results suggest that the exact distributions in the exponential case
may give useful approximations in the general case. Notice that it will be
possible to replace the coefficient U(n) in (1) by U(n/(n — i + 1)), in line with



ASYMPTOTICALLY INDEPENDENT SPACINGS 1487

our definition of D,, whenever U is slowly varying. In fact, under this condition
one can give a rather elementary derivation of Weissman’s result by using the
exponential representation in Pyke (1965); the asymptotic independence and
exponentiality of both upper and/or lower outliers may be deduced from
Theorem 1 below. Moreover, the same method enables one to study the joint
asymptotic behaviour of %, spacings when &, & n (Theorem 3). It is of interest
to note that the slow variation of U is actually a necessary and sufficient
condition for uniform local convergence to the Type III extreme-value distribu-
tion (Sweeting, 1985).

THEOREM 1. Suppose U is slowly varying. Then there is a sequence
(Y; i 2 1) of independent E(1) random variables such that

Dn—k+1/Yn—k+1 ~p 1

as n — o for every fixed integer k.

The consistency of the consecutive estimators of ¢ based on the W, is given in
the next result.

THEOREM 2. Suppose that L and U are both regularly varying with finite
exponents and let k, 1 > 1 be fixed integers. Then

VVn—k+1"VVl_) o
n—-k—-1+1 °*

as n — oo where W, = 0.

The proofs are given in the Appendix. Theorems 1 and 2 immediately imply
the following result for upper scale-free spacings. Suppose L is regularly varying
with finite exponent, and U is slowly varying. Then for fixed £ > 1 the quanti-
ties

(2) Z;=(n—-i+ 1)D, i1/ Wais1s i=1,...,k,

are asymptotically E(1) and independent. In the exponential case it can be
shown as in Sweeting (1983) that these quantities are exactly independent with
distributions P(Z; > z) = 1 — {z/(n — i + 1)}*~*"!, and these distributions may
be used in the general case as an alternative to the E(1) distribution. The
quantities Z; are convenient to use for consecutive discordancy testing of the
“inside-out” type proposed by Rosner (1975), who discussed Gaussian samples.
Specifically, to test for up to 2 upper outliers, one first carries out a test for %
outliers based on Z,. If Z, > A,, a predetermined critical value, the procedure is
terminated and % upper outliers declared. Otherwise one carries out a test for
k — 1 outliers based on Z,_,, and so on. The choice of constants A,,..., A, for a
specified overall significance level is particularly simple if we use the approxi-
mate independence of the Z;, and their approximate sampling distributions. For
a size-a test, choose any constants A,...,A, >0 with ¥ A, =1 and then
determine the A; from P(Z, < A;)=(1— a)M, i =1,..., k. The size «; of the
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ith test is 1 — (1 — a)™ and the overall significance level (= probability of
wrongly declaring one or more outliers) is 1 — [1%.,(1 — ;) = a. The procedure
is illustrated in Section 4 by means of an example discussed in Rosner (1975).

An alternative procedure would be to base the test of 2 upper outliers on
Xn-r+1)/ Wy_p+1, rather than on Z,. This would be a reasonable approach
where “masking” by a (k + 1)th outlier is a possibility; in such a case a test
based on D, _,,, may fail to detect any outliers. The slow variation of U ensures
the convergence in distribution of X, _,,,), suitably normalized (Sweeting,
1985). Furthermore, under the same condition it may be verified that

Y, = U(n/k)[(n —k+ D)X pi1y/Woprr — F'((n-k+ 1)/”)]

has an asymptotic log Gamma (%, k) distribution, and is asymptotically indepen-
dentof Z, i =1,..., k — 1. (When an unknown location parameter is present, a
similar statistic based on X, _,,,) — X;) may be constructed.) It is not, how-
ever, the purpose of the present paper to examine the relative merits of
alternative test procedures, but rather to point out the good approximations
available when discordancy tests are based on the statistics proposed here. It is
also interesting to note that the regular variation of U with finite negative
(positive) exponent is implied by the uniform local convergence to a Type I
(Type II) extreme-value distribution. These facts may be deduced from Theorem
1 in Sweeting (1985).

For testing lower outliers, simply apply the above results to — X,,..., —X,, to
see that if U is regularly varying with finite exponent and L is slowly varying,
then for fixed % the quantities

Zil=(n—i+1)Di+1/(Wn_VVi)’ i=1,...,k,

are asymptotically E(1) and independent. As an alternative, one can use the
exact distributions in the exponential case (which are the same as those for the
Z,). Finally, the case of both lower and upper outliers can be tackled by
“working from the middle.” Thus if L and U are both slowly varying, then
Theorems 1 and 2 imply that for fixed k& the quantities

Li = (n - 21+ I)Di+1/(Wn—i - VVz):
U = (n -2+ 2)I)n—i+1/(VVn—i+1 - VV;)

for i =1,...,k are asymptotically E(1) and independent. In the exponen-
tial case these quantities are exactly independent with distributions given by

P(L;>1)= (1 —{l/(n—2i+ 1)}n—2i—1,
P(U;>u) = (1- {u/(n-2i+2)})" ™

(Sweeting, 1983). One possible procedure would consist of performing a sequence
of tests based on L,,U,, L,_,,... and so on. If a significant result is obtained at
any stage, say at U, then j upper outliers are declared and the lower outlier
procedure continues, based on the approximate distributions of Lj_,,..., L}
where L; = (n — j — i + DD, /(W,_; — W,).
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In practice, one usually wishes to test for the existence of a greater number of
outliers in a larger sample. The main drawback to the above results is that &
must remain fixed as n — oo. It is possible however to obtain stronger results
using the method of proof of Theorems 1 and 2. The following theorem (proved
in the Appendix) is expressed in terms of the upper scale-free spacings; similar
results hold for the ordinary spacings, lower spacings etc.

Let a > 0 be the predicted overall size of a consecutive discordancy test for &,
upper outliers based on exponential distributions; that is

]. _a=P(Yn_i+1§xi’n,i= 1,...,kn),

where Y},...,Y, are independent E(1) r.v.s and x; ,, i=1,..., k,, are the
critical values. Let «; , = P(Y,_,., > x; ,) = e *», the size of the single test
basedon Y, ;..

THEOREM 3. Suppose that L is regularly varying with finite exponent and
that U is slowly varying. Let k,, = [(1 — w)n] for some m > 0. Then under the
condition

kn
(3) Y. o}7,? bounded for some & > 0,
i=1

one has
P(Z,éx i=1,...,kn)_)1_a

i,n

asn — oo.

Thus if a fixed proportion of outliers is to be investigated, the above result
tells us that, provided the sizes of consecutive tests satisfy (3), the size of our
approximate test will be asymptotically correct. Note that [1%,(1 — a; ,) =
1 — a implies that 0 < (1 — a)|log(l — &)| < Xf,a; , < log(l — &)| < c0. In
particular, if a; , = a; then 2 ja; < 00 and we require 2. ,a} ~° < o0, which will
of course be the case for a large choice of sequences («;). In many cases, however,
where «; , depends on n, condition (3) is not satisfied; generally there needs to
be a few terms which “dominate.” In particular, we see that if max, _; ., @; , = 0
then (3) cannot hold. The extent to which (3) may be weakened would appear to
the author to depend on the underlying distribution F, and it is conjectured that
Theorem 3 cannot generally be improved.

3. Specific distributions. We briefly discuss some of the main distributions
for which the procedures of the preceding section are available. In each case we
give expressions for the constants c; , appearing in the definition of the D;’s and
consider the variation of the functions U(¢) and L(t).

Normal distribution. Here U(t) ~ (2log t)!/?, so by symmetry both U and L
are slowly varying, and c; , = exp(— L@®~Y(i — 1)/n)}?). One can therefore
readily construct consecutive tests for upper and /or lower outliers in the case of
a normal population with unknown mean and variance. Consecutive discordancy
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tests for normal populations discussed in Rosner (1975,1977,1983), Hawkins
(1979) and Prescott (1979) rely on Monte Carlo evaluations of percentage points,
which become computationally prohibitive for large values of k.

Weibull distribution. Suppose P(T > t) = exp(—{At}?) where A,y > 0 are
unknown, and let X = log7T. Then X ~ F((x — p)/o) where F(x) =
1 —exp(—e*), =77, p= —logA. Here (taking p =0, o =1) U(t) = logt
and L(¢) = (¢t — llog(¢/(t — 1)) are both slowly varying, and ¢; , =
(n — i+ Dlog(n/(n — i + 1)). Both lower and upper outliers may therefore be
tested.

Alternatively, suppose that y is known, but that there is possibly an unknown
location parameter », i.e., P(T > t) = exp(—A{t — »}¥). Taking » = 0, A = 1, we
have U(t) = y(log t)»~Y/7, which is slowly varying, and L(t) ~ yt*/”, which is
regularly varying with exponent y~!. Thus in this case one is only able to apply
the procedure for upper outliers.

Logistic distribution. Here F(x) =1 — (1 + e*)'and U(¢) = (¢t — 1)/t. Thus,
by symmetry, U and L are both slowly varying, ¢, ,= (i — 1)(n — i + 1)/n,
and one can test for both upper and lower outliers.

Gamma distribution. Suppose f(x) « (x — »)" 'exp(—A{x — »}), A >0,
and the shape parameter y > 0 is known. Taking » =0, A =1 one finds
that U(t) > 1 and L(t) ~ TA + y)!~V¢/7, which is regularly varying
with exponent 1/y. Upper outliers may therefore be treated on taking
¢; n = {FX(i — 1)/n)}"‘exp{—F~Y((i — 1)/n)}. If the location parameter » is
also known, it is possible to test for both upper and lower outliers by transfor-
ming to X, = log X. Then Uy (t) ~ F"'(1 — ¢t ') and L,(¢) ~ T'(1 + v), which are
both slowly varying.

4. An example. In order to illustrate the procedure in the normal case and
also to compare it with the extreme studentized deviate (ESD) many outlier
procedure proposed by Rosner (1975), we consider the simulated data given by
Rosner. Twenty pseudo-random N(0,1) deviates were generated and two per-
turbed samples created. For perturbed sample A, 5 was added to x,,, while for
perturbed sample B, 5 was added to both x,4 and x,,. Rosner applies the ESD
procedure for up to two upper outliers to each of the three samples. Here we
apply a consecutive test based on the upper scale-free spacings; for illustration
and comparison with Rosner, we take A; = A, = 0.5.

The critical values are calculated from (1 — A, /{n — i + 1})*"i"! = ;, where
a,=1-(1- a)™, i =1,2 and «a is the overall size of the test. For a« = 0.05 we
find A, = A, = 3.69, and for a = 0.01, we have A, = 5.10, A, = 5.09. The values
c; , are calculated from the normal scores as given in Section 3. For the original
uncontaminated sample we find W, = 2.693, D,, = 0.220 and D,, = 0.039. From
(2) the consecutive test statistics are therefore Z, = 1.55, Z, = 0.29 and we
declare no outliers present.
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TABLE 1

Probability of declaring (i) 0, 1, 2 or 3 outliers in a consecutive test based on 5000 random
samples of size n = 50; (ii) 0, 1 or 2 outliers in a consecutive test based on 5000 random
samples of size n = 20

Number of outliers declared

n =50 n=20
0 1 2 3 0 1 2

Predicted (exact for

exponential (U)) 0.950 0.020 0.015 0.015 0.950 0.025 0.025
Gamma (U), shape = 2 0.956 0.018 0.011 0.015 0.952 0.024 0.024
Gamma (U), shape = 3 0.960 0.014 0.014 0.012 0.962 0.018 0.020
Logistic (Uor L) 0.952 0.020 0.013 0.015 0.964 0.018 0.018
Normal (U or L) 0.969 0.008 0.011 0.012 0.968 0.014 0.018
Weibull (U), shape = 2 0.964 0.012 0.011 0.013 0.964 0.017 0.019
Weibull (U), shape = 3 0.970 0.009 0.009 0.012 0.970 0.013 0.017
Log—-Weibull (L) 0.954 0.018 0.012 0.016 0.952 0.024 0.024
Log-Weibull (U) 0.973 0.007 0.010 0.010 0.976 0.011 0.013

L = lower outliers, U = upper outliers.

For perturbed sample A, the corresponding quantities are Wy = 2.946, D4 =
0.066, D,, = 0.664 giving Z, = 0.43 and Z, = 3.68, which is very nearly signifi-
cant at the 5% level, indicating one upper outlier. For perturbed sample B,
W,o = 4.214, D,y = 1.129, D,, = 0.287 giving Z, = 5.09 and Z, = 1.28. Thus Z,
is just significant at the 1% level, and there is strong evidence of two upper
outliers. The corresponding test statistics based on the ESD procedure of Rosner
(1975) lie above the 5% and 1% critical values (as calculated by Monte Carlo) for
samples A and B, respectively, suggesting that the ESD procedure is slightly
more sensitive. However, the Monte Carlo results presented in the next section
show that our procedure is actually conservative, which is likely to be the reason
for the apparent relative inefficiency. The true critical values will be slightly
lower than the approximate values given here, in line with the results from the
ESD procedure.

5. Monte Carlo results. We conclude by presenting some Monte Carlo
results indicating the level of approximation error to be expected for the null
distributions in small to moderate sized samples. Data sets of various sizes were
generated from the distributions discussed in Section 3 and listed in Table 1, and
consecutive discordancy tests based on the scale-free spacings carried out.
Approximate probabilities of rejecting 0,1, ..., k outliers were obtained from the
exact joint distribution of the scale-free spacings in the exponential case, as
discussed in Section 2. The relative frequencies with which the test rejected
outliers over a large number of repetitions were compared with these probabili-
ties for various values of % and a,,..., a,. All computations were carried out on
a PRIME 750 computer, using FORTRAN programmes. The data simulations
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used pseudo-random number and associated routines available on the Numerical
Algorithms Group (NAG) library.

Table 1 presents results based on 5000 random samples of size n = 50 for each
of the indicated cases. The predicted relative frequencies here are the exact
probabilities in the exponential case, taking A, = 0.4, A, = 0.3 and A; = 0.3. The
accuracy of the figures is +0.006 for the overall significance level and + 0.004 for
the individual rejection probabilities (at a 95% confidence level). The best results
here were obtained from the logistic distribution and the lower tail of the
log—Weibull distribution (equivalently, the upper tail of the Gumbel distribu-
tion). The worst case was the log—Weibull, upper outliers test, which gave an
overall significance level of approximately 3%. However, in the poorest cases the
tests were always found to be conservative. These results can be improved upon
slightly by using alternative arguments in the function U of Section 2; for
example, by replacing i — 1 by i — ;. The optimal choice of argument does
depend on the underlying distribution, however, although i — 1 appears to give
generally good results. Corresponding results are presented in the same table for

= 20 and k = 2, taking A; = A, = 0.5, and it can be seen that the approxima-
tions are still quite acceptable. Again, the log—Weibull distribution (lower tail)
fared well here, as did the Gamma distribution with shape parameter 2.

The difference between using an exponential or a Beta approximation will be
most marked, of course, for smaller sample sizes. For example, in the normal case
when n =10, k=3 (A, =04, A, =03, A; =03 as before) an exponential
approximation gives a true overall significance level of less that 1% (based on
5000 repetitions) when supposedly testing at the 5% level. The true level using
the Beta apprommatlon is just under 3%, which is surprisingly good considering
the small sample size.

APPENDIX

Proofs of asymptotic results. The joint asymptotic distribution of £ upper or
lower spacings was obtained by Weissman (1978), from which the joint asymp-
totic distribution of the D, may be deduced using the slow variation of U and
Lemma 2 in Sweeting (1985). For the joint asymptotic distribution of the
scale-free spacings it then suffices to show that (W,_,., — W))/(n—k =1+ 1)
is a consistent estimator of o for fixed k& and /. Under appropriate conditions this
may be deduced from general results on linear combinations of functions of order
statistics in Chernoff et al. (1967). However, we shall give an elementary
argument based on an exponential representation of the spacings of a general
distribution. Moreover, this approach is a very natural one for the study of the
joint asymptotic distribution of the extreme spacings, and it is possible to study
the asymptotic behaviour when the number of spacings is not fixed.

Let Y,,...,Y, be independent E(1) random variables and let U, =
H(Z‘;lY}/(n —J + 1)) where H(z) =1 — e~ ? is the E(1) distribution function.
Note that the U, are the order statistics from a uniform [0,1] sample. Pyke
(1965) gives the following representation of the spacings of F' when F possesses a
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continuous density f positive throughout its range:
. -1
(4) X(i) - X(i—l) =(n—-i+ 1) Yir(Ai)’

where U,_, < A; < U; and r(u) = (1 — u)/f(F ' (u)) = [U(@ — u)"")] ! in our
notation. Set B; = (1 — A;)”!; then (4) becomes

(n —-i+ I)U(Bi)(X(i) - X(i—l)) =Y.

Let &, = (i — 1)/n. Since E(U;)) =i/(n+ 1) and B;= (1 — U;)7}, it is reason-
able to expect that under suitable conditions U(B;) may be replaced by
U(1 — &)Y for large n. We need the following two simple lemmas.

LEMMA 1. M, =maxy (1 —§,)B;— 1| »>p0, where R, (e) = {i: 1 <i<
[(1 — e)n]} and e > 0.

Proor. We have M, < (maxp )|4; = &1)/(1 — Uyi—,,), and the result
follows immediately from U,_, < A, < U; and the Glivenko—Cantelli lemma
max, .; . ,|U; — (i/n)| »p 0.0

LEMMA 2. For all n > 0 there exist positive constants c,, ¢, such that
n
PlN{e;<(1—§)Bi<cy}|<1-1
i=i
for all n.

PRroOOF. All maxima are taken over 1 < i < n. Let V; = —log(1 — U;); then
the V, are the order statistics from an exponential sample, and the lemma
will follow if we prove that max|V, — log(n/(n — i + 1))| is stochastically
bounded. The representation V; = YooY/ (n—j+1) gives p,=EV) =
Tion—j+ D7 k=X (n-j+1D)?<2n-i+1)7" and ;4=
6 i_(n —j+1)"* <8(n—i+1)7% where k; , is the rth cumulant of V. It
follows that E(V, — p;)* = k; 4 + 3k75 < 20(n — i + 1)~* and so

P(max|V; — p;|>¢) < Y P(|V, — p;| > c)

1=1
<c* Y EV,-p)' >20ct Y k2
i=1 k=1
Thus max|V, — p,;| is stochastically bounded, and the result follows since
log(n/(n —i+ 1)) —p;l <1lforalli=1,...,n.0

We now give the proofs of Theorems 1-3 stated in Section 2.

PrOOF OF THEOREM 1. Let 7 >0 and %, the set on which 0 <¢, <
(1—-¢)B;,<cy<oofori=1,...,n[weactually only need ¢, < (k/n)B,_,., <
¢, here]. Then

Yn—k+1/Dn—k+1 = U(n/k)/U(Bn—k+1) - 1’
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with probability one on %,, since U(¢)/U(tx) > 1 as ¢t > o uniformly on
compact intervals of R* from the slow variation of U. We can therefore choose

ny so large that |Y, ,,,/D, ,.,— 1| <% on %, for n>n, and hence

P(Y, ,.1/Dy_ps1— 1] >n) < P(%) < 7 and the result follows. O

Proor oF THEOREM 2. We show that

n—k+1 n—k+1

(5) R,= X D/ X Y, -pl

i=0+1 i=1+1

as n — oo, from which Theorem 2 follows. Let 0 <& <} and write &, =
{i:1+1<i<n-Fk+1}). Wehave

Y |u(a-4) ") uB) -1y,

%04,

+ ¥ (u(-¢&)7")/uB) + 1)y,

AU %,

where
o, ={i:1<i<[en]},
B,={i:[en] <i<[Q1 - &)n],
%,={i: [(1 — e)n] <i<n).
Then for n sufficiently large
R, - 1| < max|U((1 - &) ) /U(B,) ~ 1]

(6) +J21a)(;n(U((l —Si)_l)/U(Bi) + 1 (ng /ZY)
=1, +dJ, say.

I, -»p0 follows from Lemma 1, since U(x) is uniformly continuous and
inf U(x) > 0 over compact sets of (0, o) (because f is continuous and positive
throughout the range of F'). Let n = ¢ and %, be the set on which 0 < ¢, <
(1-§)B,<cy<c0,i=1,...,n Then on %, M, = maxU((1 — &) 1)/U(B,)
is bounded a.s. This follows from the regular variation of U and the fact that if
S(t) is slowly varying then S(#x)/S(¢) - 1 as ¢ > oo uniformly on compact
intervals of R*. Similarly M,; = maxU((1 — £,)"')/U(B;) bounded follows by
considering the variables —X;, i =1,...,n and noting that L(¢) = U"(t),
where U~ is the function U for the variables —X,. Finally, using Markov’s
inequality,

(y%:g Y, > ug;Y) < ZenE(z::Y)_l/u s.c5e/u,

and so limsup,_  P(|R,— 1| > u) < cge/u + ¢ and (5) follows since ¢ was
arbitrary. O
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ProoF oF THEOREM 3. We first show that
(7) max IY/ S~ 1o

i>[7n

We have

i

Z /(i = 1)}

Y/Z, i = [U(Bi)/U((l B gi)_l)][ ZilzDJ Z—ley;

and we consider each term in square brackets in turn. The notation here is taken
from the proof of Theorem 2.

(a) Let E; = |U(B))/U(A — &)~ ")|; we show that max,. [, E; —p 0. First,
max g E; - p 0 since I, — p 0 from the proof of Theorem 2, and it suffices to show
that max¢ E; —p 0. But on the set %, we may choose ¢ so small that E; < 7 for
all i € %, since U(tx)/ U(t) > 1 as t > oo uniformly on compact 1ntervals of
R* Hence P(maxy E; > 1) < P(#,) <7 as required.

(b) We show that R/ = max;. [,,1|L5-,D;/T) Y, — 1| =p 0. Take
e < 3m. Inspecting the proof of Theorem 2, we see that R/ is less than the
right-hand side of (6) on replacing X5 Y; by X4 Y, where B, = {i: [en] <
i <[7n]} and, exactly as in the proof of Theorem 2, we find P(ZM ve,Y; >
uXgY,) < c;e/(um), and hence R}, —p 0.

(c) We have
p m[ax]ZY/(z—l)—l >u)< Y P ZY}—(i—l)>(i—1)u)
i>[7n i>[7n] j=2

<9t Y (i-1)?% -0
i>[7n]
as n — oo, using Markov’s inequality and E(T — a)* = 3a(a + 2) when
T ~ T(a,1). Thus max;. [, |IZ%_,Y;/(i — 1) — 1| -
The convergence in (7) now follows from (a), (b) and (c).
Let 0<e <38, T,=max, (Y, ;,/%;,) and write A;=P1<T,<
1+e¢), A,=PQ1 — ¢ <T,<1). Standard manipulations give

P(max(Z,/x,,) < 1) = (1= o)
®) =
< max(A}, 87) + P(max|(Y, .1/Z) — 1] > ),

recalling that 1 — a = P(T, < 1). Suppressing ¢ < k, in all sums and products
and writing «; , = a; for brevity, we have

At=(1-a)[(P(T,<1+¢)/P(T,<1)) - 1]
= (1 - (1 - «*) /(1 - &) = 1]
= (1 - a)[exp( Llog{1 + a;(1 — af) /(1 — @)}) — 1]
<(1- a)[exp(aZaJlog a;l/(1 - ai)) - 1] < cge
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(using 1 — e™* < x, x > 0) provided Xa;|log «;| is bounded, since all a; < a. Also
8;= (1= )1 - (P(T, < 1-&)/P(T, < 1))]
= (1 - a)[1 — exp(— Llog{(1 — &,)/(1 — ai~*)})]
< (1 - ) Llog{1 + ayfa — 1)/(1 - 7))
< ¢y o (exp{e|log a;|} — 1) < cge) @l ?|log a;],

using e* — 1 < xe®, x > 0, and from (7) and (8) the theorem will be proved if we
show that Yo}~ %/2|log «,| is bounded. Let &, = {i: a; , < a} where 0 < a < 1is
any number satisfying a®/?|log a| < 1. Splitting the sum over &, and &, we
have

Yot loga| < Yot +|6, ||log a

&,

n

Za}—s + cyllog al/a,

since ¢,y > Ya; > |&,|a, and the result follows. O

IA

IA
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