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THE TOTAL TIME ON TEST PLOT AND THE CUMULATIVE
TOTAL TIME ON TEST STATISTIC FOR A
COUNTING PROCESS

BY RicHARD D. GILL

Centrum voor Wiskunde en Informatica, Amsterdam

Results on the total time on test plot are usually obtained on the
assumption that the number of events to be observed is fixed in advance. Here
it is shown that the same large sample results hold when the number of events
is random if a simple condition is satisfied.

Consider a univariate counting process on the time interval = [0, 1) or
[0, 7] € [0, co] with continuous compensator A. Suppose we are interested in
testing the hypothesis: A = cA, for some unknown constant ¢ > 0 and a given
observed process A,. For example, suppose N has intensity process A with
A(t) = AM(t)Y(¢t) for some observable process Y and some unknown function A,
and take A (¢) = [{Y(s) ds. The hypothesis A = cA,, corresponds to the interest-
ing hypothesis A = constant. The total time on test plot and the cumulative total
time on test statistic are two common techniques for investigating this hypothe-
sis when the alternatives of special interest are that dA /dA, is monotone (i.e., in
our example, A is monotone). They are based on the observation that in the new
time scale measured by A,, N is transformed into the process No Ay' which,
under the null hypothesis, is a counting process with constant intensity ¢ on the
(random) time interval [0, Ay (7)]; i.e., a randomly stopped Poisson process with
constant intensity. Under the alternative it is a counting process with monotone
intensity (dA/dA,)e A; . (See Aalen and Hoem, 1978.)

The total time on test plot is usually carried out as follows: Choose some
number of events R (in classical applications R is a fixed number r say, but this
is not in general possible!) such that Ty < 7 almost surely (here 0 < T, < T, <

.- are the jump times of N; say T, = 7 for all [ > N(7)), and make a plot of
A|T,)/A\(Tg) versus i/R, i =0,1,..., R. Under the null hypothesis the plot
should approximate the straight line y = x, x € [0,1]. Under the alternative it
tends to be concave or convex depending on whether dA /dA, is decreasing or
increasing. The cumulative total time on test statistic is the quantity
YR-1A(T.)/ATg). The standardized version of the statistic corresponds to the
(signed) area between total time on test plot and the line y = x (using an
appropriate interpolation convention between consecutive plotting positions).

Received March 1985; revised October 1985.

""This point is often overlooked; cf. Barlow and Proschan (1969) and many later authors.
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More generally one could think of choosing some random time T (not neces-
sarily even a stopping time, e.g., the last jump time before some fixed time ¢) and
plotting A, (2)/Ay(T) against N(t)/N(T), t € [0, T']. Taking T = T, gives the
previous plot with a particular interpolation convention. We shall develop some
asymptotic null-hypothesis distribution theory for this plot. From this corre-
sponding results for the statistic follow immediately.

Now if N(7) = r with probability 1, and we take T' = T,, exact distributional
results are available for plot and statistic since N Aj!, stopped at A7), is
simply (under the null hypothesis) a Poisson process with constant intensity ¢
stopped at the rth event. The plot has the same distribution as the empirical d.f.
based on r — 1 i.i.d. uniform [0, 1] r.v.’s. Large sample results (i.e., as r = o) for
plot and statistic are now immediately available: we have a Brownian bridge and
the signed area beneath a Brownian bridge, respectively.

So we shall consider here the case when T is chosen as arbitrarily as possible,
not even necessarily as a stopping time. Consider a sequence of situations indexed
by n, all under the null hypothesis with A = A™ = cA} for a fixed constant c.
Our results are obtained under the following simple assumption on the times
T=T"

AssUMPTION. Suppose T" is such that there exists a sequence of constants
a, — oo as n — oo such that

A}T")/a, »pa < (0,0) asn — co.

Consider the processes N"o(AZ/a,)”'. These have intensity ca, on
[0, A}(7)/a,]). At this final time instant AJ(7)/a, (f it is finite) start up an
independent Poisson process with constant intensity ca, and fasten it onto
Nm™o(Az/a,) ' In this way we obtain a process U" say, coinciding with
N"o(AZ/a,) 'on[0, AX7)/a,], with intensity ca, on the whole line. So U™ is
a Poisson process and we have easily

Un
(an)l/2(a— - cI) -4 /W in D[0, ),
where W is a standard Wiener process and I is the identity function I(x) = x.
Now look at the process V" defined by
ANT"
Va(x) = Un(x¥), xef01],

i.e., on [0,1]

A" -1 AXT™
Vn=Nn°(_O) o(—L_).I)
a a

n n

= N"o(AR) "o (ANT™))

since AY(T") < A}(7) a.s.; i.e., we do not run into the appended Poisson process.
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Recall that (A}(T"))/a, —4 a. Since
— —cl 0,
a, ¢ s
we obtain N*(T")/a, —4 ca.
By a change of time argument (see Appendix) we have in D[0,1]

(an)lﬂ(—? - cI)o(Ag(Tn) ~I) =g 2Weo(a-I) =g W(ca- 1)

n an

ie.,
\%& AR(T™)
a, ¢ a,

(an)l/z( . I) -5 W(eca - I).

Since W has continuous paths, the process obtained from the process on the
left-hand side by subtracting the straight line connecting its end points (at x = 0
and x = 1) also converges in distribution; i.e.,

{2

a, a,

I) -y W(ca-I)— W(ca) -1

—pVca B,
where B° is a Brownian bridge on [0,1]. We have obtained, therefore,
(a,) 7% (N"o (A7) o (AKT™) - T) = NY(T") - I) =g (ca)' "B,
from which it easily follows that
N™o(A3) "o (A5(T") - 1)

N™(T")" NA(T) I| g B".
This is the required result since a plot of
N"o(Ap) "o (AY(T") %)
N"(T") against x
is a plot of N™(¢)/N™(T") against A}(¢)/A(T"™) (replace x by this last

quantity).

Thus the total time on test plot (under the null hypothesis) has the same
asymptotic distribution as the uniform empirical d.f., taking N*(T") as the
number of observations.

We obtain immediately that the asymptotic distribution of the signed area
between total time on test plot and diagonal, times N™(T")!/?, is the same as
that of [{B®dx =, A47(0,75), which is the required result on the cumulative total
time on test statistic.

ExAMPLES. Suppose there exist a, — o0 as n — oo such that Z(N"(7) =
a,) — 1. Then we can consider the total time on test plot for the first a, events;
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i.e., take T" = T.'. We show how we can recover the classical asymptotic results
on the total time on test statistic from our general result. To simplify the
discussion suppose actually N*(1) > a, almost surely for each n. We have
NT") = a, almost surely. By the properties of a compensator of a counting
process, we have

S((N™(T™) - cAl(T™))’) = &(cANT™)) = E(N™(T")) = a,.

Thus &((AXT™)/a, —1/¢)*) =1/a,c® >0 as n— oo and our condition
AXT™)/a, >5 a = ¢ 'is satisfied.

More generally, one can check that if T" is a stopping time for each n and
a, — oo satisfies both N*(T")/a, -4 1, and

&(N"(T"))/(a,)’ >0 asn - o,
then
AYT")/a, »pc ! asn — oo.

For a second example, consider the classical random censorship model
(X,,8,) = min(X,C), {X,< C}),i=1,...,n,where X,,..., X, and C,,...,C,
are all independent and nonnegative, the X,’s with absolutely continuous
distribution function F and the C;’s with dlstrlbutlon function G. Define
N™¥t)= #{i: X,<t8,=1) and Y"(t) #{i: X,>t}). Then N" is a count-
ing process with mtensity A" = Y". X\ where A is the hazard rate of F. Taking
AY(t) = [{Y"(s) ds, we obtain a plot and a test statistic for testing exponential-
ity of F versus alternatives of an increasing or decreasing hazard rate.

If we use all the observations, i.e., take T" = oo, we see that

ANT™) /n - f (1-F(s))1 - G(s))ds =&(X) < (X)) <

when A is constant, so our conditions are satisfied with a, = n.

This example brings up the question as to whether the total time on test plot
described here is the appropriate generalization from the uncensored to the
censored case. As n — oo the plot converges to the curve obtained by plotting

s(1 - G(s —)) dF(s)
J°(1 = G(s =) dF(s)

against

J6(1 = G(s -))(1 — F(s)) ds
521 = G(s =))(1 - F(s)) ds’

which depends heavily on the censoring distribution G (though to be sure it is
convex or concave according to whether A is decreasing or increasing). If one is
really more interested in estimating the curve obtained when G = 0, then one
would do this by replacing F' by the product-limit estimator and deleting G.
Unfortunately the asymptotic distribution theory becomes rather more com-
plicated then (see Gill, 1983).

te[0,0),
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REMARKS. One might hope that N*(T") =4 o0 or A}(T") =4 oo would be
sufficient to prove our weak convergence result. However, this is easily seen not
to be the case. Suppose for instance N”" is a standard Poisson process, A} = I,
¢ = 1,and let T" be the stopping time, the first time after the nth event that the
cumulative total time on test statistic takes a positive value. One can show that
T™ < o with probability one for each n. Obviously we cannot now have weak
convergence to a Brownian bridge.

Two-sample versions of the total time on test plot and statistic are introduced
by Gill and Schumacher (1985). Other recent related work has been done by Arjas
and Haara (1985) and Arjas (1985).

APPENDIX
A lemma on random time change.

LEMMA. Suppose X" -4 X in D[0,0] and T" =4 1 < 6 as n — oo where X
has continuous sample paths and T" € [0,0] for all n almost surely. Then
Y"=X"o(T" 1) satisfies Y" =4 X o(7 - I) in D[0,1].

ProoF. By a Skorohod-Dudley construction (cf. Vervaat (1972) for a state-
ment and nice application of this) and continuity of the paths of X, we may
suppose that we have, on a single sample space,

1X*-X|l,»0 as,
T"—> 1 as,
where || - ||, is the supremum norm on [0, a]. Immediately we have
| X™e(T™ - I)— Xo(T"-I)|, >0 as.
We must check
IXo(T" - I) = Xo(r-I)|, > 0 as.
But
IXe(T"- 1) = Xo(r- D),
= sup |X(T"x)— X(7x)|

x€[0,1]

< sup | X(u) — X(0)|

u,v: lu—o|<|T"—1|
-0 as. asn— o0,
since the paths of X are continuous. We now have

|X"e(T™-I) - Xo(r-I)||, >0 as,
which implies
X"o(T"-I) 5y Xo(r-1)
in D[0,1].O0
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NoTeE. The lemma also holds when the closed interval [0, o] is replaced by
the semiopen interval [0,0), 0 < 0 < 0. Just run through the above proof
replacing o by o/, 1 < 0’ < 0.
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