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ON THE NUMBER OF BOOTSTRAP SIMULATIONS REQUIRED
TO CONSTRUCT A CONFIDENCE INTERVAL!

By PETER HaL1?

University of North Carolina

We make two points about the number, B, of bootstrap simulations
needed to construct a percentile-¢ confidence interval based on an n sample
from a continuous distribution: (i) The bootstrap’s reduction of error of
coverage probability, from O(n~1/2) to O(n™'), is available uniformly in B,
provided nominal coverage probability is a multiple of (B + 1)~!. In fact,
this improvement is available even if the number of simulations is held fixed
as n increases. However, smaller values of B can result in longer confidence
intervals. (ii) In a large sample, the simulated statistic values behave like
random observations from a continuous distribution, unless B increases
faster than any power of sample size. Only if B increases exponentially
quickly with n is there a detectable effect due to discreteness of the
bootstrap statistic.

1. Introduction. The purpose of this note is to make two points about the
effect of the number of bootstrap simulations, B, on percentile-¢ bootstrap
confidence intervals. The first point concerns coverage probability; the second,
distance of the “simulated” critical point from the “true” critical point derived
with B = c0. In both cases we have in mind applications to ‘“smooth” statistics,
such as the Studentized mean of a sample drawn from a continuous distribution.
We shall indicate the changes that have to be made if the distribution of the
statistic is not smooth.

To make our point about coverage probability, recall that if we conduct B
bootstrap simulations, the resulting statistic values divide the real line into
B + 1 parts. Therefore, in principle, confidence intervals whose critical points are
based on B simulations have coverage probabilities close to nominal levels
b/(B+1), for b=1,..., B. If the sample size is n and B = co, then the
“Edgeworth inversion” effect of the bootstrap argument means that true cover-
age probability of a one-sided confidence interval whose desired coverage is «a, is
actually a + 8,(«), and 8, = sup,|8,(a)| = O(n~') (Hall (1986)). This is a notable
improvement over the level a + O(n~1/2) offered by traditional methods. Strik-
ingly, this improvement is available for any value of B, even for fixed B. In fact,
if 8 is the worst possible error between true coverage probability and nominal
coverage probability when only B simulations are used, then 8* < 8, uniformly
in B. Therefore, the worst departure of true coverage probability from nominal
coverage probability using any finite number of simulations, does not exceed the
worst departure using an infinite number of simulations.
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For example, suppose we wish to construct a one-sided 90% confidence
interval. The smallest value of B we can use is B = 9; notice that 90% =
9/(9 + 1). The endpoint of the interval would be based on either the smallest or
largest of the 9 simulations, depending on whether the interval were left-handed
or right-handed. If we let n = o0, but always did only 9 simulations, then the
coverage probability of our interval would still be 0.9 + O(n™'). So even with a
fixed number of simulations, we improve on the traditional coverage probability
of 0.9 + O(n~1?).

This property forms a convenient safety net for the bootstrap algorithm: If a
statistician cannot conduct as many simulations as he would like, he can be sure
that he pays little penalty in terms of accuracy of coverage probability. The
major penalty is in length of confidence interval—if B is small then the true
critical point may stray from its limiting value when B = oo, so that there will
be some tendency for confidence intervals to be overly long.

In addition, B does not have to be particularly large before exact coverage
probability agrees with the theoretical limit as B — oo. For example, if B equals
sample size, then the probabilities only disagree at the level O(n~?). Note that
none of these results directly addresses the problem of small sample size; we are
concerned here with the effect of small size of simulation number. Information
concerning the effect of small sample size may be found in Loh (1987) and Wu
(1986).

We shall investigate these properties in Section 2. As part of our study we
shall give an explicit formula for the second-order term in an expansion of
coverage probability for the case of Studentized mean. That formula makes it
clear that if the sample is actually normally distributed, then even using a fixed
value of B, the coverage probability of a one-sided bootstrap confidence interval
for the population mean differs from the nominal level by only O(n~2).

We shall also investigate the effect of the size of B on critical points.

"Remember that the distribution of the bootstrap statistic is discrete. Beran
(1984), among others, has pondered the use of smoothing techniques to overcome
discreteness. In Section 3 we shall show that under a very weak smoothness
assumption, even weaker than continuity, the distribution of the simulated
bootstrap statistic behaves like a continuous distribution with -a density uni-
formly close to the standard normal density. In fact, the error in this continuous
approximation to the discrete bootstrap distribution is of order n~* for all
A > 0. We shall show that the number of bootstrap simulations, B, has to be an
exponentially large function of sample size before the discreteness of the bootstrap
distribution becomes apparent. From a practical point of view this suggests that
there is usually little point in artificially smoothing the discrete distribution of
the bootstrap statistic prior to constructing confidence intervals. The discrete-
ness of the bootstrap statistic is so small as to be unnoticeable in many cases.

On the other hand, if the sampling distribution is lattice, then it is easily seen
that the atoms of the bootstrap statistic are of order n~'/2, and then it is
essential to smooth the distribution of the bootstrap statistic. Our results on
coverage probability have analogues for lattice-valued statistics, but it should be
remembered that in that case, rounding error reduces approximation order from
n~! to only n~ 12,
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We shall confine attention to one-sided, percentile-¢ confidence intervals. The
bias-corrected percentile technique (Efron (1979)) is suitable only for two-sided
intervals, and in that situation traditional methods, percentile methods and
bias-corrected percentile methods all give coverage probabilities whose errors are
of order n~!. There, the advantages of the bootstrap cannot be reported so
clearly in terms of coverage probability. Our results about the influence of B on
coverage probability do not extend to bias-corrected methods.

Related work includes that of Beran (1982, 1984), Singh (1981) and Babu and
Singh (1983), who have studied large-sample properties of the bootstrap al-
gorithm. The latter two papers are concerned with conditional Edgeworth
expansions. In Section 2 we shall briefly mention Edgeworth expansions, but
those considered here are unconditional. The conditional expansions are sugges-
tive of unconditional ones, although it is by no means an elementary matter to
derive one from the other.

2. Coverage probability. Let § = 6( X,,..., X,) be a Vn -consistent esti-
mator of a parameter 6, based on a random sample ZF={X,...,X,}. Let

n 6% X,,..., X,) be a consistent estimator of the variance of é We shall
consider conﬁdence intervals for 8 based on the statistic T = n'/%(§ — 0)/6.

Let Y,,...,Y, be independent and identically distributed, conditional on %,
with distribution PY=X|Z)=n"11x< j < n. The bootstrap statistic is ob-
tained by usmg the sample Y= {Yl, Y,} in place of . Thus, we consider
0* = 4(Y,,...,Y,), 6*=6(Y,,...,Y,), and T* = n'/2(§* — 6)/6*. We may work
out the dlstrlbution of T*, condltlonal on %, to arbitrary accuracy by means of
simulation. Thus, we may define

t,=sup{t: P(T* < §%) < a},

which is the bootstrap approximation to that point x, such that P(T < x,) = a.
For example, the “optimal” but unattainable 1nterval I,=[0-n"" 2p )]
covers 6 with probability «; the interval I, = [ — n™V/ 2t 0, 00) covers § with
probability a + O(n™1).

In practice, the value of ¢, is usually estimated by simulation. Conditional on
Z, let T%,..., T} be independent copies of T*. Arrange them in ascending
order: Tj§ < --- < T}, Suppose we select T;}, ;, as our approximation to ¢,, for
agiveninteger 0 < v < B —1.Let p = P(T* < T\%), and conditional on %, let
N have the binomial Bi(B, p) distribution. In place of I,, we would use the
interval I, = [§ — n~V/ *Ti¥, 16, o). Conditional on %, the chance that I, covers
0 is

P(T < T;¥,,|%) = P (at most » out of T}¥,..., T are < T|%)
> (B) _; B-j
=P(N<vx)= ) (j)p’(l -p) .
j=0

Therefore, the exact, unconditional coverage probability of I,, is

(2.1) a(v,B)= ¥ (?)j:uf(l — ) dP(p < u).

Jj=0
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Had we been able to do an indefinite amount of simulation, we would have
taken » ~ aB as B — oo, and obtained the interval I,, whose coverage probabil-
ity is

lim a(v, B) = P(p < a).
B— oo

Our aim is to determine how close a(v, B) is to its limit P(p < a).

Hall (1986) has described expansions for the distribution of p in general
circumstances. Those results show that p has asymptotically a uniform distribu-
tion, and that

(2.2) P(p<a)=a+n'R,(a),

where R, is bounded uniformly in n > 1 and 0 < a < 1. Define

Glu)= (I;)uj(l — u)B,

j=0
Then by (2.1),

(2.3) a(v,B)=(r+1)(B+1) "'+ n_lfolG(u)an(u). ‘

We call (v + 1)(B + 1)"! the nominal coverage probability of confidence inter-
val I,. To simplify the integral in (2.3), let 7 = 7(»,v) be the solution of
G(1) = v, for 0 < v < 1. Then since R (1) = 0,

fOlG(u)an(u) = j(;lan(u)j(;G(u)dv= folduflan(u) - —foan(T)du,
and so

(2.4) a(v,B)=(»+1)(B+1)"" - n_lj(;an(fr)dv.

It is clear from (2.4) that if we seek a confidence interval whose coverage
probability is a multiple of (B + 1)}, then the worst error we commit if we
simulate only B times is no more than n~'sup,|R (a)|. In view of (2.2), this is
the worst error committed if we simulate an infinite number of times. In this
sense there is nothing to be gained, in terms of coverage probability, by
simulating often. If we are after a 95% interval, and are not overly concerned
about interval length, we might simulate B = 19 times and take » = 18.

To investigate this phenomenon a little more deeply, we shall examine an
asymptotic formula for R,(a). Here it is convenient to concentrate on a special
case, such as Studentized mean. There, &= {X,,..., X,} is a scalar random
sample from a distribution with mean p and variance ¢ and 6 = p, = X =
n~'2X,, and 6% = n7'3(X, — X)>2 The bootstrap argument may be used to set
confidence intervals for u without knowing ¢2. Techniques developed in Hall
(1986), although now requiring much more tedious algebra, give us

R () = ¥1(2)$(2a) + n7V25(2,)9(2,) + O(n7)

uniformly in «, where ® is the standard normal distribution function, ¢ = ®’, 2,
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is the solution of ®(z,) = a,
¥i(2) = $(3N% = A4)2(1 + 22%),
Yo(2) = =A% (1 + 22%)(2* — 182% — 39)
—N{&(1 + 22%) (2% + 427 — 23) + £2%(427 - 1))
+A A {35 (1 + 22%)(52* + 227 — 139) + 2°(362% — 23)}
—Ns{Ha (1 +22%) (2" - 627 — 33) + 52%(2% - 3)},
and A; is the standardized jth cumulant; for example, A3 = E(X — p)’%~° and

A, = E(X — p)%~* — 3. An outline of the argument is given in Appendix 1. For
simplicity, define @,(a) = ¢,(z,)9(z,); then

(2.5) P(p<a)=a+n'Q,(a) + n%?Q,(a) + O(n"?)
uniformly in a. From (2.4) we obtain:
a(v,B)=(r+1)(B+1)""

+n7 ['Q(r)do+ n Y ['@y(r) do + 0(n?)

uniformly in 0 < » < B — 1 and B > 1. A little asymptotic analysis based on the
normal approximation to the binomial shows that

m(v,0) = B — B"V%(B(1 - B)}?2, + B71L(1 - 2B8)(1 + 222) + o(B7Y),

where B = (v + 1)B~!. This expansion holds uniformly in values v € (B2,
1 — B 2). Substituting into (2.6) and noting that [z, dv = 0, we get

a(v,B)=a +n7'Q,(a’) + n7¥%Qy(a’) + O(n"'B~! + n72),

where o’ = (v + 1)(B + 1)~ 1. This expansion is virtually identical to (2.5).

If B is chosen so that nominal coverage probability equals «, then a(», B) and
P(p < «) agree to order n~ %2 if B is of larger order than the square root of the
sample size. An analogous phenomenon has been noted for randomization tests,
in which context B is the number of “simulations” in the randomization
procedure. See Vadiveloo (1982, 1983).

These comments do not amount to a suggestion that B can be taken
relatively small without penalty. Note the comment in Section 1, that small
values of B can result in excessively long confidence intervals.

(2.6)

3. Critical point. For the sake of definiteness we shall concentrate on the
Studentized mean. We shall impose Cramér’s smoothness condition on the pair
(X, X?):

(3.1) limsup |Eexp(isX + itX?)| < 1.

[s| + ¢ — o0
This condition holds for any random variable X whose distribution has a
nontrivial continuous component, and also for certain singular distributions.

Our initial aim is to investigate the smoothness of the distribution of T *,
conditional on Z. Of course, T'* has a discrete distribution, with atoms
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determined by the sample 2. We may artificially smooth that distribution by
adding small, continuous errors to the simulated sample points Y,. For example,
take />0 and let N,,..., N, be independent N(0, n %) random variables
independent of 2 and #. (Remember, = (X,,..., X,} and & = {Y,....Y,})
Set Z,=Y,+ N,Z=n"'3Z, and

T'=n2(Z -X)/(n"1322 - 22)"".

The presence of the smooth perturbations N, means that conditional on & , T’
has a continuous distribution with density g, say. Given any A > 0 we may
choose [ so large that with probability 1,

(3.2) P(T' - T* >nNZ) =0(n?)

as n — oo. In this sense, the discrete random variable T * may be approximated
by a continuous variable T’, with an error of order n ~* for arbitrarily large A.

At first sight this approximation seems spurious, and the reader is justified in
being very skeptical. It seems likely that the density of g will closely track the
atoms of the discrete distribution of T *, and so be quite unsmooth.-After all, the
continuous approximation is only supported by minute perturbations N,, which
are shrinking to zero at a rate of n™! for arbitrarily large /. However, the
theorem below shows that the density g is actually quite smooth. In fact, no
matter how large the value of /, g uniformly approximates the standard normal
density ¢.

THEOREM 3.1. Assume condition (3.1), and that E(|X|**%) < oo for some
e > 0. Then for each l > 0,

(3.3) sup  [g(x) - ¢(x)| -0

— 00 <x<oo

almost surely as n — .

The proof uses standard techniques of Fourier inversion, and will be outlined
in Appendix 2. The key to this result is the fact that the order of the
approximation in (3.2) is not required to be exponentially small. There exist
constants c, decreasing very rapidly to zero such that, if (3.2) holds for a
continuous variable T’ and with ¢, replacing n~*, then the approximation at
(3.3) breaks down. In that case, the density g does track the atoms of T* too
closely.

Theorem 3.1 implies that the simulated bootstrap values behave like values
from a continuous distribution, provided B is not an exponentially large func-
tion of n. For example, suppose we conduct B simulations and use Tk, . as our
approximation to the true bootstrap critical point ¢,. Assume » is chosen so that
v = aB + o(B'?) as B — oo; this is quite reasonable, since we would usually
have » = aB + O(1). Then we have:

COROLLARY 3.2. If B increases no faster than n?, for any fixed p > 0, then
as B and n — oo the conditional probability P{B/*(T*, | — t,) < x|} con-
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verges almost surely to the probability that a normal variable with zero mean
and variance 62 = a(1 — a)/9*(z,), does not exceed x.

Therefore, BY/*(T;*,,, — t,) has a limiting N(0, 0*) distribution, conditional
on X and so also unconditionally. This is the limiting distribution of the ath
quantile from a continuous distribution whose density converges uniformly to
the standard normal density. The result will fail if B increases too quickly, but
B has to increase faster than any power of sample size before the discreteness of
the distribution of T* becomes apparent. Therefore, provided the sampling
distribution is continuous, we seldom need to smooth before constructing critical
points.

To prove Corollary 3.2, let y=t,+ B /% and ¢=P(T* <y|%¥), and
observe that with probability 1,

P{BI/Z(T(I_H) — ta) < x|£'} = P(T(,ﬁ.l) < ylfl')

=1-®[(v+ 1~ Bg){Bq(1 - q)}) *] + o(1),

using the normal approximation to the binomial. If we show that with probabil-
ity 1,

(3.5) g =a+ B V%¢(z,) + o(B"1/?),

then it will follow that the right-hand side of (3.4) converges almost surely to
®[x¢(2,){a(l — a)} /2], as required. Since B increases no faster than n?, we
may choose A > 0 so large that B/n* — 0, and let T be as in (3.2). In view of
(3.2), result (3.5) will follow if we show that for each —oo < x < o0, and with
probability 1,

(3.6) P(T' < t,+ B™%x|%) = a + B""%x¢(x,) + o( B~'/?).
But Theorem 3.1 implies that
(3.7) P(T' <t,+ B Y%|%) = P(T' < t,|%) + B"*x¢(t,) + o(B™?).
It also follows from the theorem, and from the definition of ¢, that

P(T' <t )*¥)<P(T"<t,— 2B '|%) + O(B™})

<P(T*<t,— B Y%) +o(B'?) <a+o(B "),

and likewise P(T’ < t|%) > a + o(B~/%). Therefore, P(T’' <t,|%)=a+
o(B~1/?). Result (3.6) is now immediate from (3.7).

APPENDIX 1

Verification of (2.5). The proof is similar to Hall (1986), although with
considerably greater complexity. For easy comparison with classical literature,
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we assume sample variance has divisor n — 1, not n. Notice that (2.5) is
invariant under changes of scale of T'. The only smoothness condition required is
(3.1). To identify functions @, and @,, let T be the Studentized mean and let
7,7y, M3 be polynomials defined by the following inverse Cornish-Fisher expan-
sion:
P{T <x +n "?m(x) + n"'my(x) + n=¥?my(x)} = ®(x) + O(n"2).

Formulae may be derived using results of Geary (1947); for example,

my(x) = z{%)\%(4z2 —1) = HA,(22-3) + 1(22 + 1)}
Let II; denote the version of #; in which A ; is replaced by its sample estimate
A ; for example, A, =6"*n"'3(X, - X)* - 3. The functions Q,, @, are obtain-
able from the relation

P(T <z, + n" V11 (2,) + n"'Tl,(2,) + n=%2My(z,)}
(A1) =P(p<a)+ 0(n?)
=a+n'Q(a) + n732Q,(a) + O(n2).
First find the cumulants of the random variable
S(e) = T = n" I (2,) — n~'y(2,) — n=¥’TIy(z,)

to order n~?% then use the cumulants to obtain an Edgeworth expansion of
P(S(a) < x} to order n~? and finally set x = z,, to obtain formula (2.5) via
(A.D).

APPENDIX 2

Proof of Theorem 3.1. Without loss of generality, E(X) = 0. Let W, =
Zi - Xa w? = E(Wffl‘%’)’ Ui = (VVL’ 1/Vi2 - w2)7 U= n—1/22Ui7 2= Var(Ullg), f
be the density of U conditional on %, f, be the conditional density of the
bivariate normal distribution with zero mean and covariance = and ¥, X o be the
conditional characteristic functions of f, f,, respectively. Notice that
(A2) g(x) = foo {@+n12%)(1 + n"1x2)_3}1/2w3f{wu(x, v), w?} dv,

—pl/2
where u(x, v) = x{(1 + 7)1 + n”'x%)"1}'/2 Define g, by (A.2) but with f,
replacing f. It is easily proved that sup|g, — ¢| = 0 a.s., and so it suffices to
show sup|g — g,| — 0 a.s. For this, we may show

sup(l + [y|?)[ f(y) — fo(y)| = 0 aus.

That result follows by Fourier inversion if we prove that for nonnegative integer
vectors y = (v, ¥y) With v, + v, <2, [|[DY(x — x,)| = O as., where D is the
differential operator. We treat only y = 0; other cases are similar.
Characteristic function manipulations common to estimates of rates of con-
vergence show that for some small n > 0 and for all sufficiently large n,

sup | x(t) — xo(t)[e"" < n~'n7,
|t] <qn'/?
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with probability 1. Therefore, it suffices to prove

(A.3) / Ix(t)|dt - 0 as.
[t >nqn'/?

If N is N(0,1) then Eexp(isN + itN?%) = p(s, t)p,(t), where p(s,t) =
exp{ —s%(1 + 2it)/2(1 + 4t2)}, |po(£)| = (1 + 4¢%)~ /% Thus it is readily proved
that (A.3) holds if the integral is taken over |t| > n*, for sufficiently large A. We
show finally that for all A > 0,

(A4) n Alx(nl/zt) |dt -0 as.
n<|tl<n

If t=(¢,¢,) and |ty| > n? then |x(n'/2t)| < |py(n~2t,)|" < 57"/%, and so
the contribution of this case to the integral in (A.4) is o(1). Henceforth we
assume |t,| < n? in (A.4). Observe that

Ix(n'2t)]"" <

n
nty exp{ithj + ity X, — )_()2}
(A.5) 7=

Xpl{tln_l +2(X; - X)t,n, t2n_2’}

Let £(u,, ug, v, x) = exp{iux + iuyx® — o(u; + 2uyx)?}, s, = (¢4 — 26, X)(1 +
4n~*2)" " and s, = ty(1 + 4n~*¢Z)"". The right-hand side of (A.5) equals
|€,.(8,, 83, €)|, where ¢ > 0 depends only on n and ¢,, and

gn(ul’ Uy, D) =n"! Z i(ul, Uy, 0, Xj)~
j=1
Let £y(u,, Uy, v) = E{é(uy, uy, v, X)}. By (3.1),
§=8(n)= sup |&(uy,uy0)| <1

[u|>7,0v>0

foreachn > 0. If [u| >, v>0and1 <m < n,

6,07 < (1 +8)/2}" + (1 +8)(1 ~8) I, &ol}
This inequality, the fact that for each fixed m,

m
.

‘(ﬂ }\Elgn(tl, t2, C) — gO(tl, t2, C‘) lm dt = O(n2)\_m/2),
=n
and a change of variable in the integral in (A.4) give us (A.4).
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