RESAMPLING INFERENCE IN REGRESSION 1295

SUBRAHMANYAM, M. (1972). A property of simple least squares estimates. Sankhya Ser. B 34
355-356.

TUKEY, J. (1958). Bias and confidence in not quite large samples (abstract). Ann. Math. Statist. 29
614.

WEDDERBURN, R. W. M. (1974). Quasi-likelihood functions, generalized linear models and the
Gauss—Newton method. Biometrika 61 439-447.

WiLLiaMs, E. J. (1959). Regression Analysis. Wiley, New York.

Wu, C. F. J. (1984). Jackknife and bootstrap inference in regression and a class of representations for
the LSE. Technical Report No. 2675, Mathematics Research Center, Univ. of
Wisconsin-Madison.

Wu, C. F. J. (1985). Statistical methods based on data resampling. Special invited paper presented at
IMS meeting in Stony Brook.

DEPARTMENT OF STATISTICS
UNIVERSITY OF WISCONSIN
MaADISON, WISCONSIN 53706

DISCUSSION

RuDOLF BERAN
University of California, Berkeley

My comments center on three topics: the resampling algorithm of Section 7 as
a bootstrap algorithm; criteria for assessing performance of a confidence set; and
robustifying jackknife or bootstrap estimates for variance and bias. It will be
apparent that I do not accept several of Wu’s conclusions, particularly those
concerning the bootstrap. The implied criticism does not diminish the paper’s
merit in advancing jackknife theory for the heteroscedastic linear model.

1. The bootstrap idea is a statistical realization of the simulation concept:
one fits a plausible probability model to the data and acts thereafter as though
the fitted model were true. Suppose that the errors {e;} in the linear model (2.1)
are independent and that the c.d.f. of e; is F(- /g;), where F' has mean zero and
variance one. Consistent estimates of the {o;} and of F are not available, in
general. Nevertheless, let 6, ; be an esimate of d;, such as 6, ; = |r|(1 — w;)~'/?
or 6, ;= |r1 — n~'k)"/? and let F, be any c.d.f. with mean zero and variance
one. The fitted model here is the heteroscedastic linear model parametrized by
the estimates 8,, {6, ;} and F,. The appropriate bootstrap algorithm, which I
will call the heteroscedastic bootstrap, draws samples from this fitted model.

Section 7 of the paper describes just this resampling procedure, without
recognizing it as a bootstrap algorithm suitable for the heteroscedastic linear
model. The two bootstrap algorithms that are discussed critically in Section 2
are not even intended for the heteroscedastic linear model. The first is designed
for the homoscedastic linear model; the second for linear predictors based on
multivariate i.i.d. samples (Freedman (1981)).

Let B,(B,{o;}, F) and V, (B, {s;}, F) be the bias and variance of g( ,én) under
the heteroscedastic model described in the preceding paragraphs. The ap-
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propriate heteroscedastic bootstrap estimates of bias and variance are then
BB, (6 0 i) F)) and V(B,, {3, - l} F), respectively. They satisfy

B,(B,,{8,:}, F,) =27 'tx(g"(B,)9),
V(.. (6, }F) g'(B.)" eg'(B.),

where
6= (XTX)" Zo xxT(XTX)7Y

provided higher-order terms are neghglble For suitably chosen {4, l} these two
bootstrap estimates agree, to the first order, with Wu’s Jackkmfe estimates of
bias and variance associated with v, or vy

2. An unusual feature of the heteroscedastic bootstrap algorithm is its use of
inconsistent estimates {4, ;} and F, to fit the probability model. Does this really
work? The answer is a quahﬁed yes, because of the central limit theorem and
relative stability. Consider the particular linear model y, = B + e;, where the
{e;,} are independent and e; has c.df. F(-/¢;), as in comment 1. Assume
additionally that max, _;_,07/X76? — 0 as n increases. Let H,({c,},F) denote
the distribution of (62 ,)~?n(8, — B).

The following triangular array weak convergence holds. Suppose {G,}, G
are any c.d.f.’s with mean zero and variance one such that G, = G.
Suppose {0, %, # 1<i<n} is any sequence of sets of variances such that
max, _; .0 ,/Z” o7, — 0. Then H,({s, ;},G,) = ®, the standard normal distri-
bution.

Returning to the bootstrap, suppose the variance estimates {6?,} are such
that max, _;_,67 /X762, — 0 in probability. (Either of the ch01ces ol =
r2/(1 — w;) or 62;=r?/(1 — n"'k) will do here). Suppose the c.d.f. estimates
{I'A’n} have mean zero, variance one and converge weakly, in probability, to a c.d.f.
with the same first two moments. (For instance, F,, = G for every n, where G is
an arbitrary c.d.f. with the required moments.) By virtue of the prev10us
paragraph, the heteroscedastic bootstrap distribution H,({é, ,} E)=® in
probability. Moreover, H,({s;}, F), the actual distribution of (£3; i/ 2n(B, -
B), also converges weakly to ®.

Thus, confidence intervals for 8 obtained by referring (X762 ,)~/?|8, — B| to
quantiles of its heteroscedastic bootstrap distribution have correct asymptotic
coverage probabilities. In the absence of trustworthy estimates for F and {o;},
there is no reason to expect that such confidence intervals are superior in any
way to those based on the normal approximation.

3. In some regression models, certain bootstrap confidence sets have a
theoretical edge. Suppose we fit the line y = B, + B,x to the pairs {(x;, ¥):
1 < i < n}, which are assumed to be i.i.d. with certain finite moments. Let £, be
the least squares estimate of B8 = (8,, B,)7. For the real-valued function g(B),
consider one-sided confidence sets of the form {t € R: t > g(8,) — n™ V% ,(a)}.
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Let 6, be an asymptotically efficient estimate of Avarg ( ﬁn)—possibly a jack-
knife estimate (Beran (1984)). Three choices of critical value ¢é,(a) that give the
confidence set asymptotic coverage probability 1 — a are

(a) The normal approximation: é,(a) = 6,2 (1 — a).

(b) The simple bootstrap: é,(a)is a (1 — a)th quantile of the pertinent bootstrap
distribution for n'/%{g( ,é,,) — g(B)}. Resampling here is from the empirical
distribution of the {(x;, ¥,)}.

(c) The studentized bootstrap: ¢,(a) = n(a), where d Ha) is a (1 — a)th
quantile of the bootstrap distribution for n*g(B,) — g(B)}/6,. The resam-
pling scheme is that of (b).

The coverage probability error (CPE) is O(n~1/2) in cases (a) and (b), but is
O(n ') in case (c) (cf. Abramovitch and Singh (1985) for discussion of (c)). In (a),
neither bias correction of g( B ) nor use of the ¢-distribution quantile will reduce
the order of the CPE, except in special situations. Several authors have recently
developed techniques, including iterated bootstrapping, for reducmg the order of
CPE even beyond that achieved in case (c).

Similar theoretical developments seem possible and worthwhile for hetero-
scedastic linear models in which the vector {log(o;):1 < i < n} is constrained to
be within a specified finite-dimensional subspace. The analysis of bootstrapping
in k-sample models by Abramovitch and Singh (1985) is a first step in this
direction.

4. Coverage probability is only one aspect of confidence set performance.
Notions of average or median length of a confidence interval, used in Section 10,
overlook possible miscentering of the confidence interval. More cogent perfor-
mance criteria exist. Suppose C, is a confidence set for the parameter §. Let
(¢, 0) be an appropriate loss function and define the risk of C, to be

= E[sup{l(¢,0): t € C,}].

(The median or other quantiles of the distribution of the supremum could be
considered instead.) The goal is to minimize p, by choice of the confidence set C,,
subject to the coverage probability constraint on C,.

For example, if 6 is real-valued, C, is the interval (c, ;,c, ), and I(¢,0) =
|t — 8], then

= E[lz_l(cn,L + cn,U) - 0'] + E[2—1(cn,U - cn,L)]‘

This risk measures the average miscentering of C, as well as the average length.
The intuitive supposition, that the interval C, should be centered at an asymp-
totically efficient estimate of 6, is supported by a local asymptotic minimax
analysis of p, (Beran and Millar (1985)).

5. Both jackknife and bootstrap estimates of variance involve the variance
functional, which is not weakly continuous. Consequently, weak convergence of
the bootstrap distribution to a normal distribution need not entail convergence
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of the bootstrap estimate of variance to the asymptotic variance. Nor does weak
convergence to normality of the empirical distribution of the centered pseudoval-
ues guarantee corresponding convergence of the jackknife estimate of variance.
The situation begs for robustification—replacement of the variance functional
by a scale equivariant functional that equals variance at normal distributions,
but is weakly continuous there while retaining high asymptotic efficiency. One
possibility is a standardized trimmed variance.

A similar argument exists for replacing the mean functional by a symmetri-
cally trimmed mean (say) in bootstrap and jackknife estimates of bias.
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Professor Wu is to be congratulated on a very interesting paper that advances
our knowledge of jackknife methods and illustrates some problems of hetero-
scedastic data. Of course, Professor Wu’s paper does not demonstrate a superior-
ity of the jackknife over the bootstrap and is not intended as such. The
bootstrap is a more general method. The bootstrap philosophy is to estimate the
probability distribution of the data as accurately as possible and then find or
approximate the sampling distribution of the relevant statistic under this esti-
mated distribution. We agree with this philosophy. The present paper does a
great service in underscoring the need for care about assumptions, both in this
specific case and in statistics in general.

The robustness of the jackknife variance estimator to nonconstant variance is
an interesting and potentially useful property, but what is its real importance for
statistical practice? To answer this question we need to ask, “What types of
heteroscedasticity can we expect in practice and what should be done about
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