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CURVATURES FOR PARAMETER SUBSETS IN NONLINEAR
REGRESSION!

By R. DENNIS COOK AND MIRIAM L. GOLDBERG

University of Minnesota and U.S. Environmental Protection Agency

The relative curvature measures of nonlinearity proposed by Bates and
Watts (1980) are extended to an arbitrary subset of the parameters in a
normal, nonlinear regression model. In particular, the subset curvatures
proposed indicate the validity of linearization-based approximate confidence
intervals for single parameters. The derivation produces the original
Bates-Watts measures directly from the likelihood function. When the
intrinsic curvature is negligible, the Bates—-Watts parameter-effects curvature
array contains all information necessary to construct curvature measures for
parameter subsets.

1. Introduction. Confidence regions for parameters of a normal nonlinear
regression model are commonly constructed by using linear regression methods,
replacing the solution locus with the tangent plane at the maximum likelihood
estimate. Such linear regions are generally easier to construct and comprehend
than corresponding likelihood regions. Likelihood regions, on the other hand, are
not influenced by parameter-effects nonlinearity and generally have true cover-
age closer to the nominal level than do linear regions. Under suitable regularity
conditions and with a sufficiently large sample size, linear and likelihood regions
will be in good agreement, but in any particular problem the strength of this
agreement is uncertain.

Bates and Watts (1980) propose measures of intrinsic and parameter-effects
curvature for assessing the adequacy of the linear approximation: Relatively
small values for both the maximum intrinsic curvature I'" and the maximum
parameter-effects curvature I'" indicate that the linear approximation is reason-
able, while relatively large values for either I'" or I'" indicate that this approxi-
mation is questionable. These ideas are extended and refined by Bates and Watts
(1981), and Hamilton, Bates and Watts (1982). For a review of related literature,
see Bates and Watts (1980) and Ratkowsky (1983). Programs for calculating I'”
and I'" are given by Bates, Hamilton, and Watts (1983).

The material in Bates and Watts (1980) represents an important step forward,
but their method for assessing the adequacy of the linear approximation applies
only to the full parameter vector, as indicated by Cook and Witmer (1985) and
Linssen (1980). It is fairly easy to construct examples where I'" is relatively large
and yet there is good agreement between the linear and likelihood regions for a
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subset of the parameters. One such example is given in Section 2, which also
contains a brief review of the linear approximation and the Bates-Watts
methodology. This inability to assess the adequacy of subset regions reflects an
important gap in our understanding and ability to deal with nonlinear models.

In Section 3 we develop measures for assessing the agreement between linear
and likelihood regions for an arbitrary subset of parameters from a nonlinear
regression model. The measures require the same building blocks as needed for
the construction of I'", and reduce to I'" when the full parameter vector is
considered. Computationally, these measures require little more effort than I'”
itself. Section 4 contains several examples and our concluding comments are
given in Section 5.

Subsequent developments are based on the nonlinear regression model

(1) yi=f(x;,0)+£i, i=1,...,n,

where y,; is the ith response, x; is a vector of known variables, § is a p X 1
vector of unknown parameters, the response function f is a known, scalar-valued
function that is twice continuously differentiable in 8, and the errors ¢; are
independent and identically distributed normal random variables' with mean 0
and variance o2 For notational convenience, let f,(6) = f(x;, 8) and let V denote
the n X p matrix with elements f" = df,/d6,, i=1,...,n, r=1,..., p. Here
and in what follows all derivatives are evaluated at 6, the maximum likelihood
estimate of 6, unless explicitly indicated otherwise.

Various quadratic approximations to be used in the following sections involve
the p X p matrices W,, i = 1,..., n, with elements f,” = 3%f,/36, 36,, r,s =
1,..., p. These matrices can be written conveniently in an n X p X p array W
(Bates and Watts, 1980). The abth “column” of W is the abth second derivative
vector W, with elements f2°, i =1,..., n, while the ith face W, of W is the
p X p matrix consisting of the ith elements of the second derivative vectors W,,.

2. Curvatures and the linear approximation. Let F(6) denote the n X 1
vector with elements f,(#). The standard glliptical confidence region for 6 based
on a linear approximation of F(6#) about # can be written as .

(2) (6: $"VTVs < 5°G},

where ¢ = (¢,) =0 — 0, s* = X(y, — f(0))*/(n - p), G =pF(p,n—p), and
F (v,, v,) is the upper a probability point of an F' distribution with v, and v,
degrees of freedom.

To assess the adequacy of the region in (2), we need the standard quadratic
expansion of F about 6:

(3) F(0) = F(f) + Vo + 16" Wo.

Multiplication involving three-dimensional arrays is defined as in Bates and
Watts (1980) so that ¢" W¢ is an n X 1 vector with elements ¢’ W, i = 1,..., n.
Generally, if F is quadratic over a sufficiently large neighborhood of § and the
quadratic term of (3) is sufficiently small relative to the linear term, the linear
region (2) should be reasonable; otherwise, this approximation may be in doubt.
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Bates and Watts (1980, 1981) implement this idea by first decomposing each
column of W as W,, = P,W,, + (I — Py,)W,, = W], + W]}, where P, is the
orthogonal projection operator for the column space of V. With this decomposi-
tion, the quadratic expansion (3) becomes

(4) F(8) = F(8) + Vo + 16" W'$ + 16"WT9,

where W™ and W™ are the n X p X p arrays with columns W], and W},
respectively.

Next, the adequacy of the linear region is assessed by using the maximum
parameter-effects curvature

llo" Wo||
5 I'" = max—————/ps
(5) IVol|? g
and the maximum intrinsic curvature
¢ W9
6 I' = max————/ps,
©) IVel|? g

where the maximum is taken over all ¢ in R”. Bates and Watts (1980) suggest
that (2) should be adequate if I'" and I'" are both small compared to the guide
c=(F(p,n—p)) 2 When I'" or " is greater than c, the linear approxima-
tion and the circular approximation that is the basis of the curvature measures
both break down within the linear region. Thus, Ratkowsky (1983) proposes that
c¢/2 be used as a cutoff level, beyond which the linear region is presumed
inadequate.

This method, which was designed specifically for normal nonlinear regression,
fits within the larger context of curved exponential families and Amari’s (1982) «
connections. The relationship between the work of Bates and Watts (1980, 1981),
Amari (1982), and others is discussed in detail by Kass (1984).

To demonstrate the importance of extending the Bates—Watts methodology
to subsets of 8, we consider the Fieller—Creasy problem in which the ratio of the
means of two normal populations is of interest:

(7) f(xi’ 0) = olxi + 0102(1 - xi):

where x; is an indicator variable that takes the values 1 and 0 for populations 1
and 2, respectively. For convenience we assume equal sample sizes for the two
populations n, = n, = n/2 and, without loss of generality, we assume that o2 is
known.

The model given in (7) is intrinsically linear so that I'? = 0. Further, Cook and
Witmer (1985) show that

V2o((62 + 1) + ),
8 "= = ,
® 16,1Vn
which may be arbitrarily large depending on 4.
In this case the guide for judging the adequacy of the linear approximation is
¢ = (x(a;2))" % where x(a;v) is the upper a probability point of the x2
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distribution with v degrees of freedom. However, it is clear that standard
metheds can be used to form exact confidence intervals for 6,, the mean of the
first population, regardless of the value of I'". In other words, the linear and
likelihood regions for 8, are identical for all I'".

A similar phenomenon occurs in connection with 6,. Let r = 262x(a; 1)/né2.
Assuming that r < 1, the 1 — a likelihood region for 8, can be written as

~ oy 1/2] /
(9) 6, + {r( = r) + 62} 1 - ).
The level associated with this region is exact. The corresponding linear region is
(10) b, + (r+ rézz)l/z.

Clearly, (9) and (10) will be close only if r is sufficiently small. For any fixed
value of r, however, I'" may be large or small depending on the value of 6,. We
will return to this example at the end of the next section.

3. Subsets. The Bates—Watts curvatures measure relevant local properties
of the manifold defined by F(#). To develop similar curvatures for a selected
subset of 8, we require a submanifold that captures relevant statistical informa-
tion for inference about the parameter subset. Such a submanifold is not
uniquely defined and hence an additional statistical criterion is needed to guide
the selection. Once the submanifold has been selected, curvatures for the sub-
manifold can be constructed in a manner similar to that used by Bates and
Watts (1980) for the ambient manifold. The following development of these ideas
makes implicit use of the inheritance relationship between an affine connection
on a submanifold with that on the ambient manifold. This relationship is well
known in differential geometry (Eisenhart (1964)) and also appears in the recent
statistical literature (Amari (1982), Section 4; Kass (1984)).

Let L(6, 0?) denote the log likelihood for model (1), partition 87 = (87, 6.7),
where 6, is a p; X 1 vector, i = 1,2, and assume that 6, is the parameter subset
of interest. The submanifold that we use is obtained from the likelihood region
for 6, formed by inverting the corresponding likelihood ratio test. To construct
this region, let (g7(6,), 3%(6,)) denote the vector-valued function that maximizes
L(8,,6,,0%) over 8, and ¢ for given 6,. Then after a little simplification the
likelihood region for 6, can be written in the form (cf. Cox and Hinkley (1974),
page 343)

(11) {025 2y, — f:(&(6y), 92))2 < p}

where p, a selected positive constant, is used to set the nominal level. Clearly, the
form of this region is governed by the vector-valued function s(8,) = F(g(8,), 0,).
If A is essentially linear over a sufficiently large neighborhood of 0;, the contours
defined by (11) will be elliptical and we can expect (11) and the corresponding
linear region to agree; otherwise these regions will tend to be dissimilar. To
determine when these regions are in substantial agreement, we investigate the
behavior of 2 by using the method described in Section 2, except that F is
replaced by A which, in combination with Y = (y,), contains essential informa-
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tion on 6,. Thus, in exact analogy with the Bates—Watts development, we will
produce expressions for the curvature of the submanifold defined by A. Where
necessary for clarity, we refer to this as “subset curvature.” Similarly, “subset
parameter effects,” and “subset intrinsic” refer to the decomposition of the
subset curvature into components in the submanifold tangent plane and its
orthogonal complement.

Let a”(6,) = (a;(6,)) = (g7(6,), 6F), let A, denote the p X p, matrix with
elements da;/d0,;, i=1,2,...,p, j=12,...,p,, and let A, denote the
P X p, X p, array with ith face A,;, i =1,2,..., p; the elements of A,; are
32ai/¢902j 30,,, j,k=1,..., p,. We assume that g is a twice continuously
differentiable function of 6,. With these definitions the straightforward quadratic
approximation of A(6,) about 6, can be written as

(12a) h(8,) = F(8) + VA,p,
(12b) + 505 ATWA, ¢,
(12C) + éV((pgAQd’Q),

A

where ¢, = 0, — 0,.

3.1. Refining equation (12). For the quadratic expansion in (12) to be useful,
we need to develop explicit forms for A, and A, to produce a reexpression that
displays the (subset) parameter-effects and intrinsic components of A at 0;. To
avoid interruption, the details of this development have been relegated to the
Appendix. Here we discuss the final form.

The final form of (12) is based on the assumption that the intrinsic curvature
of F at § is negligible. That assumption is somewhat restrictive but it is valid in
the important class of problems where the parameters of interest are nonlinear
functions of the location parameters in a linear model. In any event, we judge
the practical advantages of allowing for substantial intrinsic curvatures to be
minimal since experience has shown (see Bates and Watts (1980) and Ratkowsky
(1983)) that they are typically small. Of course, I'" can and should be evaluated
in practice so that this assumption can be checked.

In the remainder of this paper we use C(M) and C’(M) to indicate the
column and orthogonal spaces, respectively, of the matrix M; the corresponding
orthogonal projection operators will be denoted by P,, and P}, respectively.

In their development of the intrinsic and parameter-effects curvatures for the
full parameter vector, Bates and Watts (1980) found it convenient and revealing
to work in transformed coordinates. Similarly, the quadratic expansion (12) is
most easily understood in terms of these same transformed coordinates: Let
V = UR denote the unique QR factorization of V where R is upper triangular
and the columns of the n X p matrix U form an orthonormal basis for C(V).
Next, partition R as

_ R,y Ry,
(13) R = ( 0 Ryl

where R, is p; X p;, i = 1,2. Transformed coordinates ¢ can now be defined as
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o7 = (¢%, $7) = ¢'RT so that

(14) ¢, = Ry 19, + Rygp,
and
(15) by = R yy,.

In the following, any quantity with a tilde added above indicates evaluation in
the ¢ coordinates. Thus, for example, V = U and W = R-TWR™!. Partition the
ith face W, of W as
(16)

vf/i=(v‘~/ill VVL‘IZ)’ i=1,...,n,

w’iZl VVi22
where the dimension of W'l 5 18 p; X p;, j=1,2. Next, define W,, to be the
n X p, X p, subarray of W with ith face W,,, and similarly define W,, to be the
n X p, X p, subarray of W with ith face W/nz, i =1,..., n. Finally, partition
V=(V,V,) and U = (U, U,), where U, and V, are n X p, matrices.

With this structure, the quadratic expansion of A can be reexpressed informa-
tively as

(17a) h(8,) = F(é) + UQ‘EZ
(17b) + 365 [ Py, | [Wae] 6
(17¢) - Ul[qggUzT][Wm]q;Q,

where the brackets [-][:] indicate column (sample space) multiplication as
defined in Bates and Watts (1980), and discussed briefly in the Appendix. Term
(17a) describes the plane tangent to 4 at 0 Since C(U,) = C(Py;V,), this plane
is simply the affine subspace F(6) + C(P! Vz) This is the same as the subspace
obtained when using the linear approx1mat10n to form a confidence region for 6,.
In other words, the confidence contours based on (2) will coincide with those
based on substituting the linear approximation of A into (11), as expected.

Term (17b) contains the projections of the columns of W,, onto the plane
tangent to A at 0 Thus, this term reflects the (subset) parameter-effects
curvature of 2 in the direction ¢,. The maximum parameter-effects curvature I'7
for the subset 6, can now be defined as

(18) I7(8,) = max||d”[ Py, | [Wa,] dllfp, s,

where the maximum is taken over all d in D = {d: d € R”2, ||d|| = 1}. Since &,
is a linear transformation of ¢, as described in (15), I'J(6,) will be the same in
both coordinate systems.

To further understand (18), partition the ith face A; of the p X p Xp
unscaled parameter-effects curvature array A = [UT][W] as

A, A
19 A, = i1 ;12),
(19) (Ai21 A

where the dimension of A;;; is p; X p;, j=1,2, i=1,..., p. Next, let Ay,
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denote the p, X p, X p, subarray of A with faces Ay, i =p, +1,..., p. Then

[PU2] [szl = [Uz][A22]
and

(20) I7(6,) = max|[d"Ayd|/p, s.

In this form it is clear that the maximum parameter-effects curvature for the
subset problem depends only on the behavior of the ¢, parameter curves. The
elements of A,, can be used to understand the behavior of these parameter
curves in terms of arcing, compansion, fanning, and torsion, as described in Bates
and Watts (1981)

Term (17¢) is clearly in C(V)) and is thus orthogonal to the submanifold
tangent plane. This term then reflects the intrinsic curvature of 4 at 0 so that
the maximum intrinsic curvature can be defined as

(21) I}(6,) = max|[d"U ] [ W] dii2/py s.

Note that (21) contains the extra factor 2, corresponding to the absence of the
factor 3 in (17c).

This curvature can also be expressed in terms of a subarray of A. Let A,
denote the p, X p, X p, subarray of A that has faces A;;,, i=p, +1,..., p.
Then A,, = [UJ[W,,] and

[7(6;) = max|[d" ][ A 1d|12/p. s

(22) p
max|| Y d;A;dIR2/p,s,

J=p+1

where d; is the (j — p,)th element of d. Interestingly, the intrinsic curvature for
the subset problem depends only on fanning and torsion components of A;
compansion and arcing play no role in the determination of I'J. The fanning and
torsion terms of A depend in part on how the columns of V are ordered. Since we
have assumed that the last p, columns of V correspond to 6,, it is the fanning
and torsion with respect to this ordering that are important.

If both I and I are sufficiently small, the likelihood and linear confidence
regions for 6, will be similar; otherwise we can expect these regions to be
dissimilar. Following Bates and Watts (1980), ¢ = (Fy(py, n — p))~'/* can be
used as a rough guide for judging the size of these curvatures. As noted earlier,
our experience indicates that curvatures must be substantially less than ¢ to
insure close agreement between linear and likelihood regions. This will be
illustrated in Sections 3.3 and 4.

Finally, we combine the intrinsic and parameter-effects components of (17) to
define the total curvature T(6,) of & at 6, as

(23) rs(02) = p2smla),x{||dTA22d“2 + 4”[dT][A12]d”2}1/2.

As will be demonstrated in the next subsection, the total subset curvature I
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may be more relevant than both I'7 and TI;. For example, it is possible to have
I <cand Iy < ¢ while T, > c. In such situations I'7 and 7 may incorrectly
indicate that the tangent plane approximation is adequate, while T correctly
indicates otherwise. Since I lies in the interval [max(T7, T7), I + I7], its exact
computation may be unnecessary once I'? and I'7 are known.

When the full parameter 6§ is of interest, we have 6, = 6 and p, = p. In this
case, the subset intrinsic curvature (22) is zero, A,, is the Bates-Watts parame-
ter-effects array, and both (20) and (23) represent the maximum parameter-effects
curvature for 6.

The main conclusion of this section is that the unscaled parameter-effects
curvature array A for the full parameter contains all necessary information for
evaluating the adequacy of linear confidence regions for certain subsets of 6. For
example, if the last parameter 6, is of interest, then [5(6,) is simply s|a
where a, ;, is the (j, k)th element of the ith face of A. Similarly,

p—1 1/2
(24) re,) = 2s( )y af,,.p) .

Thus, for a single parameter, compansion and fanning are the only effects that
are relevant to an assessment of the agreement between likelihood and linear
confidence regions.

ppp'

3.2. Computation. Recall that the developments of this section are based on
the assumption that the last p, columns of V correspond to the parameters of
interest. This assumption is necessary to maintain the collective identity of 6, as
indicated in (15). This implies that the ordering of the columns of V is critical
and consequently 6, is the only single parameter for which curvatures can be
constructed from a given parameter-effects array A. The A array for other
orderings can be constructed by permuting the columns of V and beginning
again, of course.

Alternatively, a computationally more efficient method for obtaining the A
array in a rotated coordinate system can be constructed as follows. Let ¢, = Z¢
where Z is a selected p X p permutation matrix. In what follows, the subscript z
added to any quantity indicates evaluation in the coordinates ¢,. Clearly,
V, = VZT = URZT. Let U*T be an orthogonal matrix such that R* = U *RZT is
upper triangular. Since the QR factorization of V, is unique, it follows that
V,=U,R,, where U,= UU*" and R, = R*. Using this structure it is not
difficult to verify that :
(25) A, = [U*][U*AU*T].

Thus, to find A, the parameter-effects curvature array for the rotated coordi-
nates ¢,, we need only the p X p matrix U * to diagonalize RZ”. A single call to

LINPACK (Dongarra et al. (1979)) routine SCHEX produces R*, [U*T][ A], and
the information necessary to construct U *.

3.3. Fieller—Creasy again. To apply I'? and I in the Fieller—Creasy prob-
lem when 6, is the subset of interest, we require only the 2 X 2 X 2 parameter-
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effects curvature array A for
V=(x+6(b-x),0,(b-x)),

where x is the n X 1 vector with elements x; as defined following (7) and b is an
n X 1 vector of ones. The faces A; of A are (Cook and Witmer (1985))

(26) A = %2 (O : )
Y0 (n(1+6,)) 2\ 1 26,
and
Al
(27) A=

2
Reading directly from this array we have
2%% |0Az|

28 T2(6,) = 0lgy| = ——F —
2 O eib (14 62)
and

22/345 1
(29) I7(6,) = 20|ay,| =

by (1+62)"

Recall that we are assuming ¢ to be known in this example, so that the guide for
assessing the magnitudes of I'? and I is ¢ = (x(a; 1))~ /2

From (28) we see that IJ(6,) will be zero only if 0; = 0; in this case
T2(0,) = 2%/ Vn|6)| < ¢ or, equivalently, r = 20%x(a;1)/nf% <1 is neces-
sary for the subset intrinsic curvature to be less than the guide. Further r < 1 1s
a sufficient—although not necessary—condition for both I'7(6,) and T 7(0,) to be
less than ¢ when 4§, is arbitrary.

Next, using (23) it follows that the total subset curvature is simply

(30) T,(6,) = 2%%/Vnf,],

and thus I'(6,) < c if and only if r < ;. When r > 1, the likelihood region for 6,
will be either the complement of an interval or else the entire real line;
otherwise, this region will be the interval given in (9). In this example, the total
subset curvature recovers the critical quantity r as introduced in Section 2, and
the condition I'; < ¢ insures that (10) will in fact be approximating a likelihood
interval rather than some dissimilar region. This condition also provides for an
added measure of agreement between these intervals since it is equivalent to r < 1
rather than simply r < 1.

Applying (20) and (22) when 6, is the subset of interest gives I'(6,) =
IJ(6,) = 0, as expected. Notice that this conclusion cannot be obtained by
inspecting the A array given in (26) and (27). As mentioned previously, different
subsets in general require different orderings for the columns of V and thus
different coordinates. This is the case here.

Finally, we consider the special case characterized by (6,,6,) = (3,0) and
r = 0.428. These conditions correspond to n = 202 From (8), I'" = 0.33 < 0.41 =
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1.500

-8.75¢ —

-1.500
-3.00 -1.50 0.00 1.50 ~ 3.00

1 1

Fic. 1. 95% confidence regions for (0,,0,) from the Fieller—Creasy model (7): ((;1, 52) = (3,0).
Likelihood region ——; linear region ----.

x " 1/2(0.05; 2) = c. From Figure 1 (Cook and Witmer (1985)), we see that the
likelihood region, whose level is exact in this case, does not seem to be adequately
approximated by the linear region for small values of 6.

Further insight into this problem can be gained by inspecting marginal
likelihood regions for 6, and 6,. Generally, marginal regions for subsets can be
obtained by projecting all points in the joint region onto the appropriate
subspaces. The levels of these marginal regions will be somewhat larger than that
for the joint region. In Figure 1, projecting all points onto the §; axis will yield a
Pr(x(1) < x(0.05;2)) = 98.6% interval for 6,, i =1,2. Further, projecting the
regions in Figure 1 onto the 0, axis shows that the likelihood and linear intervals
for 6, will be identical, as expected. By contrast, projecting onto the 6, axis
shows that the resulting 98.6% likelihood interval will be about 60% longer than
the corresponding tangent plane interval. This dissimilarity is clearly indicated
by T7(8,) = 0.67 > 0.41 = x~'/%(0.014; 1).

Our experience leads to the following heuristic characterization of the problem
described in the previous paragraph. Consider a p,-dimensional subset #, with
guide ¢, = (Fy( py, n — p))~'/2 and partition 8] = (67, 63,), where 8, is py; X 1,
i =1,2. The guide corresponding to the confidence region for 6,; obtained
by projecting the selected 1 — a region for 8, is simply c,; = ¢y( P2;/P2) /2
i = 1,2. When the subset curvatures for ,, are large relative to c,, and the
subset curvatures for 0,, are near zero, it can happen that the curvatures for 6,
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O T T T T T T T

0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

8

F1G. 2. Nominal 87% bivariate confidence regions with 95% marginal regions for (0,,0,) from
model (31) and the Bates-Watts (1980) data. Likelihood ——; linear ----.

are moderate. In such cases the curvatures for 6, can provide a misleading
indication that the tangent plane and likelihood regions for 6, are in acceptable
agreement. As hinted above, this problem might be overcome by requiring that
all subsets 6,; of 6, have curvatures less than the respective guides c¢,;. When
0, = 6 this added requirement seems to represent a useful fine tuning of the basic
Bates—Watts methodology.

4. Illustrations. In this section we present several numerical examples to
illustrate selected results of the previous sections.
For the first example we use the Michaelis—Menton model,

(31) fi=0.x./(6, + x,),

in combination with the 12 observations reported in Bates and Watts (1980).
Figure 2 gives 87% linear (broken contour) and likelihood (solid contour) con-
fidence regions for (4,,0,). Here and in the following examples the levels of
displayed bivariate confidence regions are chosen so that the corresponding
univariate marginal regions have a nominal 95% coverage rate. It seems clear
from Figure 2 that the linear region for (4,, ,) is not an adequate approximation
of the likelihood region, although directly interpreting the Bates—Watts guide as
the cutoff value would lead to the opposite conclusion, since I'" = 0.598 < ¢ =
0.635. (The value I'" = 0.771 reported by Bates and Watts is based on using
replicate error with 6 d.f. to estimate o2; the value I'" = 0.598 reported here is
based on using s? with 10 d.f.) The subset curvatures for 8, and 6, are listed in
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TABLE 1
Subset curvatures

Model / data Parameter subset Iy I T C
(31) 0, 0.330 0.183 0.377 0.449
Bates and Watts 0, 0.393  0.089 0.403  0.449
(31) 0, 0.014 0.025 0.029 0.389
Michaelis and Menten 0, 0.050  0.019 0.053  0.389
(32) 9, 0.165 0.180 0.244 0.484
Ratkowsky 0, 0.003 0.059 0.059 0.484
0, 0.1563 0.132 0.203 0.484
(8, 65) 107 0008  1.07 0542
(0,,65) 0.518 0 0.518 0.542
(32) 9, 176 0.190 1.76 0.408
Hunt 0, 1.80 0.256 1.82 0.408
0, 0.018 0.094 0.095 0.408
(65, 8) 36.4 0 36.4 0.441

Table 1; the corresponding guide is ¢ = [ F(1,10)] /2 = 0.449. Again, the
curvatures are less than the guide while the marginal likelihood regions do not
seem to be well represented by the corresponding linear regions. This reinforces
our previous remark that curvatures must be substantially less than ¢ to insure
close agreement. With this interpretation we see that all curvatures successfully
indicate the dissimilarity between the various likelihood and linear regions in
Figure 2.

Figure 3 gives 88% likelihood and linear regions for (8,, 6,) obtained by using
model (31) and the seven observations reported by Michaelis and Menten (1913).
For these data I'" = 0.079. This value and the subset curvatures reported in
Table 1 are relatively small, indicating reasonable agreement between the regions
displayed in Figure 3.

For the three-parameter asymptotic regression model

(32) fi=0,+8, exp(03x,~)

and the 27 observations reported in Ratkowsky (1983, page 101, data set 1), we
obtain I'" = 1.53. The corresponding guide is ¢ = [ Fj5(3,24)] /2 = 0.58. This
suggests that the 95% likelihood region for 87 = (6,, 6,, 6,) cannot be adequately
approximated by the corresponding linear region. The subset curvatures for
selected subsets of § are listed in Table 1. From these curvatures alone we would
reach the following conclusions:

(1) The likelihood and linear regions for @, are in very close agreement.

(2) The marginal regions for 6, and 6, will be noticeably different, but the
agreement is probably adequate for most purposes.

(3) The usual 95% linear regions for (8,, 6;) and (8,, 6,) should be used for only
very rough analyses, although lower level regions may be acceptable replace-
ments for the corresponding likelihood regions.
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Fic. 3. Nominal 88% bivariate regions with 95% marginal regions for (8., 0,) from model (31) and
the Michaelis—-Menten (1913) data. Likelihood ——; linear ----.

These conclusions are supported by the 86% regions for (6,,0;) and (6, 03)
shown in Figures 4 and 5, respectively. The value I'(6,,6;) = 0 reported in
Table 1 for model (32) will always occur since W,, = 0 for this model.

For our final example we again use the asymptotic regression model (32), this
time in combination with the nine observations reported by Hunt (1970). Subset
curvatures for four parameter subsets are listed in Table 1. The subset curvature
for 6, is small, indicating good agreement between the corresponding likelihood
and hnear regions. The subset curvatures for the remaining subsets, particularly
(6,, 0,), are large.

The 87% likelihood and linear confidence regions for (6,,6;) are given in
Figure 6. The large total curvature, I'(0,, 8;) = 36.4, correctly indicates that use
of the linear region as an approximation of the likelihood region would be a
disaster for this pair of parameters. In fairness, however, it should be recalled
that the approximations used to derive the subset curvatures are local so that
(6, 6,) is responding primarily to the disagreement between the linear region
and the portlon of the likelihood region that contains d. Similar comments apply
when only 6, is of interest.

From Figure 6, there is reasonable agreement between the linear and likeli-
hood regions for 6, as indicated by the small curvature I',(6;) = 0.095. It can be
argued justifiably, however, that this correct indication from the curvature is
largely fortuitous since the curvatures do not recognize the contribution of the
smaller piece of the likelihood region for (8,, 8;) to the likelihood region for 6.
Under this argument, the subset curvature measure for #; has failed to indicate
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F16. 4. Nominal 86% bivariate regions with 95% marginal regions for (0,, 6,) from model (32) and
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the dissimilarity between the tangent plane region for 6, and the likelihood
region (—0.0191,0) obtained by using only the larger subregion that contains §.

The reason that the curvatures give some inappropriate indications in this
final example is that both the linear and quadratic approximations to the model
function fail. This failure is evident from a very low R? from the regression used
by Goldberg, Bates and Watts (1983) to obtain numerical curvatures, and from
related measures of “lack of quadraticity” explored by the present authors. In
cases where the quadratic approximation to the model function is poor, curva-
ture measures based on that approximation may not be meaningful.

Nevertheless, these subset curvature measures represent an important ad-
vance in our understanding of nonlinear models, and provide useful information
about the adequacy of the linear approximation when the quadratic approxima-
tion is appropriate. Further work is needed on methods of identifying cases
where the quadratic approximation may fail.

5. Conclusions. The subset curvatures developed in this paper appear to be
reliable indicators of the adequacy of linear confidence regions for most nonlinear
models. In particular, the curvature for a single parameter is a useful tool for
assessing the agreement between standard large sample confidence intervals and
corresponding marginal likelihood regions. This ability to deal with subsets
greatly extends the usefulness of the Bates—Watts methodology.

Because the original Bates—Watts framework applies only to the complete
parameter vector, guidelines developed in that framework can be misleading
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when the adequacy of the linear approximation is very different for different
subsets. To ensure good agreement between the tangent plane and likelihood
regions, the maximum curvature must be considerably smaller than the
Bates—Watts guide. However, this criterion can be too stringent for certain
parameter subsets if the whole-parameter curvature I'" is used. By contrast, the
subset curvature describes the shape of the likelihood region in the parameter
subspace of interest. Thus, the subset curvature is more directly relevant to the
linearization adequacy question and, based on the examples described above, is
evidently more accurate.

The practical usefulness of the methods described here depends, in part, on
their ease of implementation. The subset curvatures for any selected subset can
be computed directly from the Bates—Watts parameter-effects curvature array.
This array can be obtained either analytically (Bates and Watts (1980)) or
numerically by using the procedure given in Goldberg, Bates and Watts (1983).

The usefulness of the subset curvatures depends also on the restriction that
the intrinsic curvature of F at 6 is small. This restriction is not of great practical
importance since it has been found to hold in most cases. Nevertheless, a unified
approach that incorporates the intrinsic curvature component might offer fur-
ther insight in some situations.

Another area for further research is the development of measures that
indicate when the subset curvatures themselves may be unreliable due to the
failure of the second-order approximation to the model function. While the
possibility of such failure is of concern, the class of models adequately described
by a quadratic function is considerably larger than the class for which the linear
approximation alone is adequate.

APPENDIX

Derivation of equation (17). To develop equation (17) from equation (12),
we first require explicit expressions for A, and A,,.

Al. A, and A,. Let L and L denote the p X p matrix and PXpXp
array of second and third partial derivatives of the log likelihood L with respect
to the elements of 6, respectively. Let g, denote the ath component of g as
defined near (11) and partition L as

) (Lu Lm)
L21 L22 ’
where L;; is p; X p;, j = 1,2.
Since g maximizes L(6,, ,) for each fixed value of 6,,

IL(g(8,), 6,)

(A1) g g=8(0;) =

0

for a =1,2,..., p, and all 6, This identity will be used as the basis for
obtaining A, and A,.
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Differentiating both sides of (A.1) with respect to 6, and evaluating at 0A2
gives
(Lu’ L12)A1 =0.
Since the submatrix consisting of the last p, rows of A, is an identity matrix it
follows that

_r7-1
(A2) A = ( L111L12).
Let e, =y, — fi(OA). The first term of

£=(ieiw,.— VTV)/o2

i=1

represents effective residual intrinsic curvature of F at § (Bates and Watts
(1982)). Since this curvature is assumed to be negligible, L=-V"V/6? and,
therefore,

-1 _
(A.3) A = —-(Vi'v) Vv _ ( _R111R12)’
I I
where V = (Vl, V,) and R,; is defined in (13).
An expression for A, can be obtained similarly by taklng second partial
derivatives of (A. 1) with respect to 6,, and 6,,, r,s = 1,2,..., p,. This yields
9%, p 2 da, Bab

(A4) Z Lab (90 80 bgl ¢§1 Labc 802r 8023 ’

where La by Labes and a, denote the indicated elements of L, L, and o =
(&7(8,), 61), respectively, and a@ = 1,2,..., p;. The component 9 20,/ 00,, 30, is
the (r, s)th element of the bth face A bof A,.Since Ay, =0forb=p, +1,..., p,
the summation on the left of (A.4) need only range from 1 to p,. Notice also that
da,/d8,, is simply the (¢, r)th element of A,. Expressing (A.4) in matrix notion
and solving for A, gives

_ Ll_ll 0 ¥
(A.5) A, = [ . 0][A1LA1].

As indicated following (A.2), we will take L,, = — VTV, /o2

In (A.5) and the following, brackets [ ][ ]indicate column multiplication as
defined in Bates and Watts (1980). Generally, if A is an a X b matrix and B is a
b X ¢ X d array, then the elements of the ith face C;,, i =1,...,a, of the
a X ¢ X d array C = [A][B] areA,Bjk, 2,...,¢, k=1,2,...,d, where AT
is the ith row of A and B, is the jkth column of B. Further, if D and E are
n X ¢ and d X m matrices, respectively, then DCE = D[A][B]E = [A][DBE].
This property is used frequently in the following development.

To further evaluate A,, we require the p X p X p array L. Straightforward
algebra will verify that

1
? Z (e fabc _ afibc _ fibfiac _ fi..)lnb).
i=1

abc =
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Neglecting the first term of L,,,, yvhlch corresponds to effective residual intrin-
sic curvature, the ath face L, of L is

(A.6) L,=- ?{[baTVT][W] + V'K, + KTV},

where b, is the ath standard basis vector for R” and K, = bI'W is the n X p
matrix with W, as the cth column. Finally, it follows from (A.6) that for an
arbitrary p X 1 vector Z,

1
(A7) Z'LZ = - — {ZT[VT][W]Z + 2[ZTVT][W]Z}.
(o}
This form will be useful in later developments.

A.2. Tangent plane, term (17a). It follows immediately from (A.3) that
(A.8) VA, = PV, = UpRy,,

where U, is defined following (16). Thus, the relevant tangent plane is the affine
subspace F(O) + C(Py,V,). Transforming term (12a) according to (14) and (15)
immediately gives term (17a).

A.3. Parameter effects, term (17b). From the form A, given by (A.5), it is
clear that term (12c) is in C(V)) and is thus orthogonal to the 6,-subspace
tangent plane. The parameter-effects component of (12) must therefore come
from term (12b).

The three-dimensional array W in (12b) can be decomposed into the sum of
three arrays with orthogonal columns,

(A.9) W= [Py, - Py|[W]+ [P,][W]+ [P,I[W].

The first term in this decomposition contains the projections of columns of W
onto C(Py,V,) and thus it represents parameter-effects curvature for the subset
problem. The second and third terms are intrinsic components for 4 and F,
respectively. Since the intrinsic curvature of F at § is assumed to be negligible,
the third term of (A.9) is set to zero. Addend (12b) can now be reexpressed as

(A.102) SOLATWA S, = 30T [Py — Py | [W]Awe,
(A.10b) +3105AT[ Py, | [W]A 4,
From (16) and (A.3) it follows that

W,y = R3,IATWA, R,

Using this in combination with (15) and (A.8) to transform the coordinates in
term (A.10a) gives term (17b).

A.4. Intrinsic curvature, term (17c). In the expansion of A given in (12), we
still have the sum of terms (12c) and (A.10b) to deal with. We first consider (12c).
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Using (A.5) and (A7) with Z = A ¢, we have
$V(65859,) = $0°M($TATLA ¢,)

— sM{$FAT[VTI[W]A0,)

—M [NV [W]Ag,,

where M = (V(V,I'V,)~1,0). The first term of (A.11) is exactly the negative of
term (A.10b) so that in an obvious notation

(12¢) + (A.10b) = ~M[$IATVT|[W]A 9,

(A.11)

(A.12)

—[#3aTv 7] [ MW, T 6.

From (16) and the definition of W, it can be shown that
MWA, = UW,R,,.

Finally, using this relationship with (A.8) and (15) to transform the coordinates
in (A.12) we obtain term (17c¢). ‘
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