1328 DISCUSSION

TABLE 1
Biases and confidence region coverage levels for quadratic regression model (nominal coverage 95%).

Bias Coverage Coverage
BO 0 BZ BO ] Bz (30’0’ Bz)
1) By, =0, 8 =8, B, = —0.25; no outlier
MLE —0.00266 0.07541 —0.00012 89.9 88.9 89.9 76.1
LQ —0.00266 0.07541 —0.00012 85.3 774 83.5 55.2
J(1) 0.28099 0.16291 0.01394 88.1 85.6 87.7 61.4
JO)M 0.05570 —0.17410 0.00441 89.6 86.6 88.3 56.4
RLQM —0.00093 0.07661 0.00008 96.4 94.4 96.5 79.4
2) By =0, 0 =8, B, = —0.25; outlier
MLE —0.03359 0.45568 —0.00166 829 65.8 65.2 44.5
LQ —0.03359 0.45568 —0.00166 77.7 55.6 58.3 31.6
J(1) 0.52607 0.45261 0.03350 81.6 69.7 74.1 52.7
JOOM (%) (%) (%) 83,5 72.1 79.5 . 591
RLQM —0.03037 —0.05202 —0.00154 92.1 80.0 85.1 54.2

most effective approach, however (being robust to both curvature and an
outlier), is RLQM. The poor results for simultaneous confidence regions are due
to severe nonlinearity.
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I congratulate Professor Wu for this important contribution on resampling
procedures for regression analysis. The representations reported in Section 3 are
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elegant and useful. It is interesting to note that the representations arise out of
some fairly standard results in matrix algebra. I was slightly disappointed to
note that one needs the nonsingularity of XX, for every s in order to define the
weighted jackknife variance estimates in Section 4. It does not appear to be a
minor restriction. Another general comment I want to make is that it would be
probably nicer to see consistency results for the various estimates of variance
rather than just the asymptotic unbiasedness.

From here on I confine myself to interval estimates based on the percentiles of
the distributional limits and resampling histograms. While summarizing the
simulation study of Section 10, Professor Wu remarks that he found the
undercoverage of the bootstrap percentile interval very disappointing in view of
the second-order asymptotics on the bootstrap. I am forced to say here that
there is a misunderstanding on Wu’s part concerning the second-order asymp-
totics. I do not blame Wu very much for this since the second-order development
is scattered over a number of articles. A unified presentation in a survey paper or
a monograph will certainly help. I make my point clear in terms of the
one-dimensional mean in the following paragraph:

Consider the following three confidence intervals: [Lg, Uy], [Lg, Ug] and
[Lg s Ug sJ- The first interval is based on the simple normal approx1mat10n
ie, Ly=X—2z,_ a/2s,,/\/77 and Uy = X +2,_, 48,/ Vn, where z, = ® "'(¢), X
is the sample mean and s,, is the sample standard deviation. The second interval
is based on the bootstrap distribution of Vn (Y —X X) (say H,), where Y denotes
the mean of a bootstrap sample. Thus, L= X —b,_, so/ Vn and Ug=X

by o/ VN Vn , where b, is the tth quantile of H,,. The third interval is based on the
bootstrap dlstrlbutlon of \n(Y —X)/s} (say H *) where s} denotes the s.d. of a
bootstrap sample. Thus Lg , = X-gq,_ «/2Sn/ \/rT and UB w=X- Qo 28,/ VR Vn
where g, = the ¢th quantile of Hx. If E5|X|% < o0 and F is continuous, then
one has the following expansions:

a ® _
P(p <L) = 2~ ﬁ(%im + 1)¢(za/2) +o(n~12),
P(p>U,) = 2 -—i?i——(2z2 + 1)¢(z ) + o(n "1/%)
P (o 9 60’3\/5 a/2 a/2 ’
Plp<Ly)=o— —2 22 4z Yio(n-12)
14 B 9 20’3\/5 a/2¢ a/2 ’

« Ks -
P(p> Uy) = 2 + m23/2¢(za/2) +o(n"1?),
a
P(k < Ly.u) = &+ o(n ")

a
and P(p>Ug,,) = St o(n~%%).
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Thus all three intervals above have coverage probability 1 — a + o(n ~1/2).
However, in terms of distributing a equally in the two sides by taking the
skewness into account, the third interval is asymptotically the best. The same
comment holds if one looks at the one-sided intervals for the sake of hypothesis
testing. It is not known to me at this point how the three confidence intervals
compare in terms of the third-order asymptotics. The following result, which
follows easily from the previous expansions, provides a comparison between the
one-sided intervals based on the normal approximation and the nonstudentized
bootstrap:
Ifz, ,p>1,

" P(w>Uy) - 5| =|Pu> ) - 5

g _
+ |23/2 - 1|m¢(za/2) +o(n"17?).

Thus, the normal approximation does better than the nonstudentized bootstrap
if z,_,,» > 1, which is typically the case. The same comment holds for the lower
side probability. The result (A) seems to be new. This finding does look a little
surprising in view of the fact that H, approximates the true distribution of
Vn (X — ) better than ®(x/s,) does, although there is no mathematical con-
tradiction. In any case, I see no reason to expect that [Lg, Ug] will have its
coverage probability closer to 1 — a, than its competitors.

The idea of forming histograms of properly normalized delete-2 (or add-%)
jackknife values in order to estimate sampling distributions has been on my
mind too for a couple of years. Except for the first order consistency, which uses
the Erdos—-Rényi formula for characteristic functions, I have not been able to
find any important property of these histograms. Let us note that jackknifing is
a resampling procedure that corresponds to random sampling without replace-
ment, not with replacement. In fact, the bootstrap that has been proposed in the
literature for sampling without replacement from a finite population can in fact
be regarded as a jackknife procedure. Thus, I am not very enthusiastic about the
jackknife histograms proposed by Wu for independent r.v.’s. However, the
weighted bootstrap proposed in Section 7 did catch my attention. It may turn
out to be an important resampling method for regression analysis. I think
further theoretical study on the proposed procedure will be worthwhile.

I conclude this discussion by saying that, though I have reservations about
certain parts of the article, it does seem that this work has broadened the scope
of the jackknife for regression analysis. I thank the Editor of The Annals of
Statistics for giving me the opportunity to make the preceding comments.
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