The Annals of Statistics
1986, Vol. 14, No. 3, 1152-1170

ASYMPTOTIC BEHAVIOR OF THE EMPIRIC DISTRIBUTION
OF M-ESTIMATED RESIDUALS FROM A REGRESSION
MODEL WITH MANY PARAMETERS!

BY STEPHEN PORTNOY

University of Illinois

Consider a regression model Y, = x;8 + R,, i = 1,..., n, where {R,} are
iid. with c.d.f., F; x, € R? and ﬁ € R”. Let B be a M-estlmator defined
using kernel, y; let F,l(x) denote the empiric distribution of the residuals,
Y, — /B, and let F* be the empiric c.d.f. of the errors, { R,}. Under suitable
smoothness conditions on y, F, and the density F’ = f and conditions
requiring essentially that {x,} behave like a random sample from some
distribution in RP, it is shown that, for fixed x,

Vn(Fy(x) = Br(x) = H(x)) - 8(x)

where g(x) = af(x)y(x) + bf "(x) and H,(x) = (1/nd) f(x)X™¥(R,) if the
design has a constant term [and (%) vanishes otherwise]. A tightness result
shows that if p/ Vn - ¢, Vn (F (x) — F(x)) converges weakly to a Gaussian
process with drift given by the bias term c¢g(x), and covariance function
strongly affected by H,(x) and different from that for the usual Brownian
bridge. In the course of the proof, an expansion for the fitted values, x; B, is
obtained, with error O,(p''/* In?n/n?) = 0,(1/Vn) if p>/n is bounded.

1. Introduction. The use of residuals in analyzing linear (and nonlinear)
models has become extremely widespread. The basic results here concern the
asymptotic behavior of residuals from regression models when M-estimators are
used and the number of parameters is permitted to grow with the sample size. To
be precise, consider the general linear model

(1.1) Y,=xB+R, i=1,...,n,

where {R,,..., R,} are i.id. with cdf. F, {x,,..., x,} are (fixed) vectors in R?
and B € R”?. Let Y be a given kernel and define the M-estimator, B, to be any
solution of the vector equation

(1.2) 0= x (Y, - x/B).
1=1

For the results here, we assume 8 = 0 without loss of generality. Define ﬁ’n(x) to
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be the empiric c.d.f. of the residuals:

:I»—‘

(1.3) F(x)= —ZI(Y—x’,B<x)=

i=1

LI, - xif < x)

(since B = 0), where I(-) is the indicator function of its argument. Let ﬁ'n*(x) be
the empiric c.d.f. of the errors, {R;}.

If F is normal and Y (u) = u (least squares), the joint distribution of residuals
is well known. In other cases, asymptotic computations will generally be neces-
sary. If p is fixed as n — oo, classical methods can be used. However, in most
applications, if n is large, models with large p will be considered. For example, in
a regression model with five independent variables, n = 100 might be considered
adequate for reasonable asymptotic approximation. However, in such cases
quadratic models are often considered, providing a model with p = 21 parame-
ters; and, thus p2?/n is moderately large. The basic result presented here depends
on whether or not the design has a constant term; that is, the first coordinate of
x, satisfies

(1.4) x;=1, fori=1,2,...,n

The result (Theorem 3.1) is the following: let f(x) be the density of R,
d = EY/(R) and 6% = Var y(R). Then

V(B (x) = FX(x) - Hy(x)) - g(x)—* 0,

where

g(x)-—f "(x) + —f(x)tlf(x)
and

H(x) = 73f(0) L 4(R),

if (1.4) holds and H,(x) vanishes otherwise. The H (x) term arises from the
estimation of the coefficient of the constant term. When p is fixed, it was
considered in a regression setting by Koul (1969) and Pierce and Kopecky (1979),
and in more general situations by Burke, Csorg6, Csorgd, and Révész (1979),
Loynes (1980), and Shorack (1985) where its strong effect on the asymptotic
distribution is discussed. If p is fixed and f(x) is known (e.g;, in testing a simple
null hypothesis), H,(x) can be appropriately estimated smced,B1 =1/n)XyY(R,) +
o1/ Vn). Thus, by adjusting for H,(x) it is possible to construct a process
vn (F F-H ), which converges to the usual transformed Brownian bridge. It
appears that this adjustment may be possible even if p — . If f(x) cannot be
assumed, it too must be estimated [to order o(1/ Vn)], and this is a very difficult
problem, particularly if p — co. It should be noted that it is relatively easy to
adjust for the bias term g(x) since all that is required is consistent estimators of
f(x) and f’(x) (which can be obtained under the conditions used here).
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These results depend upon the asymptotic behavior of the M-estimators, 8,
which has been considered by Huber (1973, 1981), Yohai and Maronna (1979), and
more recently by Portnoy (1984, 1985a). The first two references use more or less
classical results, but require a stronger condition than p%/n — 0. The last
references show that in the regression case (where {x,} “act” like a sample from
some distribution in R?), ||8)2 = O,(p/n), and maxtlx’,3| p 0 if p is suffi-
ciently small compared to n. The author (1985a) shows that p3/ ’2Inn/n > 0 is
sufficient but conjectures that p'*¢/n — 0 should work. In fact Theorem 2.1 here
extends the earlier result slightly obtaining a higher-order expansion of x’,B (with
four additional terms) with error of order (p''/%(In n)/n)2. This result clearly
indicates the difficulty of using such expansions to try to verify the conjecture.

Consistency results for F were considered by Freedman (1981) and Bickel and
Freedman (1983) in the case of least-squares estimators, and by Shorack (1982) in
the case of more general M-estimators. These results were presented in the
context of showing that the Bootstrap method based on residuals is consistent.
Bickel and Freedman show that if p/n — 0 then the Mallows distance between
ﬁ’n and F tends to zero (in the “least-squares” case). They use this result to prove
consistency of the Bootstrap distribution of a fixed contrast if p/n — 0 and of
the Bootstrap distribution of 8* (in R?) if p2/n — 0. Shorack (1982) shows
consistency of the Bootstrap distribution of a contrast in the M-estimator case if
p%/n - 0.

2. An expansxon for x’B The main result, Theorem 3.1, requires an expan-
sion of x/B in terms of sums of functions {R;} with an error o,(1 / Vn) if
p?/n = 0(1). Theorem 3.1 of Portnoy (1985a) presents such an expansion with
error terms involving x/8 and which are shown to be O ,(p*?(In n)>*/ n) (which
clearly is not sufficient). Theorem 2.1 provides an adequate expansion with
appropriate error terms.

Since results from Portnoy (1985a) will be used, some of the conditions of that
paper will be required and some further notation is needed. The conditions in
Portnoy (1985a) relating p and n are weaker than the condition p2?/n.= O(1)
used here. The conditions on ¢ include symmetry conditions (also required on the
distribution of R) and three bounded continuous derivatives—a fourth bounded
derivative is needed here. As noted earlier, conditions on {x;} are somewhat
artificial since they are designed to hold only in typical regression cases where
{x,} can be considered as a sample from some distribution in R”. They are
generally stated in terms of the vectors

yi=(XlX)_1xi, i=1,...,n,

and include equations (2.24) and (2.31) here. It should be noted that if (1.4) holds
then by subtracting the column mean x; from the jth column we can construct
an equivalent design with y/y, = (1/n) + z]z,, where {z;} can be expected to
satisfy the conditions stated for y; (as defined originally). Using this fact, it is not
difficult to show that the conditions (2.31) and those of Portnoy (1985a) hold if
(1.4) holds (and the conditions hold for {z,}). Only condition (2.24) must be
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treated differently depending on whether or not (1.4) holds. In Portnoy (1985b),
the conditions are shown to hold in probability if the distribution of {x,} is a
scale mixture of a multivariate normal, although it should be possible to gener-
alize this distribution.

THEOREM 2.1. Assume the conditions for Theorem 3.1 of Portnoy (1985a).
Assume further that ¢ has a uniformly bounded fourth derivative, and that

(2.1) limsup(p?/n) < By < 0, liminf(p%/n) > B, > 0.
Then, uniformlyini=1,...,n,
(2.2) (x/B) =A;+ B;+ C;+ D, + E; + o,(1/Vn),

where, for some constants c,, ¢y, c3 and d = EY'(R),

A= SR,

B,= =T 0o #(R)(W(R,) - d),

C,= o2 2 2 (¥ ) ,3,) (5,5, ¥ (R, ) ¥ (R, )¥(R,,),
D, = ¢, X X Y (55,5 3,) (3,3, 3,) 9" (R, ) ¥ (Ry,)
X(\P'(Rts) - d)‘P(RL,),
E; =, L XX Y (3o ) (3 3,)% " (Ry,)
XY (R, )¥(R,)¥(R,,).

REMARK. It is possible to prove Theorem 2.1 without (2.1). In fact, the
lower-bound condition in (2.1) is only used following (2.9) to obtain the ap-
propriate order for term B;. If p?/n — 0, then B; must be included in additional
error terms. Nonetheless, it can be shown that these error terms are of sufficiently
small order; and the lower bound is not needed at all. Furthermore, the upper
bound can be replaced by P''/4In’n/n? — 0 [see (2.14)].

(2.3)

ProOF. The results of Portnoy (1985a) are first extended to show that
x/B = A; + O,(p?/n*? *) [see (2.17)]. This requires treating each of the terms in
(2.4), generally by computing moments and using forms of Chebyshev’s in-
equality. However, one term, ( y/V'), requires a more accurate expansion for (x;8);
and thus (2.17) must be inserted in a further expansion of y/V to obtain (2.2).
The remainder of this section presents some details of this argument and also
gives two technical lemmas. The casual reader may want to proceed directly to
Section 3.

(i) From Portnoy (1985a), Equation (3.16),

(xiB) = (%8) = %W + YU + %V + ¢,58W + ¢, 38U + ¢, %SV
0
(24) +csy/Se, + Y yiSHW+ U+ V+e),
k=2
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where using results from Section 3 of Portnoy (1985a) (uniformly in i = 1,..., n),

YW=A,= o(pln ) , W) = 0,(p),

) p?ln®n
yiU=Bi’ ”U”2= Op( )7

%V = L X (vn) i) (xi,B) w(R,)¥ " (RY),  forsome {R1},

p/?In’*n
(2.5) iz = 0,,(—,;@—)’
S=Y Y y(yy )V (R,)V(R,),

plhn\?
sup{uSu: ||u|| =1} = Op( ) ,

p¥*(In n)>*

Also from Section 3 of Portnoy (1985a),
pilnn n n
(2‘6) max(x’,B) =0, (n_)’ Z(x:ﬁ)2= Op(p)a
i=1

plnn

1/2
) uniformlyini =1,2,..., n.

(2.7) é (¥2)¥(R) = 0,,(

Lastly, the following conditions will also be used here:
plnn

(2.8) (3y)" = O( ) uniformly in i # /

and
) P : o
lyll= 0 - uniformly in i.
Consider y/U = B,: EB?* is a 4k-fold sum of terms of the form
() iy, Wi o) (i, >, )

Y2k M2k

<E[4(R, )(v(R,) - d) - ‘p(R,,u)(sv'(R,m) - d)|.

Since EY(R) = E(Y(R) — d) = EY(R)(Y'(R) — d) = 0, pairs of 1, and pairs of
I, subscripts must be equal. If [, * l then (using 2 8), the contmbutlon to EB?*
is less than Bn?*(pln n/n2)2k If some l,=1,, (pInn)/?/n is replaced by
p/n, but there is one less sum—thus reduci'ng the contribution by a factor of n
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and making it smaller. Hence, EB?* = O(p In n/n)?*, and, given ¢ > 0,

plnn\2*
B 2k
P . ( n ) B(ln n)
P{|B,-| > n1-uf°r somei=1,..., n} <n )2k = e 1 -0,

( p
nl—e

) uniformlyini=1,...,n.

for k£ such that 2ke > 1. Therefore
D

2.9 B, =0

(29) =0

From (2.1), (2.9) implies B; = O,( p2/n¥/2e).
Now consider y/V: using (2.6), (2.7), and (2.8),

€

EALES Z|y,y,, (=i, B) |w (RE)|| X (%,5,)9(Ry,)
(2.10) h "
plnn\2 (plnn\/? p’lnn
=op(( 2 ) p( " ) )=Op( 7 )
Now define

(2.11) C;=ySW= Z Z Z(yi’yl,)(yl’lyl;,)(yl;yl;,)lP(ng)lP”(Rll)lp(Rl;,)'

Following the argument leading to (2.9), the main contribution to EC2* arises
when pairs of subscripts are equal. However, for each set of factors of the form
(YY) Y, %,)(¥1,5,), at most one pair of subscripts can be equal (without
reducing the number of sums). Hence,

plnn\2k/ p\2k p?lnn\2*
Ec,?k=o(n3k( = ) (;) )=0( | -

Therefore [as in (2.9)], for any ¢ > 0,

2
p
(2.12) C = 0( i )
Now define D, = y/SU. Using the bounds in (2.5),
plnn plnn p%(In n)*?
(2.13) D=0, = ‘"(T .

Similarly [using (2.1) also],

Inn p"“Inn
%8V =0,/ PR E
n n n

11/4lnn3/2 2
-of 25 o[ ).

(2.14)

3/2

Inn p*2%(nn)** 5/2(In n)?
(2.15) ySe, = O, ]/ \/p P ( ) ) op(%—)).
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Lastly using the bound on ||S|| and the geometric series, the final summation in
(2.4), say e*, satisfies

p|plnn 1 pilnn
216) e*=0,)/2 /oy =022l
(2.16) e \V n n plnn p p( n®?

n

Therefore from (2.4) and (2.9) through (2.16), for ¢ > 0,

2
A p
(2.17) (xB)=A, + op( Py )
(i) Now reconsider y/V (2.5) and continue the Taylor series expansion of y:

(218) ¥V = Y Y () Ay (Ry)[ 67 (R,) + (x1,8) 99 (R,,)] (x1,8)°
=T + T,

where T, uses the ¢””(R,) term and T, uses the (x;‘,é)xp(“)(f?ll) term. Inserting
(2.17) in T, and using (2.8), (2.7), (2.5) [for A; in (2.17)] and (2.6), the sum over
l, # I, # i in T, contributes

ypInn [plnn plnn p?
L= 0"{ n n n + nd/2-e p
p*2(In n)*?
=0\ = —

[using (2.1)]. It is easy to see that the sum for /, = [, or [, = i contributes a
smaller-order term. Squaring (2.17) [and using (2.5)] and inserting in 7T} yields

(2.19)

p>?
T, = ZE(yi’yl,)(yz’lylz)‘l’(Rlz)‘Pm(Rll)(Ai + Op(_)

n2—e

ypInn Inn [ p52
(2.20) =E + Op{(n P + 2) i (pz_s)}
n n n n
p5/2
=E, + Op(ﬁ?—?)’ for some &*,

where E; is defined in (2.3).
Lastly reconsider the error sum which can be rewritten

o0
(221) YW+ ySH U+ V+e)+ X ySW+U+ V+e).
k=3

Computing E(y/S*W)2?* using the argument for EC?2*, it is possible (though
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tedious) to show that E(y/S2W)2?* = O(p'(In n)3/n®)*. Hence [using (2.1)]
7/2 5/2
, p p
YiISW = p( n5/2—-e) = Op( n2—e)
uniformly in i. Using (2.5),

7/41rl 3/21
2 _ p plnn/{plhn p n p**lnn
¥SR U+ V+e) O"{\/n - 7 Tt

( p%2In*n )

=0

p 2

n

Y ySE W+ U+ V+e)
k=3

e N e )

n plnn

n

2

p**(In n)3/2
-0

Therefore, the error sum is O,( p®?/n%"¢). Therefore, using (2.4) and combining
(2.19), (2.20) (for y!V), (2.14), (2.15), and the error sum,

2
p“/“(lnn) .\ p%/?

n2 n2—e

(x}B)=A;+B;+ C;+ D, + E, + O,

from which the result (2.2) follows. O

To prove the main result, Theorem 3.1, certain results concerning random
variables related to A,,..., E; in (2.2) are needed. In particular, define for each
i =1,...,n,and for [ # i,

. 1 1
(2.22) A= d Z (J’i'yj)\l’(Rj), A= d Z (yz'yj)lP(Rj)
J#u J*i,1

and define ﬁi, ﬁil, cee, Ei, Ei, from (2.3) analogously. That is, a single subscript,
i, involves y! and all sums avoid index Z; a double subscript, i/, involves y/ and
all sums avoid both indices i and 1

The results below will be stated using an error term slightly stronger than
“0,”. Given a sequence {v,} such that y, = + oo, define A(y,) to be a random

p
variable satisfying

(2.23) E(&(v,)) = o(1/¥2).

Note: In Lemma 2.3, A will also be a uniformly bounded function on R? and the
argument v, will become a subscript, viz., A, (u, v).
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LEMMA 2.2. Assume the conditions of Theorem 2.1 and assume further that
either

Y | =

I+

or, if the design has a constant term [(1.4) holds], y/y, = (1/n) + 2!z, with {z;}
satisfying the conditions for {y;} [including (2.24)].

(i) Then, with d = EY/(R) and o® = Var y(R),

o0 (o)

E(—ln—zA fx )Z\L(R )) —o(1), if (1.4) holds,
(2.25) ‘z‘ ,
E %Z/f,) =o0(1), otherwise,
1 2 o*p 2_
(2.26) E(ﬁiglAl - EE—‘/——-) = 0(1).

(ii) Let X denote B, C, D, or E and let X denote B, C, D, or E as modified by
(2.22). Then

(2.27) E(—l- f X,)2 =0(1) and |X,- X,|=AWn).

Note also that A, = A, + (1/d)||y)|1%(R,).
(iii) Let V, = A + B + C,+ D, + E; with V and V, defined analogously to
(2.22). Then

(2.28) Vz = A(V”/P)a Vzl = A(V”/P)’ and Vzl2 = A?l + A(\/;)

REMARK. Note that condition (2.24) is similar to conditions in Portnoy
(1985a); particularly, condition X4. It is easy to see that (2.24) will hold in
probability using the arguments of Portnoy (1985b). Also note that (2.24) is the
only condition affected by the presence of a constant term [the conditions in
Portnoy (1985a) hold with or without a constant term in the design].

ProOF. The proof involves straightforward but very tedious computations.
Since the calculations are all rather similar, only the case for D, (one of the more
complicated cases) will be sketched. So, to obtain the first part of (2.27), consider
E(ED,/ Vn)2 If (2.24) holds (i.e., the design lacks a constant), this involves a
10-fold sum over i,, i, and eight subscripts /;. As in the proof of Theorem 2.1,
these subscripts must be equal at least in pairs. Thus, using the fact that [, # i,
or iy and |y; y,| <1311l < Bp/n, and using (2.24),

B £0) < 5 T[S T imun)|5

i=1 s dy i, iy

1plhn 6 p'In
=O(—p n“%) =O( n) =o(1).
n n n nt

(2.29)
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If the design has a constant term, each factor (y/y,) can be written (1/n) +
(z!z,), and the product can be expanded to yield

D;=c3). ZZZ{% + %[(z{zll) + (212,) + (212,) + (2;3214)]
b (et ) + o () (21,)]

1
+ [ e ) + o + )Gz e, |

xy"(R,)¥(R,)(¥(R,) — d)¥(Ry,).
Consider E((1/ Vn)LD,)% The 1/n* term contributes

;ll— 5 Y. Y E(8-fold sum) = —O(n“)
i Iy
since subscripts in the 8-fold sum must be equal in pairs. Similarly, since
|ziz)| < ||zl 1|2/l = O(p/n), the 1/n? term contributes (1,/n)nO( p%/n?)0(n*) =
O(p?/n?); and the 1/n%? term contributes (1/n*)nO(p*/n*)0O(n*) =
O(p*/n?) > 0. For the 1/n term, first consider the last term [without (2{z1)]
In each term in the expectation of the square of the sum, at least two of the six
factors must have unequal subscripts so that (2/z,)? = O(p In n/n?). Thus, the

contribution is
1 plnn pt p°lnn
0| S Jo{FrJotrt = o 2557 =0

Lastly, for the term involving (2/z, ), either i = /; (which eliminates the sum over
i and gives a smaller contribution), or i # I, (which allows the above argument to
apply); thus proving the first part of (2.27) for D,.

Equation (2.24) is not needed to obtain the second part of (2.27). Note that
D, — D, involves sums over no more than three subscripts (since at least one
subscript I, {,, I;, or I, must equal i). Thus, E(D, - f))2 is a six-fold sum of
products of eight factors of the form ( YL Y,)- From definition (2.3), at least two
pairs of subscripts (Z;, [,,) must be unequal (m each term). Hence E(D; — D,)? can

be bounded by
Inn p® In n 1
Bngpn2 % =0(pn5 ) =O(;).

The remaining results in Lemma 2.2 follow using similar expectation calcula-
tions. O

LEMMA 2.3. Assume the hypotheses of Lemma 2.2, and define ( fori # 1)
1 o
Gu(w) = Z{ (@) + (A (¥(w) - d)
() T (m)om)(W(R,) - )

L+i,1

(2.30)
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and similarly for G,(u). Assume

, - [p(nn)*” . .
(2.31) Y () l* = O ————| uniformlyini,!.

L#i,1
Then, with A(n) defined in (2.23) and A, (u) uniformly bounded in u and of
order A(v,),

(2.32) V= Vy+ Gy(R,) + A(n)

and

(2.33) G,(u) = Ag(u).

Furthermore,

(2.34) %ZZI.{F(JC + V) fo “Vag,(u) f(u) du}v = A1)

and similarly when i and | are interchanged.

_ ProoF. First note that G (R, =A,— A, + B,— B, exactly. Consider
Ci - Cil:

~

C, - Cy=cy(ym)v'(R) XX (319,) (¥ 3,)¥(R,)¥(R,,)

b, Iy #i, 1

+e(R) XX (y{yl,)(yz',yzz)(yiyzz)\P"(Rl,)*P(Rlz)

Ll #i,1

+eW(R) XX (i) in ) (v v, (R, $(Ry,).

L, L6l
As before, using (2.31),

E(first term above)” < B(3/%)" LL {(32)(%in, )1 12,1

L, ly#i,1

4 ’ 2 ’ 4 2
+ (i) () + i) i) (13,7

,p’I’ n)
n 6

2
sB(y{yz)2( > (yiyz,)llyz,ll“’) +0

L+i,l

Inn p%(nn)? I’ n
=O(p p( )+p )

n? n? n*

1 (p’ln*n 1
= —20( ) ) =O(—'§).
n n n

The terms D, — D,, and E, — E,, can be similarly bounded (with even smaller
bounds); and, hence, (2.32) holds. Similar (even easier) computations yield (2.33).
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Lastly, for (2.34) note that [by Lemma 2.2 and (2.33)],
P+ V) [ ¥Gu(u) () du = (F(x) + Vaf(x) + 3451 ()

x{jo"ai,(u)f(u) du + V,Gy(x) f(x)

+ 05 (Gul@) () + ().

The computations are quite tedious, but expectations of each of the terms above
can be computed (as in the earlier proofs), and it can be shown that 1/n times
the double sum of each term tends to zero. O

3. The basic results.

THEOREM 3.1. Assume Theorem 2.1 holds and assume the conditions for

Lemmas 2.2, 2.3, and 3.3. Assume that p/Vn — c. Then for each fixed x, the
empirical distribution of residuals [ see (1.3)] satisﬁes

(5.) () - Bir() — B(x) = 5[ 1) + S0 =, 0,
where

(32) FExx) =

:I'—'

LHRsw),  a'=ER(R),  d=E4(R),
and
1 n
H,(x) = 751(x) L ¥(R),
if (1.4) holds, and vanishes otherwise.

PrOOF. First, as in Lemma 2.2, define
(3.3) V=A,+B,+C,+ D, + E,
and define V, (which omits functions of R,) and V,, and V,, analogously as in

(2.22). Let 8 = 0(1/Vn). By Theorem 2.1 and Lemma 2.2, with probability
tending to one,

(3.4) I(R,—xB<x)<I(R,<Vi+x+18,) <1,
where

, 1 i
(35) L= 1R~ ZIoI(R) <5+ V45,

Since the reverse inequality holds with 8, replaced by —8,,, it suffices to consider
F, defined using I, instead of I(R; — x!B < x).
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The remainder of the proof is concerned with establishing the result

1z .
(36) 7o LU~ IRis ) = 0) =50,
where
- . - 1
(3.7) 0, = Vif(x) + 3421 /(x) + o I (2) ().

This result will be established by computing the second moment of (3.6). Notice
that Lemma 2.2 [(2.25) and (2.27)] shows that f(x)ZV,/Vn —p H,(x) (if the
design has a constant) and X(A? — (6%p/d*/n))/Vn -, 0 uniformly in i =
1,..., n. Hence, (3.6) immediately yields the result (3.1) (since || ¥l1% = p).

Now write
2

l

E % é([i—I(R,sx) - 0)
1

(38)  =- Y E(L-IR<x) -0

n—

1 ~ ~
+LYTE(L - (R, < %) - 01~ I(R, %) - T).
i*l
Consider the second double sum term. By Lemma 2.3, note that with G;
defined in (2.30),

1 .
69) L= 1R~ ZIR) - Gu(R) +A(m) <+ Vit 3,

Now let &, denote the o-field generated by all R; except R, and R,. Expanding
the product in the double sum in (3.8) and conditioning on .%,, yields nine terms,
the first of which can be computed using Lemma 3.3 [see (3.21)] as follows (with
Zy=x+Vy+38,)

ELLLI%,) = FZ)F(Z) + SIn¥(Z)H(Z)F()

1
+ < P9 Z0) F(Z0) F(Za)

(3.10) 4 _;7 {”yi||4K1(Zil)F(Zli)

HII K (Z)F(Zy) + 215012 130K o Z.) Ko Z1:) }
+1(Z0) [ Gu0)(0) do + 1(Z) [ Gusw) (1) du + A(m),
where (using notation from Lemma 3.3)

K(w) = [ (ka(u) + k()1 (u) du,

(3.11) w
Ky(w) = [ ka(u)f(w) du = $(w)f(w)-
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Expanding f, and ¢ about x + V,, and about x [using the fact that ¥, is of form
A(yn/p) by Lemma 2.2],

1 . -
E[Illzlyiz] =F(Z,)F(Z,) + d |[yl|[2f(x + ‘/ll),'!/(x + sz)F(Zz;)

1 ad ~
(3.12) + S ll* (= + Vi) (= + Vi) F(Zy)

{(Ull* + 1yll*) Ko (2) F()

+20 2071207 2 (x) ¥ (%)} + A(n),
where G;, and G,, terms have been omitted since their double sum tends to zero
by Lemma 2.3. Similarly, the other terms of the following forms can be computed
[using Lemma 3.3, (3.22)]:

+_
2d*

1

E[IiI(Rz < x)|yzl] =F(x+ V,+8,)F(x) + 242

(3.13)

21K (%) F(x)

+ 2 (x + Vi) f(x + V) Fx) + A(n),
lOa) = [ [0+ o)1)
(314 + 2 (An$(0) A (1, ) dudo + Alr)

-~ - 1 - N .
=U,F(x + V; +8,) + g||yl”2Uzl‘P(x + Vi) f(x + V) + A(n),
(3.15) E[TI(R, < x)|%#,] = U,F(x) + A(n),

where, again, G, and related terms are omitted (using Lemma 2.3).

With some tedious computation, terms of the form (3.12) through (3.15) can be
summed to obtain (ignoring terms whose double sum tends to zero when divided
by n)

E[(I,- I(R,<x) - U)(I,- I(R, < x) - U,)|%,]
= (F(x + Vil+ 5n) - F(x) - ﬁiz)(F(x + ‘71;' + 8n) - F(x) - Uzz)

1 . . ~ -
1A + Vo) f(x + Vo) {Flx + Vi + 8,) = F(x) = U)
(3.16)

1 . . ~ ~
+ Il (x + Vi) f(x + Vi) (Flx + V, + 8,) = F(x) = Uy}

1
o Il 1171 %f 2(x)92(x) + A(n).
Now expanding F(x + V,, + 8,) using Lemma 2.2 [see (2.29)],

Fx+ V,+8,) = F(x) - Uy = - —2 1% (x) ¥ (%) + A(Vn)
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(and similarly for i and [/ reversed). Thus, the first (product) term in (3.16)
contributes

1
2 I 13401 () 4%(2) + Aln).

Similarly, the second and third terms in (3.16) each contribute the negative of
this term; and these exactly cancel the last term in (3.16). Therefore,

—ZZE(I I(R,<x) - U)(1,- I(R,<x)-U)

i#!

= —ZZEA(n)

1#1

1
= o(-—;n“’) - 0.
n

Lastly consider the first square term in (3.8). Using Lemma 2.2 and computa-
tion similar to the above, it can be shown that E(I, — (R, <x)— U)?> - 0
uniformly in i. Hence, both terms in (3.8) tend to zero, and the proof is complete.

O

COROLLARY 3.2. Following Theorem 3.1, deﬁne H,(x) as in (3.2) and

(3.17) ) = 5[ T2 )+ H)0(w)

If Theorem 3.1 holds and {x,,...,x;} are fixed, the jomt distribution of the
random variables {\/_( (x ) — F(x ) — H(x,)) — g(x,)}_, is the same as that
of {\/—(F*(x ) — F(x, ))} - If Theorem 2.1 holds, the processes {\/—(F(x)
F(x) — H(x)) — 8(x)}*-, are tight; and, hence, they converge weakly to the
transformed Brownian bridge process to which {Vn (F *x) — F(x))}¥-, con-
verges, if p?/n — c.

Proor. The joint distribution result is an immediate consequence of Theo-
rem 3.1. So it remains to obtain the tightness result. By Theorem 2.1, there is
g, — 0 such that with probability tending to one,

xiB—e, <xB<x/B+e, uniformlyini=1,...,n.
Thus, with probability tending to one,

‘/_ Z{I(R —xf<x+8)-I(R —x{[%sx)}‘

sup

1 n
(3.18) < ssup 7 Z {I(IR,<x+6+¢,) —I(R,Sx—en)}‘
x Z

+1 sup

‘/_ Z (I(R, < x+5—e,,)—I(R,sx+en)}‘-

Therefore, tightness follows from tightness of the usual empiric c.d.f. [see, for
example, Billingsley (1968), Section 15], uniform continuity of g(x), and tightness
of {VnH, (x)} [which follows from uniform continuity of f(x)]. O
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REMARK. (1) The corollary implies that standard goodness-of-fit tests based
on F, should work if p?/n — 0 and the design lacks a constant, but not
otherwise, unless g(x) vanishes. If ¥(x) = —f"(x)/f(x), then g(x) will indeed
vanish. However, g(x) will generally not vanish.

(2) Whenever the design has a constant, the asymptotic distribution of
Vn (F'n(x) — F(x)) will be affected [as in Pierce and Kopecky (1979)]. Without
adjustment, these processes will converge weakly to the limiting process for
vn (ﬁ'n*(x) — F(x) + H,(x)) + g(x), which is a Gaussian process with mean g(x)
and covariance function (for x; < x,)

(2, %,) = COV{I(Ri <x) + f(x)¥(R,)/d, I(R; < x,) + f(xz)‘P(R;)/d}

= Flx, V) = FGx)F(e) + 1) [ 6 () dr

1 Xy (4 2
+ 5 H@) [ () i(r) dr+ 5 ()1 (xa).
Lastly, the following technical result is required in Theorem 3.1:

LEMMA 3.3. Assume Lemma 2.2 holds. For fixed values of i and l, fix {R;:
J # i, 1} and [using (3.3) and (2.30)], define

h(r,s) == 2l () = (V= Vo)
(3.19)

1
=r- (_i ”yillz‘l’(r) - Gil(s) + An(r’ S),
where ( from Lemma 2.3), A, is uniformly bounded in (r, s) and EA2, = o(1/n?).
From now on, let A, denote a generic function satisfying these properties. [ Note:

EAZ‘E = O(l/n)].
Consider the transformation

(3.20) U=h(R” Rl)’ V=h(Rl, Ri)'

Let f(-) be the density of R; and assume that l(u) = log f(u) has three bounded,
continuous derivatives. Then the joint density of (U, V') satisfies

fu s 0) = {1+ S Il + 1R ()

G (o)) + G (w)(v)
(321) b gz I kal) + R ()
+ % 7l *( o) + ki(v))

1
+ 2 0P DRk (0) + 8,(3,0)),
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where

ky(u) = ¢(u)l'(u) + ¢'(u),

Ro(u) = v2(u)1"(u) + (¥(u))* + 29 (u)¥/(u)l"(u).
Similarly, consider the transformation

(3.22)

U*=h(R;, R)),
(3.23) Ve R,
Then
fu e, 0) = FF )1+ 5 1%, (0) + Gul0)0 )
(3.24)

+ iﬁll%ll“(%(u) + klz(u)) + An(u,v)}.

Proor. First compute the matrix of partials,
oh(u,v) dh(u,v)

Jo du dv
dh(v,u)  dh(v,u)
(3.25) o %
L= 2@ Gile)
Giu) 1- zli—uy,u%b'(v)

Then, using Lemma 2.3 [which shows that G,(u) is of the form A (U, v)] and
the fact that || y,||> < Bp/n, it is not difficult to compute

1
L+ S II3%(0) + Ag(u, v) B4 (u,0)
(3.26) J! = 1 .
A,ﬁ?(u’ U) 1+ g ”y,”%l/(u) + Aﬁ(u’ U)
Note that all second partials of A(u, v) are bounded by p/n times a bounded

function of (u, v) with finite second moment. Since u — A(u, v) also has this
property, the inverse function can be expanded as follows [since p?/n® = o(1/n)],

r u fu—h(u,v A, (u,v)
(8) - (v) +d (U_ h(u,u;) * (An(u,v))

(327) u+ éuyiuzxp(u) + Gy(v) + 4,(u, )

: .
o+ I3 () + Gulu) + 8,(u 0)
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Similarly,

1
logdet J = log(l - Ilyillztlz’(u))
(3.28)

1
+log(1 -3 Ily,lI2¢’(v)) +4,(u, ).

Now, since R; and R, are independent,
(3:29) log fy v(u,v) =log(f(r)f(s)/det J) =U(r) + I(s) — logdet J.

So using (3.27) and expanding I(r) in a Taylor series,

1
I(r) =Uu) + | 5 ll*(u) + Gy(v)|l"(u)
(3.30) (d )

1
+5q? Iyl (w)l"(u) + A, (u,v).

Thus, expanding the log in (3.28) and inserting in (3.29),

ok £, 0) = (1) + = I%%R() + G0 (1)
1 2
b oo I(#)(w) + (v())
+1(0) + 1R (0) + Gu(w)(o)

+ o I (#2017 (0) + ((0))) + A, (u,0):

Therefore, the result (3.21) follows from exponentiating; and (3.22) follows
similarly. O
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